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XIII

It is difficult to overemphasize the importance of magnetic resonance techniques in
chemistry. Experimental spectra can usually be successfully interpreted empirically,
but more difficult cases require a prediction based on the electronic structure. In the
last 25 years the calculation of magnetic resonance parameters from first principles
has become a powerful research tool that can significantly enhance the utility of
magnetic resonance techniques when empirical interpretations are insufficient.
This can be crucial even for NMR spectra of organic molecules, where the interpreta-
tions are the simplest and where empirical material has been collected for half a
century. Examples can be found in such diverse fields as the identification of new
fullerenes, the use of calculated chemical shifts as probes of peptide conformation,
and the study of hydrogen bonding. Calculations play an even more important role
in the inorganic and organometallic fields, where empirical interpretations are far
more difficult. The ability to calculate NMR and EPR parameters also increases the
efficacy of electronic structure calculations. Computed energies of different struc-
tures are often too close to allow a unique identification of the stable isomer. Calcu-
lated NMR spectra, however, are often significantly different, so that even simple
calculations can lead to unambiguous identification in such cases.

The unprecedented improvement in the cost-effectiveness ratio of computers
(about six orders of magnitude over the last 20 years), and the continuing fast pace
of development, together with improved computational techniques, will certainly
make the calculation of NMR and EPR parameters more routine and more wide-
spread in the future.

This book, then, is particularly timely, edited as it is by three researchers of the
younger generation who have themselves played an important role in the develop-
ment and application of theoretical techniques. The author list includes many of the
original developers of improved theoretical methods, as well as a number of leaders
in chemical applications, offering a comprehensive coverage of the field.

The calculation of NMR and EPR parameters is less straightforward than the
calculation of most other molecular properties. Understanding the source of these
difficulties led ultimately to their successful solution. In the theory of NMR chemi-
cal shifts, for instance, Hameka has clarified many of the concepts, paving the way
to Ditchfield’s seminal work on Gauge-Independent (later Gauge-Including) Atomic
Orbitals (GIAOs). However, computers and programs in the early seventies were
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not yet ready for calculations on chemically relevant larger molecules. A renaissance
in NMR chemical shift calculations began around a decade later, with the Individual
Gauge for Localized Orbitals (IGLO) method developed by Kutzelnigg and co-
workers, with a parallel development by Hansen and Bouman. It took a few more
years to show that the currently preferred GIAO method can achieve similar compu-
tational efficiency.

The calculation of hyperfine coupling parameters suffers from two major difficul-
ties. Firstly, electron correlation is important, particularly when the direct effect –
due to the spin density of the unpaired orbital – vanishes for reasons of symmetry.
Much of our understanding of this problem is due to Davidson’s analysis. The other
problem is high basis set sensitivity, due to the local nature of the interaction. A
possible solution for Gaussian basis sets was calculated early on by Meyer; alterna-
tive methods are discussed in the present volume.

The calculation of spin-spin coupling constants has a long history but until very
recently has received less attention than NMR shieldings, and therefore a summary
of recent progress in the field is particularly welcome. Another timely topic, both for
chemical shifts and for spin-spin couplings, is the effect of relativity. Because of its
importance in inorganic chemistry, this has been in the forefront of recent theoreti-
cal work, and is well covered in several chapters. The calculation of electric field
gradients, necessary for predicting nuclear quadrupole coupling constants, comple-
ments the calculation of NMR parameters. Some other recent topics of high interest
include the theory of NMR in paramagnetic systems, and the calculation of EPR g-
tensors and zero-field splittings. The interpretation of resonance parameters in
terms of chemical concepts, although necessarily a somewhat arbitrary procedure, is
important for the chemical community; its inclusion here fills a void.

The book covers a wide range of methods, from semi-empirical through density
functional to highly accurate correlated wave functions where vibrational corrections
become important. The chapter on extended systems will no doubt help bridge the
gap between the chemistry and the physics communities in this area. The introduc-
tory chapters, written by distinguished scholars, will be particularly useful for any-
body entering the field. Finally, the application chapters provide broad coverage, and
will be a valuable guide to future work.

In summary, this book promises to become the standard reference for the calcula-
tion of NMR and EPR parameters, and will undoubtedly stimulate research in this
fascinating and important field.

Peter Pulay Jan. 2004

Department of Chemistry and Biochemistry
Fulbright College of Arts and Sciences
University of Arkansas, Fayetteville, Arkansas
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It is hard to overestimate the impact of magnetic resonance spectroscopy on modern
chemistry. NMR in particular is one of the most important analytical tools, and
many an area in natural and life sciences has benefited tremendously from it. The
widespread application of NMR and its complement for paramagnetic species, EPR,
has entailed an increasing demand for a reliable theoretical treatment of the under-
lying spectroscopic parameters. Quantum chemical theory has now matured to an
extent that it can significantly enhance the information that can be extracted from
the spectra, thereby widening the interpretative and analytical power of the respec-
tive spectroscopical method.

While early theoretical approaches aimed exclusively at simple, qualitative
models, the past decades have seen increasingly quantitative treatments, in particu-
lar by ab initio and density functional methods. Progress in this field has been tre-
mendous, starting from the pioneering work of Kutzelnigg and others in the 1980s
on chemical shifts. Meanwhile, many more NMR and EPR parameters are in the
focus of quantum chemical study, including nuclear spin–spin coupling, nuclear
quadrupole coupling, EPR hyperfine coupling, electronic g-tensors, zero-field split-
tings, and paramagnetic NMR parameters. Many of the developed quantum chemi-
cal methods have found their way into routine application to questions in chemistry,
biology, and solid-state physics. This has widened the group of researchers involved
in this kind of work. For example, chemical-shift calculations by quantum chemical
methods are not only part of the repertoire of the quantum chemist but are increa-
singly used also by experimentalists to interpret their measurements. The same
holds, e.g., for hyperfine coupling constants in EPR spectroscopy. Other properties,
like spin–spin coupling constants and g-tensors are on their way to becoming more
routine applications. At the same time, further methodological developments widen
the range of possible applications, e.g. by including dynamical or solvent effects, or
relativistic and electron correlation contributions in more and more detail. Last but
not least, the detailed interpretation of the computed MR parameters leads to a
direct link from experiment to the electronic structure of molecules, liquids or sol-
ids.

The variety of methods available has started to become bewildering to the non-ini-
tiated, and even experts on one aspect of MR parameters may not be equally infor-
med about others. There have been reviews on various aspects of the quantum
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1 Introduction: The Quantum Chemical Calculation of NMR and EPR Parameters

chemical calculation of magnetic resonance parameters [1], as well as a few proceed-
ings that have emerged from international conferences dedicated to the subject [2].
The basic aspects are also beginning to find their way into standard textbooks of the-
oretical and computational chemistry [3]. However, to keep an overview of the entire
field has become more and more difficult, and the access to information on a partic-
ular question related to methodological aspects or practical application is no longer
a trivial exercise. There is thus a need for a concise yet reasonably comprehensive
treatment which collects the expertise in the various subfields of the quantum
chemical calculation of MR parameters and which makes this information available
to a wider audience, ranging from theory experts via EPR/NMR experimentalists in
academia and industry to graduate or advanced undergraduate students in chemis-
try and the neighboring disciplines.

It is the purpose of this book to provide such a broad overview. Experts in the var-
ious subfields give concise reviews on the most important aspects of methodology
and on representative applications, in order to provide easy access to the further lite-
rature in the field. Since many of the topics are the subject of active research and
development, the book affords also a snapshot of the state-of-the-art in this multi-
faceted field.

The separation between methodology and applications in the various chapters is
not a complete one. That is, most of the methodological chapters may include some
examples of applications, and the application chapters may contain brief methodolo-
gical sections. In this way, the close connection between theoretical development
and important fields of application becomes clear to the reader. While we have tried
to cover a wide range of topics and subfields, it is impossible to include each and
every aspect of the theory of magnetic resonance. In particular, we have concentra-
ted on quantum chemical methods. Some of the older, more approximate models,
such as ligand field theory are thus not covered to the same extent as the more quan-
titative methodologies developed during the past decades. With small exceptions, we
also deliberately do not attempt to cover the theory of the spectroscopic measure-
ment, which is available in many NMR and EPR textbooks.

The book is organized as follows: Historical developments and fundamentals of
the theory of NMR and EPR parameters are sketched in Chapters 2–5. The method-
ology of nonrelativistic computation of NMR parameters is detailed in Chapters 6–
11, followed by reviews of how to treat effects of thermal motion and solvents on
these parameters (Chapters 12–14). Chapters 15–17 give an overview of the relativi-
stic extensions of the theory of NMR chemical shifts and spin–spin coupling con-
stants, and interpretative tools are scrutinized in Chapters 18 and 19. An account of
the theory of NMR chemical shifts of paramagnetic compounds (Chapter 20) con-
cludes the predominantly methodological aspects of NMR parameters. Chapters 21–
28 are devoted to illustrative applications of NMR computations in various areas of
chemistry. The methodology of calculating EPR parameters is developed in Chapters
29–34, and applications to systems of biological interest are covered in Chapters 35
and 36.
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The history of NMR, like any history, has no real beginning.

E. D. Becker, C. L. Fisk and C. L. Khetrapal [1].

2.1
Introduction

In NMR spectroscopy, the observed nuclei are shielded from the full external
magnetic field, B, by the electron shell. Two nuclear magnetic moments can also be
pairwise coupled by a magnetic polarization of the electron system. The connection
between the corresponding NMR spin–spin coupling tensor, J, and shielding tensor,
r of a molecule with its non-relativistic electronic wavefunction was found by Nor-
man F. Ramsey [2–7] in 1950–53. For a review see Ref. 8. During the following three
decades, a fair amount of qualitative understanding and semiempirical results were
accumulated. Even a number of good, by the standard of the time, ab initio calcula-
tions were published as early as in the middle 1960s. This body of work is now often
forgotten and we here try to rescue it from oblivion. Some useful reviews on the sub-
ject are quoted in Table 2.1. We refer to them for full coverage. Only some highlights
or broad trends will be mentioned here. An independent historical account is given
by Hameka [9]. Several recent articles on this general topic can be found in Volumes
7 and 9 of the Encyclopedia of NMR [1].
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2 Theory of NMR parameters. From Ramsey to Relativity, 1953 to 1983

Table 2.1. Some reviews covering the theoretical calculations of NMR parameters in 1953–83.

Year Author Ref. Topic

1960 Karplus [83] Review on 'weak interactions'.
1965 Barfield and Grant [84] Spin–spin coupling.
1965 Hameka [85] Book. Includes magnetic properties.
1966 Lipscomb [86] Chemical shifts.
1966 Musher [87] Theory of chemical shifts.
1967 Davies [88] Magnetic properties of molecules. Book.
1967 Letcher and Van Wazer [89] 31P shifts.
1967 O’Reilly [90] Chemical shift calculations.
1968 Memory [91] Theory of magnetic-resonance parameters.

Book.
1969 Pyykk� [92] Spin–spin coupling until 1968.
1971 Emsley and Phillips [93] Fluorine chemical shifts.
1971 Murrell [94] Spin–spin coupling.
1972–76 Grinter [95] Spin–spin couplinga.
1972 Lipscomb [38] Review. Includes chemical shifts.
1972–74 Raynes [96] Nuclear shieldinga.
1974 Das [97] Relativistic theory of electrons. Includes solid-

state nuclear spin–spin coupling. Book.
1974 Ditchfield and Ellis [98] 13C shifts.
1975 Mallion [99] Nuclear shieldinga.
1976 Ditchfield [100] Nuclear shieldinga.
1976 Ellis and Ditchfield [101] 13C coupling constants.
1977 Kowalewski [102] Spin–spin coupling 1969–75.
1977–78 Pachler [103] Nuclear spin–spin couplinga.
1978 Raynes [104] Theoretical and physical aspects of nuclear

shieldinga.
1978 Webb [105] Theory of NMR parameters.
1979–80 Pachler and Chalmers [106] Nuclear spin–spin couplinga.
1979 Raynes [107] Theoretical and physical aspects of nuclear

shieldinga.
1980 Ando and Asakura [108] Shielding and stereochemistry of synthetic

polymers.
1980–93 Jameson et al. [109] Shieldingsa.

Theoretical, physical and inorganic aspects.
1982 Kowalewski [110, 111] Spin–spin coupling 1977–81.
1983 Ando and Webb [112] Theory of NMR parameters. Book.
1983 Kowalewski [113] Spin–spin couplinga.
1986 Jameson and Osten [65] Isotope effects on shielding.
1987 Jameson [114] Spin–spin coupling.
1987 Jameson and Mason [115] Chemical shifts.

a Annual reviews, mostly June to May.
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2.1 Introduction

2.2
Spin–Spin Coupling

2.2.1
Successive Approximations

After Ramsey’s theories, the next step was taken by McConnell [10], who related
long-distance nJ (AB) coupling constants to the bond-order between atoms A and B.
As in Ramsey’s own numerical estimates, an effective-energy-denominator, DE, and
the closure approximation were used for the second-order terms:

X

n6¼0

j nihn j
E0 � En

ffi 1
DE

: (2.1)

On the semiempirical side, valence bond (VB) models were popular for a while. The
Karplus relation between three-bond coupling constants, 3J(HH) and the dihedral
angle, u, was one classical VB result. The original example [11] was ethane; the
applicability of the result was discussed later by Karplus [12]. The influence of the
hybridization and the s-character on 1J(CH) and 2J(HH) coupling constants was
studied by Juan and Gutowsky [13] as a function of the substituents. Similarly, Kar-
plus and Grant [14] related the J to hybridization and charge distribution in chemi-
cal bonds.

Pople and Santry [15] avoided the average energy approximation at semiempirical
level by introducing, instead of the bond-order, the quantity

pAB ¼ 4
Xocc

I

Xunocc

J

ðEI � EJ Þ
�1

CIA CIB CJA CJB : (2.2)

Here I and J are molecular orbitals while A and B are atoms, or s-type basis orbitals
on them. This level is called �sum-over-states’ (SOS) perturbation theory.

2.2.2
FPT

Instead of perturbation theory or response theory, such as �coupled-Hartree–Fock’
(CHF), one can use a numerical approach by introducing finite values for one
nuclear moment. This �finite perturbation theory’ (FPT) approach was first used at
INDO (Intermediate neglect of differential overlap) level for the Fermi-contact part
of J by Pople et al. [16–18]. A popular textbook on this level of theory was that by
Pople and Beveridge [19]. A comparison between SOS and FPT for J of H2 was car-
ried out by Ditchfield et al. [20].

9



2 Theory of NMR parameters. From Ramsey to Relativity, 1953 to 1983

2.2.3
Ab Initio Calculations

The available wavefunctions for H2 were used for J calculations by Ishiguro [21] and
by Das and Bersohn [22]. Kato and Saika [23] calculated the J of the HF molecule at
a Hartree-Fock SOS level. For further examples, see the reviews in Tab. 2.1 and
Tab. 2.2.

Table 2.2. Some early ab initio results. Shieldings,
r, in ppm. Coupling constants, J, in Hz. For experimental
results, and the convergence of modern calculations
towards them, see Helgaker et al. [116].

Molecule Property Year Value Ref.

HF r (F) 1964 404.65 36
1964 378.1 37
1974 411.7 39
1975 400.34 76

410.6a

r (H) 1964 28.11 36
1964 27.48 37
1974 30.61 39
1975 27.00 76

28.5(2)a

J(HF) 1967 621 23
500(20)a

ClF r (F) 1972 700b

667a,b

a Experimental value.
b See Table 5.12. of Ref. [38].

2.2.4
Relativistic Effects

Relativistic effects, especially for s orbitals if their contribution is dominant, can be
most simply estimated through multiplicative correction factors for the atomic
magnetic dipole hyperfine matrix elements (see [24, 25] and references therein). It
should be emphasized that the changes are large: Relativistic effects increase the s-
orbital matrix element by a factor of roughly 3 for a heavy element (Z ‡ 80). For
J(HgHg) coupling constants, the relativistic increase is an order of magnitude.

A more fundamental way is to formulate a relativistic analog of Ramsey’s theory
by introducing the magnetic vector potentials

AAðrÞ ¼
lA�rA

r3
A

; (2.3)

10



2.2.3 Ab Initio Calculations

for the two nuclei A and B in the perturbation

H0 ¼ ca � ðAA þ ABÞ; (2.4)

in second-order perturbation theory with four-component (Dirac) wavefunctions,
and by selecting the terms, bilinear in lA and lB [26]. Here a is a Dirac matrix. The
implementations in that paper consisted of a simple molecular orbital model only,
but gave already the prediction that relativistic effects should increase the relative
anisotropy of the J. A later SOS implementation by Pyykk� and Wiesenfeld [27],
combining atomic Dirac–Fock hyperfine integrals and relativistic extended H�ckel
(REX) molecular orbitals, localized this increase to a phase-factor difference between
s1=2 and p1=2 orbitals. While the s–s combination gives a diagonal (K, K, K), the s1=2–
p1=2 combination gives a diagonal (K, -K, -K). The same paper gave insight to prob-
lems, like the decrease and sign change of 1J(EH) in H2E molecules, E = O–Te. Fur-
thermore, the paper led to a partial revision of the symmetry rules [28] for J-tensors
in molecules with various symmetries by Buckingham et al. [29]. If nothing else
holds in a rough semiempirical calculation, symmetry will.

2.2.5
Self-Coupling Effects

For s-electrons, a relativistic treatment is imperative [30] and the finite result ari-
ses from the finite nuclear size. For non-spherical nuclear sites, a second-order
magnetic hyperfine interaction gives a small �pseudoquadrupole’ interaction
[31–33].

2.3
Chemical Shifts

2.3.1
Ab Initio Calculations

What would now be known as �coupled Hartree-Fock’ or response methods, were
effectively introduced to ab initio calculations by the group of Lipscomb [34–36].
Induced current densities were plotted. The results could be contrasted to the
uncoupled ones by Karplus and Kolker [37], especially on the spin–rotation constant.
The diatomic molecules H2, Li2, N2, F2, LiH, HF and LiF were treated using a Slater
basis. Although GIAOs (see Section 2.4) were not yet used, these papers are still
worth quoting. For a review, see Lipscomb [38]. Ditchfield [39] reported GTO results
for a large data set including polyatomic molecules. For some examples on the
results, compared to experiment or modern calculations, see Tab. 2.2. A remarkable
example is the large upfield shift of F in the ClF molecule, attributed to a small
p�HOMO – ��LUMO gap [40].

11



2.3.2
Semiempirical Models

Jameson and Gutowsky [41] related the chemical shift ranges of elements to their
<1=r3> expectation values. Simple orbital models gave insight to the shifts of acety-
lene, simple hydrides [42, 43], carbonyls [44] and other 13C shifts [45]. Karplus and
Das [46] discussed 19F shifts in fluorobenzenes in terms of localized contributions
and related � to the electric field gradient, q.

2.3.3
Crystal-Field-Type Theories

Griffith and Orgel [47] related the NMR shifts of the cobaltic, d6 S=0 59Co signals to
the crystal-field splitting, D. Buckingham and Stephens [48, 49] developed a theory
for the temperature-independent paramagnetic shifts of protons in transition-metal
hydrides.

2.3.4
Heavy-Atom Shifts

A heavy halogen, X, can induce large upfield shifts on NMR nuclei, bound to them.
Some examples are molecules like 1HX or X13CH3. These shifts are known as heavy-
atom chemical shifts. Smaller shifts of either sign can occur further out. The first
person to realize that this effect was due to spin–orbit effects, was Nakagawa [50],
who used third-order perturbation theory. The work appeared in Japanese in a
domestic conference report. The first papers in English [51, 52] also used a third-
order-PT approach at semiempirical level. The entire series of halogen-substituted
methanes was studied by Cheremisin and Schastnev [53]. A notable example was
the observed 13C shift of 290 ppm (from methane) in CI4. Volodicheva and Rebane
[54] discussed the HX series. The semiquantitative insight from these papers
remains valid. No ab initio (nor DFT) studies on this topic appeared during the peri-
od considered.

2.3.5
Lanthanide Shift Reagents

These were introduced experimentally in 1969 by Hinckley (see Ref. [1], pp. 41–43).
A theory was worked out for the contact part by Golding [55] and for the pseudo-
contact part by Bleaney [56]. A more general form of the latter theory, with explicit
sums over the full crystal-field levels at a given temperature, was published by Gol-
ding and Pyykk� [57].

2 Theory of NMR parameters. From Ramsey to Relativity, 1953 to 198312



2.3.6
Relativistic Theory

At Dirac level, one can again introduce the sum of the two magnetic vector poten-
tials, the first term now coming from the external magnetic field:

AðrÞ ¼ 1
2

B� r þ l�r
r3 ; (2.5)

In second-order perturbation theory, the energy terms bilinear in B and l will then
correspond to the NMR shielding. This idea was published in 1983 independently
by Pyper [58], Pyykk� [59] and Zhang and Webb [60]. It was already noted that the
�diamagnetic’ shielding term of Ramsey arises approximately from the positron-like
intermediate states. For the shielding, this is a large term.

2.3.7
Absolute Shielding Scales

A connection between the paramagnetic shielding term and the spin-rotation con-
stants was found by Ramsey [61]. For a later review, see Flygare [62] and further ref-
erences in Ref. [8].

2.3.8
Symmetry of the Shielding Tensor

The rules, connecting the site symmetry of the NMR nucleus to the number of inde-
pendent components of the r tensor, were published by Buckingham and Malm
[63].

2.3.9
Isotope Shifts in the Shielding

These were first discussed by Gutowsky [64]. For a review, see Jameson and Osten
[65].

2.4
General Aspects

2.4.1
Gauge-Including Atomic Orbitals

These are also called gauge-independent atomic orbitals and were originally sugge-
sted by London [66] in a theory of magnetic susceptibilities. He quotes large aniso-
tropies for bismuth, graphite and aromatic compounds. These orbitals were introdu-
ced for NMR shifts by Pople [42, 43]. Their first ab initio applications on an NMR

2.4 General Aspects 13



shift seems to be the H2 work by Hameka [67]. For later work, see Zeroka and
Hameka [68]. STOs were still used. The names �gauge invariant atomic orbital’ [69]
or �eichinvariante Atomfunktion’ [70] were used in susceptibility calculations in
1959 by him. The acronym GIAO was introduced in 1962 by Hameka [71]. Pople
[44] suggested in 1962 the name �gauge-dependent atomic orbital’.

For the shielding problem (or susceptibilities), the question is, from which gauge
origin one should take the first term in Eq. (2.55). If one uses a basis of GIAOs,

vm ¼ um expð� ie
�hc

Ai � rÞ; (2.6)

for each atomic orbital �� at centre i, with the Ai counted from a common origin,
the results will then be independent of that origin. This requirement will exist in
relativistic and non-relativistic theories alike.

As the partition of the shielding into diamagnetic and paramagnetic terms
depends on the gauge origin, it is in certain cases possible to reduce the latter one to
zero, as suggested by Rebane [72]. It can be emphasized that their sum is constant
at the basis-set limit [73] in the CHF approximation (called by physicists the �ran-
dom-phase approximation’, RPA) [74, 75].

The first devices for an efficient implementation of the GIAO ideas appeared at
the end of the title period. Following earlier discussions on optimal gauge origin
[76, 77], Kutzelnigg [78] introduced the �individual gauge for localized orbitals’
(IGLO) approach at CHF level. It was applied on simple polyatomic molecules using
a Gaussian basis [79]. In retrospect the faster basis-set convergence will be an even
greater advance than the actual gauge invariance.

When calculating spin–spin-coupling tensors, a logical gauge origin for each
hyperfine matrix element is the nucleus in question and this has so far been consi-
dered to be an adequate choice.

2.4.2
Basis Sets

The earliest ab initio calculations of NMR parameters were performed using Sla-
ter orbitals, which may partially explain their success. Following the general move
towards Gaussian orbitals, these orbitals were also adopted for the present pur-
pose. A detailed study on the STO-nG expansions of an STO in Gaussians for the
present properties was reported by Ditchfield et al. [39, 80]. Among the earliest
GTO calculations were those by Lazzeretti for both r [81] and J [82].

2.4.3
Note on Dimensions

For historical continuity, we have used Gauss-cgs units. For their conversion to SI
units, see Ref. [8].

2 Theory of NMR parameters. From Ramsey to Relativity, 1953 to 198314



2.5
From 1983 to 2003

The developments since 1983 and the current situation will be reviewed in the chap-
ters in this book.
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The field of theoretical calculations of EPR spin-Hamiltonian parameters was devel-
oped in close correspondence with the progress in the experimental technique.
Indeed, many of the scientists who made seminal early contributions to the theory
of EPR parameters were also involved in experimental studies. It is therefore neces-
sary to briefly describe the history of the EPR method itself before it is possible to
understand how the theoretical approaches evolved. The first magnetic resonance
experiment was carried out by Zavoisky in Russia in 1945 [1]. At this time he ob-
served resonance lines from CuCl2.2H2O at a frequency of 133 MHz! Intellectually,
this experiment might have been expected for about 10 years based on the studies of
Van Vleck in Oxford [2] on molecular magnetism and the group led by Gorter [3] in
the Netherlands. However, rapid experimental progress only became possible after
World War II due to the development of microwave technology in military based
laboratories. In the following years EPR spectroscopy progressed quickly but was a
domain of physicists studying transition metal ions in crystals. It is therefore not
surprising that the first observation of hyperfine structure in 1949 by Penrose [4]
was on a complex of the Cu(II) ion which splits an EPR resonance into four lines
due to its nuclear spin of I=3/2. In the early 1950s organic chemists studying aroma-
tic p-radicals became interested in EPR. In 1953 Weissman [5] observed for the first
time the EPR spectrum of such a radical and correctly attributed the rich structure
observed to the proton hyperfine coupling (HFC) (the first inorganic, transition
metal free radical EPR was also seen by Weissman and co-workers in (SO3)2(NO)2–

in 1952 [6]). In 1953 an important observation was made by Owen and Stevens who
for the first time observed the hyperfine structure due to the coordinating ligands in
IrCl6

2– [7]. Subsequently EPR evolved in basically three communities which were
studying organic radicals and biradicals, open shell transition metal ions, and small
inorganic radicals in the gas phase or by matrix isolation techniques respectively.
Between the years 1960 and 1980 continuous wave (CW) EPR was developed into a
routine technique for the study of paramagnetic molecules with commercial spec-
trometers being available from several companies. The first spin echo in EPR was
observed by Blume in 1958 [8] and in the 1960s pulse techniques were developed
mainly in the Bell laboratories in the group of Mims [9–13]. However, it was not
until the 1980s that the electronics became sufficiently fast and sufficiently cheap
for the pulse techniques to become more widespread (for reviews see [14, 15]).
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Already in 1956 the first electron-nuclear double resonance experiment (ENDOR)
was conducted by Feher [16, 17] but this technique, despite its considerable power,
also took a long time to become more conventionally used. The main technological
advances, starting in the early 1980s, were (i) the extensive development of pulse
techniques which opened the way for the first 2D-EPR experiment in 1986 [18] and
(ii) the construction of spectrometers which operated at higher and higher micro-
wave frequencies and consequently also higher magnetic fields [19–22]. Today these
techniques are still improving at a rather rapid pace. Due to these developments it
became possible to record EPR spectra with unprecedented resolution. First, one
can now sensitively and accurately measure very small isotropic and anisotropic
HFCs as well as quadrupole couplings of magnetic nuclei which are very weakly
coupled to the electronic spin. Secondly, it is possible to observe resonances from
systems with much larger interactions (zero-field splittings (ZFSs), Kramers and
non-Kramers systems, exchange coupled systems) which previously could not be
studied by EPR techniques. Thirdly, due to the emergence of high-field spectrome-
ters, g-tensors can be measured to much higher accuracy than possible previously.
Together with these technological advances the systems studied by EPR techniques
became ever more complex. In biochemistry, radicals in low-symmetry protein envi-
ronments with specific hydrogen bonding interactions, mono- and polynuclear
metal active sites in metalloproteins, and shortlived charge-separated states in pho-
tosynthesis [23] are all accessible to detailed EPR studies nowadays. In solid state
and materials sciences paramagnetic defects and metals or radicals in zeolites cur-
rently receive much attention. All these developments now require theoreticians to
catch up with the technological developments and provide new quantum chemical
methods which make it possible to develop the information content of EPR spectra
to their full potential.

The small interactions observed in EPR spectra (<~1–25 cm–1) have been theoreti-
cally understood since the early days of quantum mechanics, long before the inven-
tion of the EPR technique itself. Indeed, the observation of hyperfine structure in
atomic spectra led Pauli in 1924 to postulate the existence of a spin angular momen-
tum [24] based on the famous Stern–Gerlach experiment [25], of which EPR can be
considered a fascinating extension. The spin also came as a natural consequence
from the Dirac equation which describes the relativistic motion of a single electron
[26]. A generalization to more than one electron was developed by Breit [27–29]. In
1957 Bethe and Salpeter wrote an influential monograph that summarized almost
all of the microscopic terms in the Hamiltonian that are necessary to understand
the phenomena observed in EPR spectra [30]. An important addition was made by
Fermi in 1930 who found the important �Fermi contact interaction’ in the spectra of
alkali metals with a single valence electron [31]. Although Fermi started his deriva-
tion from the Dirac equation, the relativistic nature of the contact term is under dis-
pute since the HFC can be obtained from classical arguments if a magnetic moment
for the electron is assumed [32]. A deep discussion has been given by Kutzelnigg
who concludes that the isotropic HFC is not an intrinsically relativistic effect and
that the d-function term in the Hamiltonian arises as an artifact of trying to use first
order perturbation theory in terms of two component spinors instead of the four
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component Dirac spinors to describe the interaction [33]. In addition, it is not widely
known that the delta-function notation in the Fermi contact operator was actually
introduced much later by Abragam and Pryce [34, 35]. Furthermore, the 1930s wit-
nessed the development of two theoretical frameworks that later served as a basis
for the understanding of EPR spectra for many decades. These two theories are the
H�ckel molecular orbital (HMO) theory of organic p-systems published in 1937 [36]
and the crystal field theory (CFT) of transition metal electronic structure developed
by Bethe [37] and Van Vleck [38] in the early 1930s and brought into chemistry by
Hartmann and co-workers in the early 1950s [39–41].

With the emergence of EPR experiments in 1945 it quickly became evident that
the route from the fundamental theory to the actual data was too long, especially if
complicated open shell ions in low symmetry environments were studied. A simp-
ler, less fundamental but phenomenologically correct description of the EPR experi-
ment was therefore urgently needed in order to reduce the complexity of the data
analysis. The emergence of such a method, the effective spin-Hamiltonian (SH), in
the early 1950s must be considered a major intellectual achievement with far rea-
ching consequences for the development of EPR and NMR spectroscopy. The princi-
pal idea of the SH is to write down an effective Hamiltonian that only contains spin
degrees of freedom together with a few well defined numerical parameters (SH pa-
rameters) that are obtained from fitting to the experimental data. Since the spin-
only Schr�dinger equation is easily solved exactly (or at least numerically with a
computer) the experimentalists could now focus their efforts on designing new
experiments and plan, describe and analyze them in the framework of the effective
SH. Thus, recourse to the much more complicated underlying physics is not neces-
sary. It is not even necessary that the spin entering the SH is the “true” spin of the
system. For example, in Kramers systems with large ZFSs one can describe the indi-
vidual Kramer’s doublets by an effective S=1/2 SH. The spin in the SH is therefore
usually referred to as the “fictitious spin” and the important concept involved in SHs
is that they describe the properties of a reasonably well isolated set of states correctly
(most frequently an orbitally non-degenerate spin-multiplet with 2S+1 components).
However, spin-only type problems were considered long before the formulation of
the SH concept. Most prominently, Breit and Rabi in 1931 obtained a closed form
solution of the eigenvalues and eigenvectors of a spin system with an isotropic g-val-
ue and an isotropic hyperfine tensor [42] (for more details on the SH concept see
Chapter 4 by Lushington).

Thus, in the early 1950s the field of �theoretical EPR spectroscopy’ was reduced to
the prediction of a small set of SH parameters. Indeed, Griffith wrote in his famous
book “The Spin Hamiltonian is a convenient resting place during the long trek from
fundamental theory to the squiggles of an oscilloscope” and it is “the last outpost in
our land of theoretical physics” [43]. In the early 1950s it was impossible to seriously
consider the solution of the many electron Born–Oppenheimer (BO) problem to-
gether with the many small (mainly relativistic) effects that are necessary to under-
stand EPR spectroscopy. It is therefore evident that the first formulation of the theo-
ries for SH parameters had to be formulated in the languages of the theories appli-
cable to the classes of substances of interest that were available at the time. Conse-
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quently, the first development of the SH by Pryce [44, 45] and Abragam and Pryce
[34, 35, 46, 47] used perturbation theory in the framework of CFT. A lucid theoretical
study is due to Griffith and was published in 1960, some ten years after the intro-
duction of the SH [48]. These workers already arrived at all the terms that are consi-
dered essential for the parametrization of EPR experiments today:

1. The g-matrix which parametrizes the Zeeman splittings due to the interaction
of the total electronic magnetic dipole moment with an external magnetic
field (0–10 cm–1).

2. The hyperfine tensor which parametrizes the interactions between the total
electronic spin and the nuclear spins (< 1 cm–1).

3. The zero-field splitting which parametrizes the interactions that lift the dege-
neracy of the 2S+1 components of a spin multiplet with total spin S (0–
25 cm–1).

4. The quadrupole interaction which parametrizes the interaction of the nuclear
quadrupole moment (with spin I > 1/2) with the total electric field gradient
at the nucleus (< 0.01 cm–1).

5. The nuclear Zeeman interaction which describes the Zeeman splitting due to
the nuclear magnetic dipoles interacting with an external magnetic field
(< 10–3 cm–1).

Slightly later the SH was supplemented by appropriate terms to describe
exchange and dipolar interactions between interacting spin systems, probably the
most detailed presentation is due to Bencini and Gatteschi [49]. In retrospect it may
be considered fortunate that these early theories applied to classes of substances (tran-
sition metal complexes, organic p-radicals) rather than being formulated in an
abstract way that can only be implemented numerically and applied to individual
molecules (see Primas [50] for an in-depth discussion of this point). Thus, the simpli-
fied theories can be carried through analytically and lead to closed form solutions
that give much insight into the EPR properties of many related molecules.

The inadequacy of CFT to cope quantitatively with the EPR spectra of transition
metal ions was understood rather quickly. It was not possible to use pure metal d-
orbitals together with constants such as the free-ion spin–orbit coupling (SOC) con-
stant in order to satisfactorily reproduce the experimental findings. Stevens [51],
Abragam and Pryce [34, 35], Owen and Thornley [52], and others attributed this to
the effects of covalent bonding, which serve to �dilute’ the metal d-orbitals with li-
gand orbitals. Predominantly this effect was incorporated into the theory by a simple
downscaling of the free-ion parameters that enter the Abragam and Pryce SH (see
Ref. [52] for a more detailed discussion). The most striking demonstration of the
metal–ligand covalency was, of course, the observation of the ligand hyperfine struc-
ture (referred to as the �superhyperfine structure’ in the EPR literature) which pro-
ved that there is a finite probability of finding an unpaired spin density at the posi-
tion of the ligand nuclei [7]. Given the strong dominance of the �effective dilution’
ideas it is remarkable that already in 1958 Maki and McGarvey developed a molecu-
lar orbital (MO) approach to the EPR spectra of square planar Cu(II) complexes that
contained the metal–ligand bonding explicitly [53, 54]. While the original theory
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underwent several modifications and improvements [55, 56], it still forms the cor-
nerstone of the qualitative understanding of transition metal EPR. McGarvey’s
approach, which may be considered to be greatly ahead of its time, is fully described
in his review from 1966 [57].

Another difficulty that arose with the CFT was that the values of the central metal
HFCs could not be understood without invoking a strongly negative isotropic contri-
bution. The origin of this term was difficult to understand since the metal d-orbitals
have no finite probability density at the nucleus. Abragam and Pryce found a solu-
tion to this problem in 1951 and attributed the isotropic HFC to unpaired s-electron
spin density that came about by configuration interaction (CI) of the ground term
with excited terms from the ndn(n+1)s0! ndn–1(n+1)s1 configuration [34, 35]. This
formulation failed to quantitatively reproduce the isotropic HFCs and Abragam and
Pryce therefore introduced a phenomenological term -Pdk into the spin Hamilto-
nian where Pd=gegNbebN<r–3>d is considered to be a constant of the free ion. From
today’s perspective, a CI treatment is perhaps the most satisfying way to describe
the small admixtures that give rise to the s-orbital spin densities. However, in order
to achieve quantitative results one has to thoroughly correlate the core electrons as
well as the admixing ndn–1(n+1)s1 configurations, which implies the use of large
and flexible basis sets and probably at least triple excitations from the leading
ndn(n+1)s0 configuration. A much simpler solution is to introduce the s-orbital spin
density via the spin-polarization model in a spin-unrestricted self-consistent field
framework [58]. In the early 1960s it became possible to obtain accurate unrestricted
Hartree–Fock (UHF) solutions for the free atoms and ions and this method was
extensively applied by Watson, Freeman and co-workers to understand the isotropic
HFCs as a consequence of the core level spin polarization [59, 60]. It attests to their
considerable insight that the ideas voiced by Watson and Freeman still stand almost
unchanged today and serve as a basis for the qualitative understanding of the isotro-
pic metal nucleus HFC [59, 60].

In conclusion, the Abragam and Pryce SH, together with an empirical correction
for the isotropic metal HFC has served well as a basis for the understanding of tran-
sition metal EPR spectra for several decades. The most comprehensive descriptions
are found in the classic texts of Griffiths [43] and Abragam and Bleaney [61].

A related problem with the interpretation of the HFCs was encountered in the p-
radical EPR community at the very beginnings of free radical EPR spectroscopy. The
observed HFCs were correctly attributed to the ring protons which, however, lie in a
nodal plane of the spin-carrying MO. Thus, based on simple MO theory, there
should not be any spin density at the positions of the protons and consequently
there should be no isotropic HFC. The solution to this problem was found indepen-
dently and simultaneously by Weissman [62], McConnell and Chesnut [63–65], Jar-
ret [66] and Bersohn [67] in 1956. The proton spin density was explained along the
lines of VB theory adopting the r-p exchange interaction concept, as well as by
means of MO theory considering the admixture of excited configurations involving
the C–H bond into the ground-state Slater determinant. Both approaches lead to the
conclusion that the spin density at the protons is proportional to the spin density at
the adjacent carbon but is negative. This proportionality became known as the
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famous McConnell equation [63–65]. In addition, it soon became obvious that the
spin polarization of the C–H bond also generates spin density at the carbon nucleus,
which led to the formulation of the Karplus–Fraenkel equation [68].

The McConnell relation enabled workers to predict proton HFCs from simple
HMO calculations with good to reasonable accuracy and, conversely, was used to
test HMO theory by experimentally �mapping’ out the spin density at the various
ring carbons from measured EPR spectra of the corresponding radical anions or cat-
ions. However, it was recognized almost immediately that H�ckel theory could not
account for observations such as negative spin populations of carbons at nodes of
nonbonding singly occupied orbitals, and the McConnell equation has been exten-
ded in various forms [65, 69]. Another important relation was the cos(h)2 proportio-
nality between the isotropic HFC and the angle of a proton that is bound in the Cb

position relative to an aromatic radical [70], which is widely used in biochemical
studies of, e.g., tyrosyl radicals [71].

The earliest calculations of the spin populations used the CI method starting
either from HMO or more elaborate orbitals. An alternative approach is due to
McLachlan who incorporated concepts of spin polarization into the HMO theory
and thereby obtained a much simpler, insightful, and very successful theory [72, 73].
An important contribution to the field was made in 1967 by Pople and co-workers
who invented the first semiempirical CNDO and INDO molecular orbital approach-
es. The Hartree–Fock method was well known at this time but application to mole-
cules of the size of organic p-radicals was still not in sight. Using a simple parame-
terization, Pople and co-workers showed that the UHF-INDO method successfully
accounted for the isotropic HFCs of many radicals [74, 75]. A good review from this
time is due to Beveridge [76]. For a widely used and successful variant see also Plato
et al. [77]. This finding caused considerable optimism about the performance of the
more rigorous spin-unrestricted Hartree–Fock (UHF) method. However, when these
calculations became feasible in the 1970s the results for the prediction of isotropic
HFCs were mainly disappointing [78, 79].

For a long time this difficulty �defined’ theoretical EPR spectroscopy and first
principle quantum chemical calculations of other EPR parameters were barely con-
sidered. For example a review from 1991 titled �Theoretical Approaches to ESR Spec-
troscopy’ by Feller and Davidson [80] is almost entirely devoted to the isotropic
HFCs. The dominance of the isotropic HFC in computational quantum chemistry
has several reasons. Quantum chemistry in the form of the HF method has, until
recently, been much more successful for organic molecules than for transition metal
complexes. In addition, the EPR spectra of organic radicals were typically recorded
in fluid solution where any anisotropy in the g-matrices or hyperfine interactions is
averaged out due to rapid molecular tumbling. Thus, anisotropic HFCs or g-values
were seldom measured. Where comparison between theory and experiment was
possible the anisotropic (dipolar) HFC was found easy to calculate [81], which made
extensive method development for this quantity unnecessary. The g-tensor, on the
other hand, shows very small deviations from the free electron g-value in organic
radicals. These were difficult to measure and were usually not considered in the
quantum chemical analysis. (Perhaps also because it is a second order property
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which does not easily follow as an expectation value over the ground state UHF
wavefunction, as is the case for the isotropic HFC.) The smallness of the g-shifts is a
consequence of the small angular momentum in the electronic ground state, which
in turn is due to the small SOC constants of the light atoms which most organic
radicals are made of. This is a sharp distinction from transition metal complexes
which carry much more angular momentum in their electronic ground states.
Historically, the division between the organic and inorganic fields became so strong
in the 1970s that many workers distinguished “electron spin resonance” (ESR) as
EPR applied to organic radicals with little angular momentum contributions while
“electron paramagnetic resonance” (EPR) was used in conjunction with the same
technique applied to transition metal complexes with significant angular momen-
tum (see e.g. Ref. [82] for a discussion).

In computational quantum chemistry the period from 1970 onwards has seen nu-
merous studies of the isotropic HFCs in organic molecules, with ever increasing
sophistication in the treatment of electron correlation, vibronic and environmental
effects. It became evident that only the most accurate ab initio methods in conjunc-
tion with large and flexible basis sets give quantitative agreement with experiment
and thus accurate studies were restricted to atoms and very small molecules (see
e.g. Bauschlicher for a high level study on the nitrogen atom that nicely illustrates
the computational challenges [83]). A good review is provided for example by Engels
et al. [81]. The field gained significant momentum when density functional theory
(DFT) became available in the early 1990s [84–86]. It quickly became clear that DFT
methods give isotropic HFCs of many radicals that are as good as high-level MRCI
or CCSD(T) results, provided that an appropriate functional is used [81]. However,
the DFT computed HFCs come very close to the most accurate ab initio data only in
cases where the HF configuration dominates. Where large MRCI calculations with
many (30–100) reference determinants are required to get highly accurate data, DFT
also fails, and predicts HFCs with a quality in between CISD and QCISD(T) or
CCSD(T) [87]. A particular challenge for DFT isotropic HFCs is represented by cer-
tain transition metal complexes [88, 89].

Despite the preoccupation of computational quantum chemistry with isotropic
HFCs the theory of the SH has made significant progress since the Abragam and Pryce
days. The first rigorous derivation of the SH that we are aware of dates back to 1965 and
is due to McWeeny [90]. Starting from the microscopic Breit–Pauli terms as described
by Bethe and Salpeter, McWeeny combined the ideas of effective Hamiltonians due to
L�wdin and himself and the formulation of matrix elements in terms of reduced density
matrices (RDMs). He arrived at a rigorous and convenient sum-over-states (SOS) theory
that remains, perhaps, unsurpassed today. Illuminating descriptions of his approach
are given in McWeeny’s monographs �Spins in Chemistry’ [91] and �Methods of Molecu-
lar Quantum Mechanics’ [92]. The difficulty with any SOS theory is that there appears to
be an infinite number of many electron wavefunctions (or their reduced one- and two-
particle densities and transition densities) and that computational implementation is
difficult and of unsure convergence. Nevertheless, McWeeny’s treatment was also ac-
knowledged by Harriman [82] who wrote a fulminant monograph on EPR parameters
in 1978 which gives an in-depth analysis of the relativistic origins of all terms in the SH.
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This work must be considered the most thorough, consistent and complete treatment of
the subject that is in existence.

Despite the availability of such general formulations more attention was paid by
the community to methods that were immediately applicable within the emerging
MO framework. In the case of the g-tensor, the best-known work is due to Stone
who derived a gauge invariant formula starting from a single Slater determinant
representation of the ground state as well as of the excited states that enter his SOS
g-tensor theory [93]. Stone’s theory was extended by a number of workers, most pro-
minently Atkins and Jamieson who derived results correct to third order in perturba-
tion theory [94], and by Moss and Perry who extended the theory to orbitally degene-
rate ground states [95]. Stones’s theory was widely used to interpret g-tensors of
organic radicals and also in conjunction with the extended H�ckel method for tran-
sition metal complexes in the early 1970s [96, 97]. The first ab initio calculation of
the g-tensor is probably due to Moores and McWeeny in 1973 [98] which was reaso-
nably successful but used very small basis sets and adopted a number of computa-
tionally convenient simplifications. For around the next 20 years there are scattered
reports of ab initio and semiempirical calculations of g-values, notably finite pertur-
bation theory calculations [99, 100] and a Green’s functions approach [101] but there
was apparently relatively little activity in the field. However, in the mid 1990s Lus-
hington and Grein revived the field of ab initio g-tensor calculations [102–105]. They
first reported ROHF level SOS calculations and later extended their work to the
more accurate MR-CI methodology. These calculations are probably the most accu-
rate which are available today. However, even the MR-CI method does not rigorously
solve the gauge problem or the uncertain convergence of the SOS expansion when
truncated after the lowest few excited states. Therefore Vahtras and co-workers have
taken the route via linear response theory and developed a successful multi-configu-
ration linear response approach to g-tensors [106–110].

Due to the overwhelming success of DFT in chemistry the more recent develop-
ments in the theory of the g-tensor have mainly concentrated on DFT approaches.
Perhaps due to the lack of an explicit representation of excited states, the DFT devel-
opment has taken a somewhat different route than the ab initio methods. The ap-
proaches formulated so far are in line with the analytical derivative techniques that
have been extremely successful in quantum chemistry starting from the early 1960s
[111–114]. These methods also dominate the closely related field of NMR parameter
predictions at both the correlated ab initio and DFT levels [115–118]. Following
some attempts to compute g-values at the scattered-wave Xa-level [119] one of the
earliest reports of DFT methods to compute SH g-tensors dates back to 1980. It is
due to Geurts et al. who used the Hartree–Fock–Slater method and uncoupled self-
consistent field perturbation theory to compute the g-tensor and the HFCs in [Cu(di-
thiocarbamate)2], since then a prototypical example [120]. However, despite the suc-
cess of these calculations they have not been widely used and the field was revived
only in the late 1990s when several groups started to develop DFT methods for the
prediction of g-values [121–127]. Two principal lines of development have been fol-
lowed: one is due to the use of double perturbation theory starting from standard,
nonrelativistic Kohn–Sham solutions [121–125]. The second approach is to solve
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some form of spin–orbit coupled DFT equations and then to use first-order pertur-
bation theory to compute the magnetic field effects [126, 127]. We note in passing
that a closely related but less well-known theoretical field is the prediction of the
SOC contributions to the HFC which give rise to a non-traceless tensor. It already
appears in the Abragam and Pryce SH but the first MO method is due to Keijzers
and DeBoer in the extended H�ckel framework [128]. These contributions are well
known to be large for metal- and heavier ligand nuclei. Their computation within
the DFT framework became possible only recently [89, 129].

All of these recent developments in the theory of g-tensors and HFCs were cer-
tainly, to some extent, inspired by the progress in the experimental methods descri-
bed above. The theoretical DFT methods have presently almost matured from a tech-
nical point of view and are being implemented into major quantum chemical packa-
ges. They are also easily applied to large molecules and their combination with the
popular linear-scaling [130] and embedding [131] procedures will certainly be feasi-
ble in the near future. However, while the DFT methods appear to be fairly success-
ful for organic radicals, the field of transition metal complexes is still somewhat
problematic. Progress from the fundamental point of view and also from highly cor-
related ab initio approaches appears to be needed.

In conclusion, it is probably fair to say that the principal effects that dominate
EPR spectra are well understood. Apparently there is no lack in basic qualitative
understanding but there are still shortcomings in the quantitative accuracy of the
quantum chemical predictions. In the case of HFCs the main challenge is to cope
with the complicated physics of the Fermi contact term. While high accuracy can be
achieved for this property with the best available ab initio approaches, more insight
is needed in order to devise simpler and more efficient ab initio and DFT methods
to predict this property (see Chapter 30 by Engels, Chapter 29 by Munzarova and
Chapter 31 by Chipman and Rassolov). Concerning the g-tensor, the developments
appear to be progressing well although it is presently not entirely clear how to sys-
tematically improve the accuracy of the existing DFT approaches for transition metal
complexes (see Chapter 33 by Lushington and Chapter 32 by Schreckenbach and
Patchkovskii). The theory of the ZFS is in its infancy and requires much more devel-
opment before quantitative accuracy can be achieved (see Chapter 34 by Neese).
Quadrupole couplings appear to be reasonably well predicted by current DFT ap-
proaches (see Chapter 17 by Schwerdtfeger). It appears that the progress in the field
of EPR parameter prediction has somewhat lagged behind the progress in the expe-
rimental methods and the closely related field of NMR parameter predictions. This
is probably related to the much smaller user community in EPR compared to that in
NMR. However, it should also be realized that the systems studied by EPR spectros-
copy often have extremely complicated electronic structures and a single Hartree–
Fock determinant is almost never a good starting point. This is clearly different in
the NMR field which is dominated by closed-shell molecules. Nonetheless, signifi-
cant momentum has recently been gained in the EPR field and more and more
research groups are becoming interested in the development of new methods for
the prediction of EPR parameters and in their application. One may therefore be
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optimistic and expect that rapid progress will be made in quantum chemical predic-
tion of EPR parameters in the near future.
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Spin Hamiltonians are fundamental to the understanding of experimental magnetic
resonance spectroscopy, providing formalisms in which to systematically assemble
spectral data. Spin Hamiltonians are equally vital to the theoretical development of
quantum mechanical methods for computing such resonance effects. The actual
expressions employed for experimental data assembly and theoretical prediction
often appear rather dissimilar, reflecting the different means by which quantifica-
tion of the Hamiltonian is accomplished. Ultimately, however, both syntactical
forms correspond to identical physical effects and thus have a one-to-one correspon-
dence. The goal of this chapter is to describe this correspondence in a way that will
aid readers from either scientific field in interpreting the various expressions pre-
sented throughout the rest of this book.

The voluminous data generated from nuclear magnetic resonance (NMR) and
electron paramagnetic resonance (EPR) spectra are generally reported as constructs
called effective spin Hamiltonians. By analogy with quantum mechanical represen-
tations of magnetic resonance phenomena, such effects can be conceptually descri-
bed by effective operators acting on effective spin state functions to divulge state
energies, thus conveniently and intuitively relating observed peaks to their physical
origin. These effective spin Hamiltonians should not be confused with true quan-
tum mechanical spin Hamiltonians. The former are composed of parametric matri-
ces fitted to observed data, while the latter are sums of differential operators deter-
mined from relativistic quantum mechanical interpretations of particle mechanics
and electromagnetic interactions. In order to compute NMR and EPR parameters,
theoreticians frequently must translate between the two different frameworks, using
true quantum mechanical Hamiltonians to quantify physical effects underlying the
magnetic resonance, and then employing an effective Hamiltonian in order to mea-
ningfully report their results.

In most molecular spectroscopic techniques, observed electromagnetic absorpti-
ons or emissions correspond to transitions or oscillations between different energy
eigenstates of the molecule. Typical NMR and EPR experiments detect the condi-
tions under which a molecule undergoes transitions between different nuclear spin
and/or electron spin states between which energetic degeneracy has been removed
by a fixed strength external magnetic field ~BB. A molecule with N nuclei can be
described by a spatial electronic wave function W, an electronic spin state defined by
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4 The Effective Spin Hamiltonian Concept from a Quantum Chemical Perspective

the quantum number mS, and a nuclear spin state defined by quantum numbers
m1....mN . This allows us to summarize a spin transition symbolically as follows:

U
a ¼ W ;m

a
S ;m

a
1 ::::m

a
N

�� �
, U

b ¼ W ;m
b
S ;m

b
1 ::::m

b
N

���
E

(4.1)

wherein a and b index the two spin states between which a transition occurs. One
should note that Eq. (4.1) makes a reasonable assumption that W remains relatively
stable during the transition: an approximation that will be implicit throughout the
rest of this chapter.

As should be expected for effects adhering to quantum mechanical conditions,
the transition probabilities are at a maximum when the energy of incident radiation
is exactly equal to the energetic separation of the two states between which reso-
nance is occurring. The spectral peak corresponding to the transition in Eq. (4.1),
therefore, should be centered around a frequency equivalent to the following energy:

DE
ab ¼ EðUbÞ � EðUaÞ ¼ Eðmb

S ;m
b
1 ; ::::;m

b
N Þ � Eðma

S ;m
a
1 ; ::::;m

a
N Þ (4.2)

Theoretical prediction and characterization of such transitions is accomplished via
expressions that can account for and represent the excitation energies. This is gene-
rally done by constructing a spin Hamiltonian ĤHS capable of extracting energies
(relative to the zero-field total electronic energy) for each spin state via expectation
value equations:

U
a� ��ĤHS U

a�� �
¼ m

a
Sm

a
1 ::::m

a
N

� ��ĤHS m
a
S ;m

a
1 ::::m

a
N
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¼ Eðma
S ;m

a
1 ; ::::;m

a
N Þ

(4.3)

It is possible to relate both experimental and theoretical spectroscopic formulations
in terms of Eq. (4.3), however ĤHS generally takes on a different meaning depending
on the context in which it is being used. In cases where Eq. (4.3) is employed as a
means for computationally predicting a spectrum, ĤHS entails a set of “quantum me-
chanical” operators representing relevant physical effects influencing the transition
energy. This differs fundamentally from the scenario where ĤHS “effectively parame-
trizes” the relationship between the system’s state variables and its experimentally
observed transitions. This is the main difference between the notion of “quantum
mechanical” and “effective” spin Hamiltonians. Nonetheless, both forms do repre-
sent the same basis of magnetic resonant transitions: oscillations between electronic
and nuclear spin magnetic dipoles under the influence of an external magnetic field
~BB. Both thus incorporate all pair-wise interactions arising from each constituent
magnetic dipole such as that associated with the electron spin ~SS, the following col-
lection of nuclear spins:

~II ¼
XN

C¼1

~IIC (4.4)

and electron orbital angular momentum ~LL, each interacting with each other and
with ~BB. These couplings lead to the fully general spin Hamiltonian:
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ĤHS ¼ ĤHðS;SÞ þ ĤHðS; IÞ þ ĤHðS; LÞ þ ĤHðS;BÞ þ ĤHðI; IÞ þ ĤHðI; LÞ þ ĤHðI;BÞ

þ ĤHðL; LÞ þ ĤHðL;BÞ (4.5)

In most magnetic resonance experiments, ~LL has only a small effect on spin transi-
tions relative to ~BB; thus one often simplifies ĤHS to the following form:

ĤHS ¼ ĤHðS;SÞ þ ĤHðS; IÞ þ ĤHðS;BÞ þ ĤHðI; IÞ þ ĤHðI;BÞ (4.6)

In the case of effective representations of Eq. (4.6), all contributions of~LL to the reso-
nance condition are readily incorporated into the parameters defining the above
spin–spin and spin–field terms. The quantum mechanical analog to this procedure
is to account for the effect of ~LL not within ĤHS itself, but by incorporating it into a
modified spatial wave function, WL. This wave function may be determined either
by solving the Schr�dinger equation via a spatial Hamiltonian augmented with ope-
rators representing the~LL-dependent interactions:

ðĤH0 þ ĤHLÞWL ¼ ðE0 þ ELÞWL ; ĤHL ¼ ĤHðL;SÞ þ ĤHðL; IÞ þ ĤHðL; LÞ þ ĤHðL;BÞ
(4.7)

or by accounting for these terms via perturbation theory:

WLh j ¼ W0h j þ
X

i

ci0ðL;B; SÞ W i

� ��; ci0ðL;B;SÞ ¼ W0h jĤHL W i

�� �
(4.8)

where ĤH0 is the conventional electronic (i.e., non-magnetic) Hamiltonian, W0 and
E0 are its eigenvector and eigenvalue respectively, and i is an index over the system’s
excited state manifold. Regardless of whether WL is assembled via Eq. (4.7) or via
Eq. (4.8), one may extract its spin state energies via:

U
a
L

� ��ĤHS U
a
L

�� �
¼ EðWL ;m

a
S ;m

a
1 ; ::::;m

a
N Þ (4.9)

So what does ĤHS look like? In the absence of external perturbations, one can com-
pute the classical interaction energy between two magnetic dipoles, or between a
dipole and a uniform external magnetic field, as a simple scalar product. We might
envision rewriting ĤHS as:

ĤHS ¼ CSS
~SS �~SSþ CSI

~SS �~II þ CSB
~SS �~BBþ CII

~II �~II þ CIB
~II �~BB (4.10)

where the constants C parametrize the dependence of transition energy on the diffe-
rent dipole–dipole interactions for a given molecule. This expression is valid as writ-
ten for systems with spherical symmetry (e.g., isolated atoms). In anisotropic cases
such as molecules, aspherical electronic charge distribution and nonzero orbital
angular momentum can induce directional dependence in the various interactions
relevant to magnetic resonance. In order to accommodate such anisotropy, one
generally replaces the simple scalar product representation with a matrix multiplica-
tion scheme of the form:
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ĤHðU;VÞ ¼ KUV
~UU � T

$
UV � ~VV (4.11)

wherein ~UU and ~VV are two arbitrary dipoles, KUV is a universal constant (independent
of molecule type, but unique for the specific interaction), and T

$
UV is a 3 � 3 Carte-

sian matrix providing a full characterization of the directional dependence of the
interaction for the given anisotropic molecule. T

$
UV can be expanded as follows:

T
$

UV ¼
T

xx
UV T

xy
UV T

xz
UV

T
yx
UV T

yy
UV T

yz
UV

T
zx
UV T

zy
UV T

zz
UV

�������

�������
(4.12)

where Txy
UV , for example, is a scalar that parametrizes the energetic contribution ari-

sing from the interaction of the x-component of ~UU with the y-component of ~VV . For
cases where ~UU and ~VV are the same quantity (e.g., as for ĤHðS;SÞ or ĤHðI; IÞ), T

$
UV fits

the algebraic definition of a tensor. In cases of inequivalent vectors (~UU „ ~VV ), it is no
longer technically correct to call T

$
UV a tensor [1], but all such dipolar interaction

matrices have traditionally still been referred to as tensors, so the convention will be
perpetuated herein.

The exact form in which one reports an effective ĤHS for different experiments is
based on conventions that have evolved within the different spectroscopic communi-
ties. As the NMR and EPR communities tend to deal with molecules exposed to
significantly different physical conditions (e.g., different magnetic field strength,
transition timescale, etc.), it should come as little surprise that the two groups gene-
rally use rather different looking effective spin Hamiltonians. In the case of NMR,
one frequently sees the spin Hamiltonian written as something of the following
form [2]:

ĤHSðNMRÞ ¼ �
XN

C¼1

�hcC
~BB � ð1

$
� r
$

C Þ �~IIC þ �h
2

2

XN

C¼1

XN

D¼1
D6¼C

cC cD
~IIC � ðD

$
CD þ J

$
CD
Þ �~IID

(4.13)

where �hcC arises from the standard nuclear magnetic dipole definition (~llC ¼ �hcC
~IIC), 1

$

is a unitary tensor, r
$

C is the nuclear shielding tensor, and D
$

CD and J
$

CD are the clas-
sical dipolar and indirect nuclear spin–spin (J-) coupling tensors respectively. r

$
C

describes the peak’s shape and shift (or the center of a split-peak pattern) for reso-
nances arising from each of the resonant nuclei, while D

$
CD and J

$
CD, relevant for all

molecules with more than one nucleus with a nonzero dipole, parametrize the
magnitude of peak splitting that may arise from the coupling of each pair of nuclei
with a nonzero magnetic dipole.

The NMR effective spin Hamiltonian in Eq. (4.13) is a pragmatic generalization
that satisfactorily addresses the relevant interactions present in most NMR spectra.
There are scenarios, however, when additional terms must be added. When parama-
gnetic systems are studied via NMR, for example, one often observes additional
effects (e.g., the Knight shift [3]) enabled by coupling between electron and nuclear
spin magnetic dipoles, as can be summarized by the following operator:
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ĤHðS; IÞ ¼
XN

C¼1

~SS � A
$

C �~IIC (4.14)

(where A
$

C is the hyperfine coupling tensor for center C) that must then be incorpo-
rated into ĤHSðNMRÞ. Electron spin–orbit effects can also affect NMR spectra but, as
per Eq. (4.7) and Eq. (4.8), these effects are generally accounted for outside of ĤHS.

Molecules containing high spin nuclear magnetic dipoles (e.g., |~IIC | > 1�2) consti-
tute another special case in NMR because additional important resonance effects
may arise from electrostatic considerations. High spin nuclei possess an intrinsic
electric quadrupole moment in addition to their magnetic dipole; thus the different
projections of nuclear spin, mC = |IC| , |IC-1| ,...,-|IC| , are energetically split by the
presence of the various electrostatic charges (both electronic and nuclear) in their
vicinity, leading to potential resonance conditions [5] that can be parametrized by
the following operator:

ĤHQ ðI; IÞ ¼
XN

C¼1
jIC j�1

~IIC �Q
$

CC
�~IIC (4.15)

where Q
$

is the nuclear quadrupole coupling tensor. Resonances between nuclear
quadrupole moments are, to a very good approximation, independent of external
magnetic field, but as different field strengths shift the various magnetic dipole
energies it can be possible to observe both magnetic dipole and nuclear quadrupole
resonance within the same spectrum. In such cases, ĤHSðNMRÞ should include
ĤHQ ðI; IÞ. However, most choices of field strength lead to magnetic dipole and elec-
tric quadrupole spectra that are significantly separated, thus the latter is often stud-
ied as a distinct phenomenon. In this case Eq. (4.15) becomes its own effective
Hamiltonian governing the effect known as nuclear quadrupole resonance (NQR).

The basic and most common effective spin Hamiltonian used for analyzing EPR
spectra is something of the form:

ĤHSðEPRÞ ¼ lB
~SS � g
$ �~BBþ

XN

C¼1

~SS � A
$

C �~IIC (4.16)

where the first term details the so-called electronic Zeeman effect that governs the
position of peaks (or split-peak patterns) within EPR spectra, and the second term is
the same quantity used to parametrize Knight shifts in NMR spectra, but manifests
itself in EPR spectra as the hyperfine splitting term.

Similarities between ĤHSðEPRÞ as written above and ĤHSðNMRÞ (as per Eq. (4.13))
may not be immediately obvious, but there are several functional analogies that may
be drawn between the two. Both contain two primary terms, one of which governs
spectral splitting and the other spectral shift. Also, the g-tensor, g

$
, that parametrizes

the electronic Zeeman effect, is frequently reported in the literature in the following
form:

g
$ ¼ ge 1

$
þ ðDg

$Þ (4.17)
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which emphasizes a similarity to r
$

C , and conveys the fact that g-tensors relate spa-
tially dependent shifts (induced by various perturbations in bound atomic and mole-
cule environments) relative to a basic reference, in this case the free electron g-value,
ge. Equation (4.16) is also akin to Eq. (4.13) in terms of incompleteness. While the
basic ĤHSðNMRÞ expression omitted potentially relevant terms relating to hyperfine
coupling and nuclear quadrupole coupling, the EPR effective spin Hamiltonian
above is also lacking a fully general account of the interactions. In all cases of high
spin paramagnetism (|~SS| > 1�2), for example, one must augment Eq. (4.16), with the
zero-field splitting term:

ĤHðS;SÞ ¼~SS � D
$
�~SS (4.18)

arising from the magnetic dipolar interactions between the multiple unpaired elec-
trons in the system (note that the zero-field splitting tensor, D

$
, should not be confu-

sed with the classical dipolar nuclear spin–spin coupling tensor in Eq. (4.13). Addi-
tional spin–spin coupling effects such as the Heisenberg Hamiltonian for quantum
coherence studies, and the long-range spin-dipolar interaction (a common solvent
effect) have also been observed. As was the case for NMR studies of paramagnetic
cases, electron spin–orbit coupling has a significant impact on the relevant state
energies in EPR, but once again, ĤHðS; LÞ is generally represented within WL and not
in the effective spin Hamiltonian.

Although most molecules studied via EPR have non-zero nuclear magnetic
moments, the magnetic dipole associated with a spinning nucleus is only of the
order of 1/2000 the strength of an electron spin magnetic dipole; thus chemical
shift and nuclear spin–spin coupling interactions are typically found on a different
energy scale compared to those of the electronic Zeeman or hyperfine interactions.
Thus, while detailed formulations have been developed to accommodate cases
where nuclear spins must be quantified [6], it is often reasonable to neglect ĤHðI;BÞ
and ĤHðI; IÞ terms within ĤHSðEPRÞ. Several practical exceptions deserve mention,
however. Electron nuclear double resonance (ENDOR) spectroscopy, for example,
resolves effects arising from both electronic and nuclear spin resonance; a fascina-
ting innovation accomplished by monitoring the effect on EPR hyperfine intensities
(for a system whose electron Zeeman transitions have been saturated with high
powered microwave radiation) that result from driving the NMR transitions via a
sweep of high-intensity radio frequencies [7]. ENDOR effectively combines the reso-
lution and nuclear selectivity of NMR with the inherent sensitivity of EPR, allowing
for highly detailed characterization of structural attributes and dynamic effects.
ENDOR experiments are typically not used to resolve extremely fine features such
as nuclear spin–spin coupling constants, but do combine chemical shift and electric
quadrupole terms with the standard ĤHSðEPRÞ, to yield:
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ĤHSðENDORÞ ¼ lB
~SS � g
$ �~BBþ

XN

C¼1

~SS � A
$

C �~IIC �
XN

C¼1

�hcC
~BB � ð1

$
� g
$

C
Þ �~IIC

þ
XN

C¼1
jIC j�1

~IIC �Q
$

CC
�~IIC (4.19)

where g
$

C is equal to the r
$

C tensor of NMR, reflecting one of several minor syntacti-
cal differences between NMR and EPR. The above ĤHS also governs two related tech-
niques called dynamic nuclear polarization (DNP) and electron spin echo envelope
modulation (ESEEM). Experimentally, DNP is highly analogous to ENDOR, except
that instead of driving the NMR transitions to enhance hyperfine resolution, one
drives the EPR transitions to enhance NMR sensitivity [8]. Meanwhile, ESEEM mea-
sures modulations in spin echoes produced by a short series of microwave pulses,
permitting detection of electronic hyperfine and nuclear quadrupole resonance
effects [9].

At this point we have catalogued and described a number of effective spin Hamil-
tonians of relevance to the NMR and EPR communities. In each case, the basic
expressions contain parametric tensors that relate inter-state energetics as a function
of effective spin operators that represent various spin states of atoms or molecules.
Analysis of experimental magnetic resonance spectra is one way to parametrize
these various tensors, but in this book we are primarily concerned with theoretical
means for doing so. This can be accomplished by tying together the concept of a
true quantum mechanical spin Hamiltonian with that of an effective one.

Each of the spin Hamiltonians listed in Eqs. (4.13)–(4.16), (4.18) and (4.19) is
applicable to either the effective parametric or the quantum mechanical forms, and
is constructed to describe all interactions among the various magnetic dipoles that
can change state during a magnetic resonance experiment. As we shall see in the
following chapter by Kutzelnigg, all of the constituent magnetic interactions can be
represented by operators arising from relativistic quantum mechanics. From the
Breit–Pauli equation (a many-electron extrapolation of the Dirac equation [10]), one
can thus equate ĤHðU;VÞ with a sum of all relativistic operators exhibiting bilinear
dependence on ~UU and ~VV .

To quickly illustrate how one would go about predicting magnetic resonance spectra,
consider the case of the electronic Zeeman effect. In this case one must examine the
Breit–Pauli Hamiltonian and select all terms with bilinear dependence on~SS and~BB. This
leads to the construction of a quantum mechanical spin Hamiltonian as follows:

ĤH
QM
S ðZeemanÞ ¼ ĤHoðS;BÞ þ ĤHRMC ðS;BÞ þ ĤH1eðS;BÞ þ ĤH2eðS;BÞ (4.20)

In this expression, the zeroth-order approximation arises as the following operator:

ĤH0ðS;BÞ ¼ ge lB

X

i

~SSi �~BB (4.21)

(wherein the index i refers to electrons), the second term:

4 The Effective Spin Hamiltonian Concept from a Quantum Chemical Perspective 39



ĤHRMC ðS;BÞ ¼ �ge lB
�h

2

m
2
c

c

X

i

~SSi �~BB (4.22)

is the relativistic mass correction to the spin Zeeman term (wherein m is the mass
of an electron and c is the speed of light), and:

ĤH1eðS;BÞ ¼ �ge lB
e

2

4mc
2

X

C

X

i

ZC

r
3
iC

½ð~SSi �~BBÞð~rriC �~rriGÞ � ð~SSi �~rriGÞð~rriC �~BBÞ� (4.23)

ĤH2eðS;BÞ ¼ ge lB
e

2

4mc
2

X

i

X

j

1
r

3
ij

½ð~SSi þ 2~SSjÞ �~BB�ð~rrij �~rriGÞ � ½ð~SSi þ 2~SSjÞ �~rriG �ð~rrij �~BBÞ
n o

(4.24)

are called the one- and two-electron spin-orbit Zeeman gauge corrections respecti-
vely (wherein the index G refers to the gauge origin of the system). Given this full
Hamiltonian ĤHQM

S ðZeemanÞ, and an electronic wavefunction WL that has been per-
turbed by the orbital Zeeman operator:

ĤHðL;BÞ ¼ �lB

�h

P

i

~LLiG �~BB (4.25)

and both the one- and two-electron spin–orbit coupling operators:

ĤH1eðS; LÞ ¼
ge l

2
B

�h

X

C

X

i

ZC

riC

~SSi �~LLiC (4.26)

ĤH2eðS; LÞ ¼ �
ge l

2
B

�h

X

i

X

j

i
rij

ð~SSi þ 2~SSjÞ �~LLij (4.27)

one may derive the full slate of electronic Zeeman transitions by an expectation value
expression such as is given in Eq. (4.9). In order to translate this quantum mechanical
prediction into an effective spin Hamiltonian parametrization for the electronic Zee-
man effect (i.e., the first term of Eq. (4.16)), one need only equate the expectation value
expression of the quantum mechanical Hamiltonian with that of the effective spin
Hamiltonian, and note that elements of the g-tensor g

$
simply correspond to:

g
xy ¼ 1

lB

@2 ĤHSðEPRÞ
D E

@Bx@Sy
¼ 1

lB

@2 ULh jHQMðS;BÞ ULj i
@Bx@Sy

(4.28)

A detailed description of exactly how Eq. (4.28) is implemented is beyond the scope
of this chapter, but an excellent formulation is given elsewhere [11]. All of the other
interaction terms listed within the other spin Hamiltonians given by Eqs. (4.13)–
(4.16), (4.18) and (4.19) may be quantum mechanically parametrized in an analo-
gous fashion.
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Finally, one should note that, in Eqs. (4.8) and (4.9), UL

�� �
is written as a perturba-

tive sum-over-states expansion that incorporates the effect of orbital response to the
external magnetic field. This would normally imply the use of double perturbation
theory to evaluate Eq. (4.28); a strategy that the rest of this book will reveal to have
been widely used to compute NMR and EPR parameters. Other chapters will also
show that other successful methods have also been formulated based on direct
incorporation of magnetic response phenomena into the spatial wave function.
Equation (4.28) is valid as written for either form of UL

�� �
, however, thus providing a

point of comparison for the two approaches.
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5.1
Introduction

The theory of NMR and EPR parameters is essentially the quantum theory of an
atom or a molecule in magnetic fields of different origin, namely an external homo-
geneous field, and that created by the magnetic moment of a nucleus.

First-order effects, which are linear in the field strength, vanish for non-degenerate
states, and take account of a splitting of degenerate levels, giving rise to the Zeeman
effect, which is directly observable in EPR, and is accompanied by the hyperfine inter-
action. These first-order properties are also responsible for temperature-dependent
paramagnetism and mainly responsible for nuclear magnetic shielding in degenerate
states.

Second-order properties, which are quadratic in the field strength include magne-
tizability (magnetic susceptibility), nuclear magnetic shielding (mainly for non-degen-
erate states) and the related NMR chemical shift, as well as (indirect) nuclear spin cou-
pling. Second-order properties can be rationalized with the argument that one field
induces a current density, that interacts with the other field.

In order to fully appreciate the theory of atoms or molecules in a magnetic field,
the recapitulation of some basic aspects of electrodynamics and classical mechanics
is recommended. We insist particularly on one aspect hardly mentioned in
textbooks, namely that mechanics is Galilei-invariant, whereas electrodynamics is
Lorentz invariant. Consistent combinations of the two theories are either that of
mechanics with the non-relativistic limit (nrl) of electrodynamics, or that of full elec-
trodynamics with the Lorentz invariant generalization of mechanics, i.e. the special
theory of relativity.

In quantizing the classical theory one must, in either case, consider that electrons
have to be described by spinor wavefunctions. This leads, in the relativistic regime,
to the Dirac equation, and, in the nrl, to the L�vy-Leblond equation, which differs
from the Schr�dinger equation mainly in the presence of a term which describes
the interaction of spin with an external magnetic field.

This spin-dependent term is important for first-order properties, but it contri-
butes neither to the magnetic susceptibility, nor to the nuclear magnetic shielding
for non-degenerate states in the nrl. It does contribute to the (indirect) nuclear spin
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coupling, even in the nrl, and to the relativistic corrections to nuclear magnetic
shielding (there in combination with the spin–orbit interaction). Relativistic effects
are qualitatively different for degenerate states with the degeneracy split by spin–
orbit interaction and for non-degenerate or simply spin-degenerate states.

A systematic theory of magnetic properties and their relativistic corrections is pos-
sible in terms of direct perturbation theory. In a fully relativistic theory a problem
arises with the identification of the counterpart of the diamagnetic contribution to
second-order properties in non-relativistic theory. The popular interpretation of the
sum over negative-energy states in a sum-over-states expression becomes obsolete, if
one realizes, that by means of a simple unitary transformation of the Dirac operator
a counterpart of the diamagnetic term appears naturally.

We concentrate our attention on one-electron systems, because most relevant fea-
tures arise already for these, since the interaction with magnetic fields is described
by one-electron operators. So the generalization to many-electron systems is rather
obvious. One-electron systems are atypical only in the respect that they cannot be in
a non-degenerate state, at variance with the majority of ground states of molecules of
interest.

5.2
Classical Theory of the Interaction of a Charged Particle with an Electromagnetic Field

5.2.1
The Maxwell Equations in the Vacuum

The Maxwell equations [1,2]

div ~EE ¼ a q (5.1)

div ~BB ¼ 0 (5.2)

rot ~EE ¼ �b
_~BB~BB (5.3)

rot ~BB ¼ a
bc2

~jjþ 1
bc2

_~EE~EE (5.4)

relate the electric (~EE) and magnetic (~BB) field strengths to the charge density (q) and the
current density (~jj). In a vacuum one needs, unlike in the presence of media, only one
electric and one magnetic field. It is, in this context, legitimate to refer to ~BB as the
magnetic field strength, although some authors prefer, for historical reasons, the
names magnetic flux density or magnetic induction for ~BB and reserve the name mag-
netic field strength for the ~HH field (that will never appear in this text). In Eqs. (5.1 to
5.4) c is the velocity of light, while the constants a and b depend on the chosen sys-
tem of units, as indicated in Table 5.1.

To describe the motion of a charged particle in an electromagnetic field we also
need the expression of the force acting on a point particle of charge q and velocity~vv.
It consists of the Coulomb force (due to~EE) and the Lorentz force (due to ~BB).
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Table 5.1 The constants a and b of the Maxwell equations for various systems of units

el. stat. el. mag. Gauß SI

a 4p 4pc2 4p
1
e0

b 1 1
1
c

1

f 1 1 1 1

~kk ¼ fqð~EE þ b~vv�~BBÞ (5.5)

The parameter f also depends on the chosen system of units. However, since it is
equal to 1 for all proposed systems, we shall henceforth ignore f.

5.2.2
The Electrodynamic Potentials

A partial solution of the Maxwell equations (5.1 to 5.4) is possible, if one realizes
that Eq. (5.2) implies that ~BB can be written as the curl (rot) of a vector field ~AA, called
vector potential.

~BB ¼ rot~AA (5.6)

While ~AA determines ~BB uniquely, the converse is not true. One may add grad k of an
arbitrary scalar function k (called gauge function) to ~AA , without changing the validity
of Eq. (5.6). In fact ~AA

0
, defined as

~AA
0 ¼ ~AAþ gradk; rot~AA

0 ¼ rot~AAþ rot ðgradkÞ ¼ rot~AA (5.7)

is equivalent to ~AA (i.e. corresponds to the same ~BB). One says ~AA and ~AA
0

differ in the
gauge of the vector potential. If we insert Eq. (5.6) into Eq. (5.3)

rot ~EE ¼ �b
_~BB~BB ¼ �b rot

_~AA~AA; rot ð~EE þ b
_~AA~AAÞ ¼ 0 (5.8)

we find that~EE þ b _~AA~AA can be expressed as the gradient of a scalar potential U:

~EE þ b
_~AA~AA ¼ �grad U (5.9)

U is determined except for an arbitrary additive constant, i.e. U¢ given by

U¢ ¼ Uþ const: (5.10)

is equivalent to U (in the same sense as ~AA¢ is equivalent to ~AA). We can now express ~EE
and~BB in Eq. (5.1) and Eq. (5.4) in terms of ~AA and U, using
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rot ðrot~AAÞ ¼ �D~AAþ grad div~AA (5.11)

Instead of the four Maxwell equations (5.1 to 5.4) for ~EE and ~BB we now have two equa-
tions for U and ~AA. Rather than giving the general expressions, we consider two spe-
cial choices of the gauge of ~AA. It is no loss of generality to require that

div ~AA ¼ 0 (5.12)

One refers to this choice as Coulomb gauge. The equations satisfied by U and ~AA are
then

DU ¼ �a q (5.13)

�D~AAþ 1
c2

€~AA~AAþ 1
bc2

grad _UU ¼ a
bc2

~jj (5.14)

The name Coulomb gauge alludes to the fact that U satisfies a Poisson equation like
does the Coulomb potential in electrostatics. An alternative is the Lorentz gauge

div~AAþ 1
bc2

_UU ¼ 0 (5.15)

The counterparts of Eqs. (5.13 and 5.14) are then

�DUþ 1
c2

€UU ¼ aq (5.16)

�D~AAþ 1
c2

€~AA~AA ¼ a
bc2

~jj (5.17)

If U and ~AA are time-independent, the two gauges are indistinguishable.
In the absence of q and~jj, Eqs. (5.16) and (5.17) are wave equations describing the
propagation of an electromagnetic wave.

5.2.3
Lagrangean of a Charged Particle in an Electromagnetic Field

We start from the expression (5.5) for the force on a point particle with charge q. This
force is (unless ~BB ¼ 0) not the gradient of a potential. However it can be derived
from a kinetic potential U, according to the prescription:

ka ¼ �
@U
@a
þ d

dt
@U
@ _aa

; a ¼ x; y; z (5.18)

In the present case we have

U ¼ qðU� b~vv �~AAÞ (5.19)

If a force can be derived from a kinetic potential U in the sense of Eq. (5.18), one
can define a Lagrangean
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L ¼ T �U; T ¼ 1
2

mð _~rr~rrÞ2 (5.20)

with T the kinetic energy. The equations of motion are then

@L
@a
� d

dt
@L
@ _aa
¼ 0; a ¼ x; y; z (5.21)

They are the Euler Lagrange equations corresponding to Hamilton’s variational princi-
ple

R t2
t1

L dt ¼ Extr: (5.22)

It is then further possible to define the momenta pa, canonically conjugated to the
coordinates a as

pa ¼
@L
@ _aa

; a ¼ x; y; z (5.23)

and the Hamiltonian

H ¼
P
a

_aapa � L (5.24)

While the Lagrangean L is a function of the position~rr and the velocity~_rr_rr of the parti-
cle, the Hamiltonian H is a function of the position ~rr and the momentum
~pp ¼ ðpx; py; pzÞ. The change of variables from L to H is a special case of a Legendre
transformation.

The equations of motion in the Hamiltonian form are

@H
@pa
¼ _aa;

@H
@a
¼ � _ppa ; a ¼ x; y; z (5.25)

In our case the canonical momenta are

pa ¼
@L
@ _aa
¼ m _aaþ b q Aa ; ~pp ¼ m~vvþ b q~AA (5.26)

and the Hamiltonian is

H ¼~vv~pp� L ¼ 1
2m
ð~pp� b q ~AAÞ2 þ q U ¼ 1

2m
~pp

2 þ q U (5.27)

with~pp the kinematic momentum complementary to the canonic momentum~pp

~pp ¼~pp� b q ~AA ¼ m~vv (5.28)

Although the Hamiltonian contains ~AA, and depends hence on the gauge of ~AA, the
Hamiltonian equations of motion are independent of the gauge and depend only on
~BB and ~EE. If the electromagnetic fields are time-independent, the Hamiltonian H is
constant and equal to the energy E, which is then a constant of motion.
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5.2.4
The Non-Relativistic Limit of Electrodynamics

Two serious objections against the above given derivation of the Lagrangean and the
Hamiltonian can be raised. Both are hardly mentioned in textbooks, and are related
to some incompatibility between classical mechanics and electrodynamics.

1. Mechanics is Galilei-invariant, electrodynamics is Lorentz-invariant.
2. While classical mechanics is conveniently formulated for point particles,

point charges are unacceptable in electrodynamics.

Two coordinate systems are called inertial systems, if they move with respect to
each other with a constant velocity ~uu12. The relativity principle requires that physical
laws are the same in all inertial systems, and that physical quantities must transform
according to some transformation law between two inertial systems.

There are two main relativity principles and associated transformations:

a) The Galilei transformation. Its main feature is that velocities are simply added
as vectors. If a particle has the velocity~vv1 in system 1, it has the velocity

~vv2 ¼~vv1 þ~uu12 (5.29)

in system 2. The time t is the same in the two systems. Under a Galilei trans-
formation distances in space like j~rr1 �~rr2j are invariant. There is no upper
bound for velocities.

b) The Lorentz transformation. Its main characteristic is a maximal speed c,
which is the same in all inertial systems. Not only points~rr in space, but also
the time t differs in two inertial systems. Under a Lorentz transformation
distances in the four-dimensional Minkowski space like fj~rr1 �~rr2j2 � c2jt1 � t2j2g
are invariant. If ~vv is some characteristic velocity, the physical laws can be
expanded in powers of b ¼ j~vvj=c. The Galilei transformation is the limit for
b! 0 of the Lorentz transformation.

Since classical mechanics transforms under the Galilei transformation and elec-
trodynamics under the Lorentz transformation, they must not be combined naively.
One rather has two choices. One is to follow Einstein on his way to the special theory
of relativity, and to modify classical mechanics, such that it becomes Lorentz invar-
iant (see Section 5.2.5). The other way is to search for the non-relativistic limit (nrl)
of electrodynamics, before one combines it with mechanics. This will then lead to a
consistent theory for particles which move sufficiently slowly.

In our formulation Eqs. (5.1) to (5.4) of the Maxwell equations the nrl is already
prepared. In fact in the limit c�2 ! 0 the r.h.s. of Eq. (5.4) vanishes, i.e. Eq. (5.4) has
to be replaced by Eq. (5.30)

rot ~BB ¼ 0 (5.30)

while Eqs. (5.1) to (5.3) remain unaffected. We must, of course, regard the constants
a and b as independent of c, even if for some systems of units they formally contain
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c. In the nrl so constructed we ignore the magnetic field created by an electric cur-
rent or a moving charge, as well as the displacement current. These must be regarded
as relativistic effects. The induction of an electric field by a moving magnetic field
survives in the nrl. Since also the Lorentz force remains present in the nrl, we can in
the nrl construct a Lagrangean and a Hamiltonian for the movement of a particle in
an electromagnetic field. This is not the only possibility to define a nrl of electrody-
namics, but it is most convenient for our purposes. It agrees with the nrl of electro-
dynamics studied by L�vy-Leblond [3].

Under these conditions the derivation of L and H given in the previous subsection
gets an a posteriori justification. The kinetic potential U given by Eq. (5.19) is Galilei-
invariant, if B and E satisfy the nrl of the Maxwell equations. In this limit the electro-
dynamical potentials satisfy

DU ¼ �aq; D~AA ¼ 0 (5.31)

In the nrl there is no propagation of electromagnetic waves
To take the nrl of electrodynamics becomes particularly important, if we consider

the motion of several charged particles, which interact through electric and magnetic
forces. In rigorous (i.e. Lorentz-invariant) electrodynamics there is a magnetic inter-
action in addition to the electric interaction and both interactions are retarded. Then
it is not possible to define a many-particle Hamiltonian. This is only the case in the
nrl, where only the non-retarded (static) Coulomb interaction survives. It is consis-
tent to consider magnetic and retardation effects only together with relativistic cor-
rections to the kinematics, which are also of Oðc�2Þ. Then one gets the many-parti-
cle Hamiltonian:

H ¼
X

i

1
2m
ð~ppi � b qi

~AAiÞ
2 þ qiUi

n o
þ
X

i<j

a qiqj
1

4pj~rri �~rrj j
(5.32)

The second incompatibility of classical mechanics and electrodynamics is related to
the fact that in classical mechanics one idealizes moving particles as point masses,
while electrodynamics does not tolerate point charges, because the energy of the
field created by a point particle is infinite. This is serious because this energy
behaves as an inert mass, which would then be infinite too. If one regards the ob-
served mass of the electron as entirely due to its electric field, it must have a radius
of the order of the classical or Thomson radius [1]

rcl ¼
ae2

4pmc2
¼ 2:82 10

�15
m (5.33)

Otherwise (i.e. if the electron also has a mechanical mass), its radius must be larger
than rcl. A compromise view is that the electron has a finite radius, but that this is so
small that the validity of point mass mechanics remains unaffected. This problem
does not disappear when we switch to quantum mechanics. The infinite mass of a
point charge does, in fact, play a role in quantum electrodynamics (QED), where a
finite observable mass is achieved by so-called mass renormalization.
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5.2.5
Lorentz-Invariant Generalization of Classical Mechanics

To create a Lorentz invariant Lagrangean for the motion of a relativistic charged par-
ticle, we need a Lorentz invariant expression for the Lagrangean L0 in the absence of
a field, which yields in the nrl the non-relativistic kinetic energy (except for an addi-
tive constant). It turns out that this must be chosen as:

L0 ¼ �mc
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b

2
q

¼ � mc
2 þm

2
v

2 þO
v4

c2

� �
(5.34)

which corresponds to a Lorentz invariant generalization of Hamilton’s variation
principle Eq. (5.22). The kinetic potential U Eq. (5.19) is already Lorentz invariant,
provided that U and ~AA satisfy Eqs. (5.13 and 5.14) or Eqs. (5.16 and 5.17). Hence the
Lagrangean in the presence of an electromagnetic field is

L ¼ �mc
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b

2
q

� q Uþ bq ~AA~vv (5.35)

Inserting this L into the Lagrange equations of motion makes these Lorentz invar-
iant and hence relativistically correct. We can construct the canonical momenta

pa ¼
@L
@ _aa
¼ mvaffiffiffiffiffiffiffiffiffiffiffi

1�b2
p þ bq Aa ; ~pp ¼ m~vvffiffiffiffiffiffiffiffiffiffiffi

1�b2
p þ bq ~AA (5.36)

A Legendre transformation leads to the Hamiltonian

H ¼~pp �~vv� L ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~pp� bq ~AAÞ2 þm

2
c

2
q

þ qU (5.37)

If @H
@t ¼ 0, H ¼ E is a constant of motion, and we get the relativistic energy law

ðE � q UÞ2 ¼ c
2ð~pp� b q ~AAÞ2 þm

2
c

4 ¼ c
2
~pp

2 þm
2
c

4
(5.38)

Unfortunately, the concept of the Lagrangean or the Hamiltonian for a relativistic
particle moving in an external electromagnetic field cannot be generalized to n-particle
systems, not even to n = 2.

5.3
Quantum Mechanical Hamiltonians in a Time-Independent Electromagnetic Field

5.3.1
The Many-Electron Schr�dinger Hamiltonian

We obtain the non-relativistic n-electron Hamiltonian from its classical counterpart
Eq. (5.32), if we insert the Coulomb potential due to point charges and replace the
momentum ~pp by the momentum operator ~̂pp~pp. We assume that ~AA is time-indepen-
dent, and that U is only due to the Coulomb interaction of electrons and nuclei. We
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ignore the nuclear repulsion, which, for fixed geometry, is a constant. i and j count
electrons.

H ¼
X

j

hðjÞ þ
X

i<j

a
4p

e
2

j~rri �~rrj j
(5.39)

hðjÞ ¼ 1
2m
½ ~̂pp~pp

j
þ bjej~AAðjÞ�2 þ VðjÞ (5.40)

~ppj ¼ �i �hrj (5.41)

VðjÞ ¼ jejUðjÞ; UðjÞ ¼ �
X

l

aZl jej
4pj~rrl �~rrj j

(5.42)

This Hamiltonian is only valid for spin-free particles. Otherwise a spin-dependent
term must be added, to which we come later (Section 5.3.11).

5.3.2
Atomic Units

By introducing atomic units one gets rid of all fundamental constants. Two systems of
atomic units have been suggested [2]. For the Hartree system [4] one starts from the
Gaussian system (b ¼ 1

c ; a ¼ 4p) with three basic units, and measures then all quan-
tities of the dimension of mass, electric charge and action in units of m; jej and �h.

For the SI-based system of atomic units [5] one starts from the SI system
(b ¼ 1; a ¼ 1

e0
) with three basic units, and then measures all quantities of the dimen-

sion of mass, electric charge, action, and constant of dielectricity of the vacuum in
units of m; jej, �h, and 4pe0.

In both systems of atomic units a
4p ¼ 1, hence we get the same Hamiltonian,

except for the terms which contain b, which differs in the two systems. It is conveni-
ent to keep b. One has so a formulation that is valid for both systems. Moreover b
can be used as a formal perturbation parameter, which measures the strength of the
magnetic field. The Hamiltonian Eq. (5.39) becomes so

H ¼
X

j

hðjÞ þ
X

i<j

1
j~rri �~rrj j

(5.43)

hðjÞ ¼ 1
2
½�irj þ b~AAðjÞ�2 þ VðjÞ (5.44)

VðjÞ ¼ �
X

l

Zl

j~rrl �~rrj j
(5.45)

Tacitly one uses another basic unit, namely the mol. Hence atomic units, can,
depending on the case, either refer to a single atom or molecule, or to a mol. Molec-
ular and molar properties need not be distinguished at the level of atomic units.
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5.3.3
Reformulation of the Hamiltonian

Using the Coulomb gauge Eq. (5.12) hðjÞ can be reformulated to

hðjÞ ¼ 1
2
½�irj þ b~AAðjÞ�2 þ VðjÞ

¼ h0ðjÞ �
1
2

ib½rj
~AAðjÞ þ~AAðjÞrj � þ

1
2

b
2~AA

2ðjÞ

¼ h0ðjÞ þ b~AAðjÞ~ppj þ
1
2

b
2~AA

2ðjÞ;

h0ðjÞ ¼ �
1
2
r2

j þ VðjÞ (5.46)

There is one term linear, one quadratic in ~AA (or b). This Hamiltonian is still prelimi-
nary, because the term representing the interaction of the electron spin with the
magnetic field is missing (see Section 5.3.11).

It should be mentioned that the Coulomb gauge Eq. (5.12) does not determine ~AAk

uniquely. It is still possible to add to ~AAk the gradient of a gauge function k

divð~AAþ gradkÞ ¼ div gradk ¼ Dk ¼ 0 (5.47)

provided that k satisfies the Laplace equation Dk ¼ 0

5.3.4
Gauge Transformation, Non-Relativistic

Let us apply a unitary transformation with k ¼ kð~rrÞ, Dk ¼ 0, to the Hamiltonian
(5.43):

~HH ¼ e
�ibK

He
ibK ¼

X

j

~hhðjÞ þ
X

i<j

1
j~rri �~rrj j

; K ¼
X

j

kð~rrjÞ (5.48)

~hh ¼ e
�ibk

he
ibk ¼ hþ ib½h; k� � b2

2
½½h; k�; k� þ . . .

¼ h� ib
2
½r2

; k� þ b2

4
½½r2

; k�; k� þ b
2 ½~AAr; k�

¼ h0 þ b
~~AA~AA~pp þ b2

2
~~AA~AA

2
(5.49)

~~AA~AA ¼ ~AAþ gradk; ~HH ~WW ¼ E ~WW; ~WW ¼ e
�ibK

W (5.50)

This unitary transformation changes the Hamiltonian and its eigenfunctions, but
does not affect its eigenvalues. The transformed Hamiltonian differs from the origi-
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nal one only in a change of the gauge of the vector potential. A change of the gauge
is hence equivalent to a unitary gauge transformation of the Hamiltonian.

5.3.5
Homogeneous External Magnetic Field

For a homogeneous magnetic field the field strength ~BB0 is the same at any point~rr of
space. A possible choice of the corresponding vector potential ~AA0 is (we use the sub-
script 0 for an external homogeneous field):

~AA0 ¼
1
2
~BB0 � ð~rr �~RRÞ ¼

1
2
~BB0 �~rr �

1
2
~BB0 �~RR

¼ 1
2
~BB0 �~rr þ gradk; k ¼ � 1

2
ð~BB0 �~RRÞ �~rr (5.51)

with the gauge origin ~RR fixed, but otherwise arbitrary. A change of gauge origin ~RR is a
special kind of gauge transformation.

Choosing ~RR ¼ 0 the one-electron part of the Hamiltonian can be rewritten as:

h ¼ �1
2
r2 þ b

2
ð~BB0 �~rrÞ �~ppþ

1
8

b
2ð~BB0 �~rrÞ

2

¼ � 1
2
r2 þ b

2
~BB0 �~ll þ

1
8

b
2
r

2
B

2
0 sin

2ð~rr;~BB0Þ (5.52)

Here l is the angular momentum with respect to the gauge origin.
While in atoms the position of the nucleus is a natural gauge origin, there is

usually no natural gauge origin in molecules.

5.3.6
Field of a Magnetic Point Dipole

The vector potential ~AAk created by the magnetic moment of a nucleus, described by
a magnetic point dipole ~llk at position~rrk is (the subscript k counts nuclei):

~AAk ¼ d
~llk�ð~rr�~rrkÞ
j~rr�~rrkj3

; d ¼ a
4pb2c2

(5.53)

For this field there is a natural gauge origin at the position of the nucleus, and there
is, unlike for a homogeneous field, no need to consider other possible gauge origins.
The constant d, which depends on the chosen system of units, is equal to l0

4p in the
SI system, to 1 in the Hartree system, and to c�2 in the SI-based system of atomic
units. The nuclear magnetic dipole moment ~llk is the expectation value, with respect
to the nuclear spin wavefunction, of the nuclear magnetic dipole moment operator

~̂ll~ll
k
¼ c

k
~SSk (5.54)
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where ~SSk is the operator of the nuclear spin, and the factor ck contains the nuclear
gyromagnetic factor, as well as the ratio between the nuclear and the electronic magne-
ton (i.e. essentially that between electronic and nuclear mass).

In constructing the corresponding field strength ~BBk from ~AAk, one must realize,
that the derivatives implicit in �rot’ must be taken in the distribution sense [7], hence
there is an extra term involving a delta function. For~rrk ¼ 0 we get

~BBk ¼ rot~AAk ¼ d
r2~llk�3ð~llk�~rrÞ~rr

r5
þ d

r2~llk�ð~llk�~rrÞ~rr
r4

dðrÞ (5.55)

The delta �function’ term (which simulates the boundary term of an integration by
parts [7]) is only meaningful in the non-relativistic context, where the wavefunction
is regular at the position of a nucleus. There is no delta function term in an exact
relativistic theory for point nuclei, where the wavefunction has a weak singularity at
the position of a nucleus, and where the integrals over negative powers of r do not
diverge. The situation is more subtle, and hardly understood, in practical relativistic
calculations with regularized wavefunctions.

5.3.7
The Dirac Operator

A relativistic electron in a (time-independent) electromagnetic field is described by
the Dirac operator D and the time-independent Dirac equation:

D ¼ bmc
2 þ c~aa � ð ~̂pp~ppþ bjej~AAÞ þ V (5.56)

~aa ¼ ðax ;ay;azÞ (5.57)

Dw ¼ Ww ¼ ðE þmc
2Þw (5.58)

w is a four-component (bispinor) wavefunction, b;ax;ay;az are four-by-four matrices
(5.67), called Dirac matrices, which satisfy the anticommutation relations

½ap ;aq �þ ¼ ap aq þ aqap ¼ 2dpq (5.59)

½ap ; b�þ ¼ ap bþ bap ¼ 0 (5.60)

½b; b�þ ¼ 2b
2 ¼ 2 (5.61)

The energy eigenvalue W can be positive (describing an electron) or negative
(describing a positron). We are only interested in electronic states.

Unlike in the non-relativistic theory it is not possible to construct the Dirac opera-
tor by direct quantization of the relativistic non-quantal Hamiltonian (5.37). The rea-
son for this is not, as originally believed, that the naively quantized Hamiltonian
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(5.37), containing a square root, is ill-behaved. The point is that electrons are parti-
cles with spin 1

2 and must hence be described by spinors, i.e. by mathematical enti-
ties, that have a particular transformation behavior under the group of Lorentz
transformations. This requires that the wavefunction consists of four components.
A relation to the relativistic non-quantized theory exists insofar, as the Dirac opera-
tor is consistent with the relativistic energy relation (5.38). From Eq. (5.56) and the
anticommutation relations we get

bmc
2 þ c~aa � ð~ppþ bjej~AAÞ ¼ D� V (5.62)

ðbmc
2 þ c~aa � ½~ppþ bjej~AA�Þ2 ¼ ðD� VÞ2 (5.63)

m
2
c

4 þ c
2ð~ppþ bjej~AAÞ2 ¼ ðD� VÞ2 (5.64)

There is another difference to the non-relativistic case. In relativistic theory, a many-
electron Hamiltonian is not defined, not even classically. Therefore an exact relativis-
tic n-electron Hamiltonian is not available. One can only use approximate Hamilto-
nians. In the simplest approximation one replaces the electron interaction by its nrl,
i.e. the static Coulomb interaction. In a more refined approach one uses the Breit
interaction, which takes care of magnetic and retardation effects to the leading order
in v2=c2. A virtually exact, but extremely complicated, theory is possible by means of
quantum electrodynamics (QED). It has hardly been applied beyond atoms with 3
or 4 electrons.

Fortunately the magnetic properties, that we study here, are one-electron proper-
ties. We can therefore understand the essential points by referring to a one-electron
theory.

Having realized that an electron must be described by a spinor wavefunction, the
question arises whether this is also the case in a non-relativistic theory. L�vy-Leblond
[3] was probably the first to point out that the Galilei group has, like the Lorentz
group, spinor representations. The search for a Galilei invariant field theory for a parti-
cle with rest mass m and spin 1

2 led automatically to the L�vy-Leblond equation. We
follow here a different route and derive the L�vy-Leblond equation as the nrl of the
Dirac equation. This provides an easy access to the perturbation theory of relativistic
effects.

5.3.8
Atomic Units, Relativistic

We prefer to use the Hartree or the SI-based atomic unit system even in the relativistic
context. Then we must express the velocity of light c in atomic units of velocity, where
it gets the value a�1 � 137, i.e. the inverse of the fine structure constant a. It is
unfortunate that the letter a is used both for the fine structure constant and the
Dirac matrices. We keep c in the meaning of a�1. Then the Dirac operator for an
electron in a magnetic field reads
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D ¼ D0 þ bD1 ; D0 ¼ bc
2 þ c~aa �~ppþ V ; D1 ¼ c~aa �~AA (5.65)

Alternatively, one may use so-called natural (or relativistic) units. Starting from the
Gaussian system, one measures masses, velocities, and action in units of m; c, and
�h. Then jej must be measured in these units, where it has the value a � 1

137, and is
then called the coupling constant.

5.3.9
Gauge Transformation, Relativistic

Like in non-relativistic theory, a gauge transformation of the Dirac Hamiltonian cor-
responds to a change of the gauge of ~AA. It is even simpler.

~DD ¼ e
�ibk

De
ibk ¼ Dþ ib½D; k� � b2

2
½½D; k�; k� þ . . . ¼ D0 þ bca � ~~AA~AA

~~AA~AA ¼ ~AAþ gradk; ~DD ~ww ¼ W ~ww; ~ww ¼ e
�ibk

w (5.66)

5.3.10
Block Form of the Dirac Equation

We decompose the four-component spinor w into two two-component spinors j
and v. Then the 4 by 4-matrices aq and b can be written as blocks consisting of 2 by
2-matrices:

w ¼ j
v

� �
; b ¼ 1 0

0 �1

� �
; aq ¼

0 rq

rq 0

� �
; ~aa ¼ 0 ~rr

~rr 0

� �
(5.67)

with ~rr the vector of the three 2 by 2 Pauli matrices

~rr ¼ ðrx ; ry ; rzÞ (5.68)

rx ¼
0 1
1 0

� �
; ry ¼

0 �i
i 0

� �
; rz ¼

1 0
0 �1

� �
(5.69)

The Dirac equation then becomes in block form,

ðD� c
2Þw ¼ V c~rrð~ppþb~AAÞ

c~rrð~ppþb~AAÞ V�2c2

 !
j
v

� �
¼ E

j
v

� �
(5.70)

j and v are two-component spinors. We call j the upper (or �large’) component, v
the lower (or �small’) component. The names �large’ and �small’ refer to the fact that
for electronic states j is large and v smaller of the order Oðc�1Þ. For positronic states
the role of j and v is inverted.

Note that unlike the non-relativistic Hamiltonian, the Dirac operator contains
only a term linear in b and no quadratic one.
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5.3.11
The L�vy-Leblond Equation

Let us limit our interest to electronic states (for which W ¼ mc2 þ E > 0). Let us
express the Dirac equation in terms of j and �vv ¼ cv, such that the components j
and �vv are of the same order in powers of c�1. We get

w ¼ j
v

� �
! �ww ¼ j

�vv

� �
¼ j

c v

� �
(5.71)

ðD� c
2Þw ¼ Ew! �DD �ww ¼ ES �ww (5.72)

V ~rr ð~ppþb~AAÞ
~rrð~ppþb~AAÞ V

c2
�2

0
@

1
A j

�vv

� �
¼ E

1 0
0

1

c2

0
@

1
A j

�vv

� �
(5.73)

(For negative-energy states a different change of the metric has to be taken). It is
straightforward to perform in Eqs. (5.72) and (5.73) the limit c�2 ! 0.

DLL wLL ¼ ELL S0wLL (5.74)

V ~rrð~ppþb~AAÞ
~rrð~ppþb~AAÞ �2

 !
j

LL

v
LL

 !
¼ ELL

1 0
0 0

� �
jLL

v
LL

 !
(5.75)

Eqs. (5.74) or (5.75) are known as the L�vy-Leblond equation in the presence of a
magnetic field with ELL the corresponding eigenvalue. It can be multiplied out to:

VjLL þ ~rr � ð~ppþ b ~AAÞvLL ¼ ELLjLL (5.76)

~rr � ð~ppþ b ~AAÞjLL � 2vLL ¼ 0 (5.77)

Eq. (5.77) can be solved for vLL, and the result can be inserted into Eq. (5.76)

vLL ¼
1
2
~rr � ð~ppþ b ~AAÞjLL (5.78)

ELLjLL ¼ VjLL þ
1
2
½~rr � ð~ppþ b ~AAÞ�2jLL ¼ fH0 þ bH1 þ b

2
H2gjLL (5.79)

H0 ¼
1
2

p̂p
2 þ V ; H1 ¼ ½~AA �~ppþ

1
2
~rr �~BB�; H2 ¼

1
2
ð~AAÞ2 (5.80)

We arrive thus at the Pauli equation, i.e. the Schr�dinger equation plus a spin-depen-
dent term for the upper part jLL of the L�vy-Leblond bispinor wLL. The spin-depen-
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dent term arises here naturally, while starting from the Schr�dinger equation it has
to be added in an ad hoc way. In deriving (5.79) use has been made of some identi-
ties, that involve ~rr.

ð~rr~aaÞ � ð~rr~bbÞ ¼~aa �~bbþ i~rr � ð~aa�~bbÞ (5.81)

~rr � ð~aa�~ppÞ þ ~rr � ð~pp�~aaÞ ¼ ~rr � ð~aa�~ppÞ � ~rr � ð~aa�~ppÞ � i~rr � ðrot ~aaÞ

¼ �i ~rr � ðrot ~aaÞ (5.82)

For the special case of an external homogeneous magnetic field~BB0 we get

H10 ¼ ~AA0 �~ppþ
1
2
~rr �~BB0 ¼

1
2
~BB0 �

�
ð~rr �~RRÞ �~pp

�
þ 1

2
~rr �~BB0

¼ 1
2
~BB0 �~ll þ

1
2
~BB0 � ~rr ¼

1
2
~BB0 � ð~ll þ 2~ssÞ; ~ss ¼ 1

2
~rr; H20 ¼

1
2
~AA

2
0 (5.83)

~ll is the angular momentum operator with respect to the origin ~RR and~ss the spin
operator. Noting that~ss satisfies the same commutation relations as~ll ¼~rr �~pp,

½lx ; ly � ¼ i lz ; cycl:; ½sx ; sy � ¼ i sz ; cycl (5.84)

and hence represents an angular momentum, one obtains a gyromagnetic ratio g ¼ 2
for the spin relative to the orbital angular momentum. The quantity b

2 plays the role
of the Bohr magneton. If one uses atomic units, there is no need to introduce the
Bohr magneton. For the counterpart of Eq. (5.83) for the field ~BBk due to a nuclear
magnetic moment we shall use the notation H01

H01 ¼ ~AAk �~ppþ
1
2
~rr �~BBk ¼ d

~ll
k
�~llk

j~rr�~rr
k
j3 þ

1
2
~rr �~BBk ; ~llk ¼ ð~rr �~rrk

Þ �~pp (5.85)

with Ak and Bk defined by Eqs. (5.53) and (5.55). The terms bilinear in two fields are

H11 ¼ ~AA0 �~AAk ; H011 ¼ ~AAk �~AAl (5.86)

5.4
Perturbation Theory of Magnetic Effects

5.4.1
First- and Second-Order Properties

Consider a Hamiltonian H, that depends analytically on a parameter k, and assume
that the eigenvalue E and the eigenfunction w can be expanded in powers of k as
well. The kth derivative of E with respect to k is then a kth-order property.
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H ¼ H0 þ kH1 þ k
2
H2 þ . . . (5.87)

E ¼ E0 þ kE1 þ k
2
E2 þ k

3
E3 þ . . . (5.88)

w ¼ w0 þ kw1 þ k
2
w2 þ k

3
w3 þ . . . (5.89)

@E
@k

� �

k¼0

¼ E1 ;
@

2 E
@k2

� �

k¼0

¼ 2E2 (5.90)

The standard method to evaluate properties is perturbation theory. One obtains

E1 ¼ hw0 jH1 jw0i (5.91)

E2 ¼ hw0 jH2 jw0i þ hw0 jH1 jw1i; etc: (5.92)

with w1 solution of

ðH0 � E0Þw1 þ ðH1 � E1Þw0 ¼ 0 (5.93)

In the somewhat old-fashioned sum-over-states formulation of perturbation theory
one expands w1 in terms of the eigenstates up of H0 with eigenvalues ep

(w0 ¼ u0; e0 ¼ E0) and gets

E2 ¼
X

p>0

jhu0 jH1 � E1 jupij
2

e0 � ep

(5.94)

The Hamiltonian can depend on two or more parameters, e.g.

H ¼ H0 þ kH10 þ kH01 þ k
2
H20 þ kkH11 þ . . .

E ¼ E0 þ kE10 þ kE01 þ k
2
E20

þ k
2
E02 þ kkE11 þ . . . (5.95)

�
@E
@k

�

ðk¼0;k¼0Þ
¼ E10 ;

@E
@k

� �

ðk¼0;k¼0Þ
¼ E01

@2E
@k@k

� �

ðk¼0;k¼0Þ
¼ E11 ; . . . (5.96)

Such mixed properties are evaluated by means of double (or multiple) perturbation
theory. For a mixed second order property E11 one gets e.g.
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E11 ¼ hw0 jH11 jw0i þ 2Rehw0 jH10 jw01i ¼ hw0 jH11 jw0i þ 2Rehw0 jH01 jw10i (5.97)

That E11 can be expressed either in terms of w01 or w10 is a manifestation of Dalgar-
no’s exchange theorem [6]. The two perturbation parameters k and k can e.g. refer
to two different fields or to two Cartesian components of the same field. In the sum-
over-states formulation we get:

E11 ¼ hw0 jH11 jw0i þ
X

p>0

hu0 jH10 � E10 jupihup jH01 � E01 ju0i
e0 � ep

(5.98)

It is rather common that an eigenvalue of H0, i.e. in the absence of the perturbation,
is degenerate, but that this degeneracy is removed by the perturbation. Then one
must apply degenerate perturbation theory. This means one has first to find the pertur-
bation-adapted unperturbed states. This can often be achieved in terms of symmetry
arguments, namely if the perturbation lowers the symmetry. The Hamiltonian of an
atom in a magnetic field is no longer invariant with respect to arbitrary rotations,
but only with respect to rotations about the field axis, hence only ms and ml (in the
relativistic regime only mj) are good quantum numbers, and no longer l, s or j. If
symmetry does not determine the perturbation-adapted unperturbed states uniquely,
one must first construct the matrix representation of H1 in the basis of the zeroth
order degenerate states and then diagonalize this matrix, before one can evaluate
higher-order perturbation corrections.

5.4.2
Magnetic Properties

We now explicitly consider the components of the magnetic field strength of a homoge-
neous external magnetic field

~BB0 ¼ ðB0x ;B0y ;B0zÞ (5.99)

and those of the magnetic moment of the kth nucleus

~ll
k
¼ fl

kx
; l

ky
; l

kz
g (5.100)

as the perturbation parameters. We are especially interested in the components of
the electronic magnetic moment

ma ¼ �
@E
@B0a

� �

B0a¼0

; ~mm ¼ ðmx ;my ;mzÞ (5.101)

and the magnetizability tensor

v
ab
¼ � @

2 E
@B0a@B0b

 !

B0a¼0;B0b¼0

; v ¼
vxx vxy vxz
vyx vyy vyz
vzx vzy vzz

0
@

1
A (5.102)
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This tensor is symmetric, i.e. vab ¼ vba. While the term magnetizability refers to a
single atom or molecule, the corresponding bulk property (per mol) is the magnetic
susceptibility. In appropriate atomic units they have the same value. An example of
an asymmetric tensor is that of the NMR shielding

r
ðkÞ
ab ¼

@
2 E

@l
ka
@B0b

; r
ðkÞ ¼

r
ðkÞ
xx r

ðkÞ
xy r

ðkÞ
xz

r
ðkÞ
yx r

ðkÞ
yy r

ðkÞ
yz

r
ðkÞ
zx r

ðkÞ
zy r

ðkÞ
zz

0
BBBB@

1
CCCCA

(5.103)

and that of the nuclear spin coupling

J
ðk;lÞ
ab ¼

@
2 E

@l
ka
@l

lb

; J
ðk;lÞ ¼

J
ðk;lÞ
xx J

ðk;lÞ
xy J

ðk;lÞ
xz

J
ðk;lÞ
yx J

ðk;lÞ
yy J

ðk;lÞ
yz

J
ðk;lÞ
zx J

ðk;lÞ
zy J

ðk;lÞ
zz

0
BBBB@

1
CCCCA

(5.104)

Often one is mainly interested in the isotropic parts of these tensors e.g.

r
ðkÞ ¼ 1

3
frðkÞxx þ r

ðkÞ
yy þ r

ðkÞ
zz g (5.105)

Note the minus sign in Eq. (5.102), such that v > 0 for paramagnetism and v < 0 for
diamagnetism. This convention is counterintuitive, and therefore not always respected.

The climax in the confusion about sign conventions is that for nuclear magnetic
shieldings, which refer to a bare nucleus, the sign is chosen opposite to that for chem-
ical shifts, relative to a standard for the respective nucleus, see Eq. (5.128).

For a systematic notation for magnetic properties we add two to four subscripts
to E. The first subscript always refers to orders in c�1, and increases in steps of 2.
So E0... always means non-relativistic, while E2... means the leading relativistic correc-
tion. The second label counts orders in the external homogeneous magnetic field ~BB0,
the third (and possibly the fourth) label orders in a nuclear magnetic moment ~llk or
~lll. Since ~BB0 and ~llk are vectors, and we want to avoid extra labels for the Cartesian
coordinates, we contract the corresponding tensors (that represent the properties)
with ~BB0 and/or ~llk, to arrive at scalar expressions, e.g.

bE010 ¼ �~mm~BB0 ¼ �
X

a

ma B0a ; ma ¼ � @E
@B0a

; a ¼ x; y; z (5.106)

b
2
E020 ¼ � 1

2

X

ab

B0a v
ab

B0b (5.107)

b
2
dE011 ¼

X

ab

l
ka

rab B0b (5.108)

The factor b for E010, bd for E001, b2 for E020, or b2d for E011 is not included in the
definition of E01 etc., but it enters the expressions for v, r etc. This convention is
convenient, but by no means compulsory.
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5.5
Non-Relativistic Theory of EPR and NMR Parameters

5.5.1
First-Order Properties

If we consider one-electron states, we must, in principle, always deal with degenerate
perturbation theory, because a state for an odd number of electrons is always Kramers
degenerate, and this degeneracy is split by the magnetic field. Fortunately, at least in
the nrl, i.e. in the absence of spin–orbit interaction, the perturbation-adapted unper-
turbed states are fully determined by symmetry, e.g. for an asymmetric molecule
simply by the eigenvalue MS of Sz. Then a first order property can simply be evalu-
ated as the expectation value Eq. (5.91) of the perturbation operator H1 with the
unperturbed wavefunction with appropriate spin. For a non-degenerate state (which is
only possible for an even number of electrons) E1 vanishes, because H1, see Eq.
(5.80), is a pseudoscalar one-electron operator, both for H1 ¼ H10 Eq. (5.83) and
H1 ¼ H01 Eq. (5.85). For an n-electron system we get

E1 ¼
X

m

nmhu
ðmÞ
0 jH1 ju

ðmÞ
0 i (5.109)

with nm the occupation number of the mth unperturbed natural spin orbital uðmÞ0 .
Within the Hartree–Fock approximation nm can only be equal to 1 or 0. For a state
with only double occupancy, the contributions of orbitals occupied with a or b spin
just cancel.

There is a competition between the splitting of the zeroth order degeneracy by
H1, i.e. the magnetic field, and by spin–orbit interaction. Since the latter is a relati-
vistic effect, (see 5.7.3), we can, in the non-relativistic context, only study states, that
are not affected by spin–orbit interaction, i.e. atomic states with S ¼ 0 and/or L ¼ 0,
states of linear molecules with S ¼ 0 and/or K ¼ 0, and states of arbitrary molecules
with only spin degeneracy.

5.5.2
The Zeeman Effect

Let us now, for the sake of simplicity, only consider one-electron states. For a homo-
geneous field we get in view of Eq. (5.83) for a perturbation-adapted state

E010 ¼ hj0 jH10 jj0i ¼
1
2
hj0 j~BB0 � ð~ll þ 2~ssÞjj0i; bE010 ¼ �~mm �~BB0 (5.110)

Here ~mm is the (permanent) electronic magnetic moment of the perturbation-adapted
state. E010 describes the Zeeman shift of the considered state. In the case of a doublet
state the difference in E010 between the two components is called the Zeeman
splitting. Direct transitions between Zeeman levels are observed in the EPR spec-
trum.
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If the degeneracy is due to spin, and there is no orbital angular momentum, the
Zeeman shift is given by the contribution (for ~BB0 in z-direction, which is also the
quantization axis for the spin)

bE010ðmsÞ ¼
b
2
hjð0Þ j~BB0 � 2~ssjj

ð0Þ i ¼ � 1
2

gB0z ms (5.111)

with g ¼ 2. For a one-electron atom in an eigenstate of l2 and lz, but averaged over
spin, we get

bE010ðml Þ ¼ �
1
2

gB0z ml (5.112)

with g ¼ 1. For a highly symmetric molecule in a spatially degenerate state, that is
not eigenstate of l2 and lz one gets a similar result with g between 0 and 1.

The value g ¼ 2 holds in the non-relativistic regime for spin degeneracy in the
absence of orbital degeneracy. Deviations from the spin-only value g ¼ 2 occur on
one hand as a result of relativistic corrections (mainly spin–orbit coupling), see Sec-
tion 5.7.3, on the other hand because even for a free electron there are QED correc-
tions to the g-factor.

If one considers an ensemble of atoms or molecules in a degenerate state, at a
certain temperature T , rather than a single atom or molecule, in a magnetic field,
one has to deal with a Boltzmann distribution over the Zeeman levels Em. The ener-
gy shift DE is then

DE ¼
P

m
bEm expð�bEm=kTÞP
m

expð�bEm=kTÞ ¼ �
b2

kT

P
m E

2
m þ Oðb3Þ; Em ¼ E010ðmÞ (5.113)

where the sum goes over all Zeeman levels, counted by the quantum number m.
The term linear in b cancels, and the leading contribution to DE is quadratic in b (or
~BB0) and proportional to 1=T . One refers to this as ordinary (or temperature-depen-
dent) paramagnetism.

5.5.3
Hyperfine Splitting; Fermi Contact Interaction

If ~BBk is the magnetic field created by the kth nucleus, Eq. (5.110) becomes (see
Eq. (5.85))

E001 ¼ h’0 jH01 j’0i ¼ h’0 j~AAk �~ppþ
1
2
~rr �~BBk j’0i (5.114)

with ~BBk given by Eq. (5.55) (including the d function term). Let us assume that there
is only spin degeneracy, i.e. that the spin-independent perturbation ~AAk �~pp does not
contribute. If we note that both ~rr and ~llk are quantized in the direction of the exter-
nal magnetic field, and that the relative orientation of the molecule and the nuclear
spin is statistical, we have to average Eq. (5.114) over these orientations. Then the
only term that survives in Eq. (5.114) is that due the totally symmetric part of ~rr �~BBk,
i.e.
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h’0 j~rr �~BBk j’0iav ¼
2
3
h’0 j

~rr~ll
k

r
2 dðrÞj’0i ¼ 2

3

Z
j’0 j

2~rr~llk

r
2 dðrÞds

¼ 2
3

Z
j’0 j

2
~rr~ll

k
dðrÞdX dr ¼ 8p

3
j’0ð0Þj

2
~rr~ll

k
(5.115)

This is known as Fermi contact term and is responsible for the hyperfine splitting of
the EPR spectra.

A more satisfactory derivation of this term is obtained, if one does not start from
the Pauli Hamiltonian as in Eq. (5.114), but directly from the Levy-L�blond operator
Eq. (5.74). Then one has to evaluate, directly from ~AAk rather than ~BBk,

E001 ¼ Reh’0 j~rr~AAk j�0i ¼
1
4
h’0 jð~rr~AAkÞð~rr~ppÞj’0i þ

1
4
h~rr~pp ’0 j~rr~AAk ’0i (5.116)

This leads to Eq. (5.114), including the d-function term, if one applies the turn-over
rule to ~rr �~pp. This rule is based on an integration by parts, and is only valid, if the
integrand has no singularities at the boundaries [7]. Since here the integrand is sin-
gular at r ¼ 0, there is a boundary term, of which one must take care, and this gives
exactly rise to the Fermi contact interaction. This has been discussed in more detail
elsewhere [7]. It requires that the test function ’2

0 is sufficiently regular.
The Fermi contact term also dominates the nuclear magnetic shielding for degenerate

(paramagnetic) atoms or molecules. In fact, as discussed in connection with the (tem-
perature-dependent) paramagnetism one must consider a Boltzmann distribution
of the electronic magnetic moments in the external field. For each orientation there
is a Fermi contact interaction with the magnetic field of the nucleus. One gets an
expression like Eq. (5.113), just with the factor bEm in front of the exponential
replaced by the corresponding hyperfine shift bdE001ðmÞ. More details on NMR
spectra of paramagnetic molecules are found in Chapter 20 by Moon and Patch-
kovski in this book.

5.5.4
Second-Order Properties

�Diagonal’ or �mixed’ second-order properties of a one-electron state are of the gen-
eral form Eq. (5.92) or Eq. (5.97) respectively, with H10 and H20 given by Eq. (5.83),
H01 by Eq. (5.85), and H11 or H011 by Eq. (5.86). The first-order perturbation func-
tion needed in Eq. (5.92) or Eq. (5.97) is the response to the �other field’ and
obtained as the solution of an equation of the type

ðH0 � E0Þ’01 þ
�
~AA~ppþ 1

2
~rr~BB

�
’0 � E01’0 ¼ 0 (5.117)

Due to the fact that the Hamiltonian Eq. (5.80) contains two spin-independent
terms, one linear and one quadratic in b, and a spin-dependent term linear in b,
there are three contributions to any second-order property, called diamagnetic, para-
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magnetic, and spin-dependent. For the two latter contributions there are two alterna-
tive expressions in the sense of the Dalgarno exchange theorem, depending on
which field is treated as the �first’ and which as the �second’ field.

For an n-electron system, one must sum over expressions like (5.92) or (5.97)
multiplied by the occupation numbers, like in Eq. (5.109). Moreover the first-order
response functions like ’01 are not obtained from the inhomogeneous differential
equation (5.93), but e.g. by the slightly more complicated equations of coupled-Har-
tree–Fock or coupled MC-SCF theory [11,14], where H0 is replaced by the Fock opera-
tor, and where also some coupling terms arise. For the discussion of the general
features, this does, however, not matter much.

We shall mainly be interested in closed shell states, which are non-degenerate,
and for which first-order effects vanish.

5.5.5
Role of the Spin-Dependent Term

The first-order perturbation operator contains a spin-dependent term 1
2~rr
~BB, that has

only a selective effect on second-order properties. Let us look at the sum-over states
formulation Eqs. (5.94) and (5.98) and insert Eq. (5.83) and/or Eq. (5.85). Then the
sum of the paramagnetic contribution and the spin-dependent term is

X

p>0

h�0 j~AAk~ppþ
1
2
~rr~BBk j�pih�p j~AAl~ppþ

1
2
~rr~BBl j�0i

e0 � ep

(5.118)

If k ¼ l ¼ 0, i.e. if we consider the magnetizability, both spin-dependent matrix ele-
ments vanish

h�0 j
1
2
~rr~BB0 j�pi ¼ 0 (5.119)

because ~BB0 is constant (independent of~rr), and �p is orthogonal to �0. The spin-de-
pendent term 1

2
~rr~BB0 does not contribute at all to the magnetizability.

If only say k ¼ 0, i.e. if we consider nuclear magnetic shielding, the matrix element
(5.119) still vanishes, but the corresponding one

h�0 j
1
2
~rr~BBk j�pi (5.120)

does not, since ~BBk is not independent of~rr. However, the contributions to (5.118) with
~AAk~pp in one matrix element and ~rr~BBl in the other (or vice versa), summed over the occu-
pied one-particle states �0, compensate each other for a closed shell state, because the
contributions with a and b spin have opposite sign. For an open-shell n-electron state
there is no full compensation, but for this a temperature-dependent shielding domi-
nates anyway, see Section 5.5.2. There will be a spin-dependent net effect even for a
closed shell state, when we come to relativistic corrections (Section 5.7.5).

If, finally, both fields are due to nuclei, i.e. if we describe nuclear spin coupling,
neither of the matrix elements (5.120) vanishes, and the contribution to (5.118)
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1
4

X

p>0

h�0 j~rr~BBk j�pih�p j~rr~BBl j�0i
e0 � ep

(5.121)

does not vanish, and often even dominates the nuclear spin–spin coupling.
It is customary (see Section 5.3.6) to further subdivide ~rr~BBk, according to Eq.

(5.55) into a Fermi contact and a spin-dipole term. This decomposition is somewhat
artificial, since it results from an integration by parts, and since in a rigorous relati-
vistic theory there is no Fermi contact term. However, in practice often the Fermi
contact term dominates and deserves special attention.

5.5.6
Magnetizability (Magnetic Susceptibility)

For both fields ~BB0 homogeneous (and identical) the spin-dependent contribution to
H10 can be ignored (see Section 5.5.5). In view of (5.51, 5.52) we get for one elec-
tron:

E02 ¼
1
2
h’0 jA

2
0 j’0i þ

1
2
h’0 j~BB0 �~llj’01i; b

2
E02 ¼ �

1
2
~BB�~BB (5.122)

E02 consists of a diamagnetic (or Langevin) term Ed
02 and a (temperature-indepen-

dent) paramagnetic (or van-Vleck ) term Ep
02. The latter must be distinguished from

the ordinary or temperature-dependent paramagnetism (see Section 5.5.2).
One can generally show that, for a ground state,

E
d
02 ¼

1
2
h’0 jA

2
0 j’0i � 0; E

p
02 ¼

1
2
h’0 j~BB0 �~llj’01i � 0 (5.123)

The first inequality holds, because A2
0 � 0, while the second one is easily checked

from the sum-over states formula Eq. (5.94).
For an atom, choosing the gauge origin at the nucleus, Ep

02 vanishes, because, for
a field in the z-direction, ’0 is the eigenfunction of lz, and ’01 is orthogonal to ’0.
One then gets (� is then, of course, isotropic).

E02 ¼
1
12

B
2
0hr

2i; � ¼ � 1
6

b
2hr2i (5.124)

In the special case of the ground state of H-like ions this means
E02 ¼ 1

4Z2 ; � ¼ � b2

2Z2.

5.5.7
The Gauge-Origin Problem

Not only is the energy E of an atom or a molecule in a magnetic field invariant under a
change of the gauge of the vector potential (Section 5.3.4), but this also holds for all
derivatives of the energy with respect to components of the field strength. In particular
E02 is gauge invariant. However the diamagnetic and paramagnetic contributions
Ed

02 and Ep
02 to E02 depend individually on the gauge. One sees easily e.g. that A2

0

with A0 constructed according to Eq. (5.51) does depend on the gauge origin ~RR.
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A
2
0 ¼

1
4

B
2
0ð~rr �~RRÞ

2 � 1
4
½~BB0 � ð~rr �~RRÞ�

2
(5.125)

This dependence is compensated by the ~RR-dependence of the paramagnetic term. In
fact a shift of the gauge origin from 0 to ~RR changes ’01 according to

’01 ! ’01 � ibk’0 ; k ¼ 1
2
ð~BB0 �~RRÞ �~rr (5.126)

but this is only realized if the chosen basis is able to account for this change of ’01

[12]. In practice there is therefore only an incomplete cancellation of ~RR-dependent
terms. This can make approximate calculations very inaccurate, and it is imperative
to take account of an optimal gauge. There is a natural gauge origin for atoms at the
position of the nucleus. However, there is no natural gauge origin for molecules. It
has turned out that for molecules it is recommended not to choose a single gauge
origin, but gauge origins distributed over the molecule. The best-known representa-
tives of distributed gauges are (a) the use of gauge-including orbitals (GIAO) or Lon-
don orbitals as basis for the expansion of wavefunctions [8, 9, 10], and (b) the IGLO
(individual gauge for localized orbitals) method, in which a different gauge origin is
used for different localized orbitals [11, 12, 13]. The IGLO method can be rationa-
lized in terms of a nonlocal generalization of a gauge transformation [14]. More
about the gauge-origin problem is found in Chapter 6 by van W�llen.

5.5.8
Nuclear Magnetic Shielding; NMR Chemical Shift

We now consider two magnetic fields, an external homogeneous one ~BB0, and ~BBk of
the kth nucleus. The one-electron contribution to the mixed second-order energy,
which is responsible for the nuclear magnetic shielding is then

E011 ¼ h’0 j~AAk �~AA0 j’0i þ Reh’0 j2~AAk �~ppþ ~rr �~BBk j’010i (5.127)

where ’010 is identical with the ’01 as determined by Eq. (5.117). The diamagnetic
term Ed

011 ¼ h’0j~AAk �~AA0j’0i is now referred to as the Lamb term, while the paramag-
netic term Ed

011 ¼ 2 h’0j~AAk �~ppj’010i is called the Ramsey term. The sum of the spin-
dependent contribution h’0j~rr �~BBkj’010i (over the occupied spin orbitals) vanishes
for a non-degenerate n-electron state and can hence be ignored.

In Eq. (5.127) we have chosen the first-order perturbation function ’010 with
respect to the external field ~BB0. This is not only recommended because then one has a
single ’010 for all possible nuclei, but also because the singularity of the field due to
a nucleus may create difficulties for the construction of ’001.

At variance with the formal expression E011 (5.127), the shift tensor rðkÞ, related to
it via Eq. (5.108), does contain a factor b2d. This happens to be equal to c�2 ¼ a2 for
both systems of atomic units. The question whether this implies that nuclear mag-
netic shielding must be regarded as a relativistic effect, is nevertheless rather futile.
The factor b2d arises entirely from factors by which external perturbations are multi-
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plied. Otherwise the theory is entirely based on a non-relativistic Hamiltonian. There
are no effects of relativistic kinematics involved. One may only argue that relativistic
corrections to the nrl of electrodynamics play a role (since any magnetic moment
has its origin in a current). In this respect there is a fundamental difference to, say,
spin–orbit interaction, which cannot be described correctly without taking care of
relativistic kinematics [2].

The NMR shielding comes out as a dimensionless quantity, because it is the ratio
between the indirect interaction of the nuclei with the external field, mediated by the
electrons, and the direct interaction, which is simply ~BB �~ll in either system of atomic
units.

The full shielding tensors rðkÞ (for more details see Chapter 27 by Wasylishen)
have been studied less than their isotropic parts rðkÞ or the chemical shifts dðkÞ, which
are defined relative to a standard rðkÞstd for the respective nucleus.

d
ðkÞ ¼ r

ðkÞ
std � r

ðkÞ
(5.128)

The theoretical calculation of chemical shifts was, for a long time, plagued by the
gauge-origin problem (see Section 5.5.7). With distributed gauge methods, like GIAO
or IGLO this problem has been solved (see Section 5.5.7).

For an atom, choosing the gauge origin at the nucleus, one gets Ep
011 ¼ 0, for the

same reason as Ep
02 ¼ 0 (see Section 5.5.6). One then arrives at

E011 ¼
1
3
j~BB0 jj~llk

jhr�1i; r ¼ 1
3

b
2
dhr�1i ¼ 1

3
a

2hr�1i (5.129)

In the special case of the ground state of H-like ions this means r ¼ 1
3 a2Z. The

NMR chemical shift is probably one of the best examples for a fruitful cooperation
between theory and experiment. Details can be found in many reviews [12, 13, 14],
and in several chapters in this book. Readers interested in the history, especially in
the fundamental work of Ramsey [15] are referred to the paper by Pyykk� [16] and to
Chapter 2 by Pyykk�.

5.5.9
Nuclear Spin-Coupling

We now come to the case where both perturbing magnetic fields are due to nuclei.
We can start from essentially the same expression for a mixed second-order property
as before, cf. Eq. (5.127).

E0011 ¼ h’0 j~AAk �~AAl j’0i þ Reh’0 j2~AAk �~ppþ ~rr �~BBk j’0001i (5.130)

with ’0001 essentially determined from the counterpart of Eq. (5.117). The main dif-
ference to magnetizability and nuclear magnetic shielding is, that now the spin-de-
pendent terms in the perturbation operator cannot be ignored (see Section 5.5.5).

While in the case of magnetizability and NMR shielding we had to consider one
diamagnetic and one paramagnetic term, we have now again one diamagnetic term,
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but four paramagnetic ones. This results from the decomposition of H01 into a spin-
independent and a spin-dependent term, and a further decomposition of the latter
into a spin-dipolar and a Fermi-contact term (see Section 5.5.5). In the sum-over-states
expression (5.121) there is (at least for closed-shell states) one contribution, where
both factors contain a spin-independent term, and three more for spin-dependent
terms of the same or different kind.

If one rationalizes the sum-over-states formula in terms of n-electron states, then
for a closed-shell reference state, the operator ~AAk �~pp only couples to excited singlet
states, and the operator ~BB � ~rr to excited triplet states. The formal appearance of con-
tributions with singlet vs. triplet intermediate states may suggest that many electron
effects are involved. However, what matters is whether we deal with a spin-depen-
dent or a spin-independent operator, and they play a different role, even for one-elec-
tron states.

There is also a direct magnetic interaction between the nuclear magnetic
moments, that is independent of the electronic wavefunction. This interaction is
important in solids with a fixed orientation between molecules, but it levels out e.g.
in solution.

While for the calculation of the NMR shielding, one does not need to know the
numerical value of ~llk (or rather the factor ck, which relates ~llk to the nuclear spin
Eq. (5.54) (this determines, of course, the unshielded resonance frequency), in order
to relate the computed spin coupling tensors to the experimentally observed ones,
the ck values need to be known.

There is only one aspect in which nuclear spin coupling is simpler than the other
second-order properties, namely that there is no gauge-origin problem.

Let us finally mention that even the case k ¼ l is physically meaningful, not as a
coupling between two nuclear spins, but as a higher-order effect involving the mag-
netic moment of a single nucleus. However, the E002 evaluated in this philosophy,
diverges [7]. A finite result is only obtained if one abandons the model of a point
dipole and accounts for an extended nucleus. Replacement of a point dipole by an
extended dipole has, however, no noticeable effect in those cases where no diver-
gence arises.

5.6
Relativistic Theory of Magnetic Properties

5.6.1
Perturbation Theory of a Dirac Electron in a Magnetic Field

Let us start from the Dirac equation (5.58) and (5.70) for an electron in a magnetic
field with vector potential ~AA and expand the Dirac operator according to Eq. (5.65),
the (four-component) wavefunction w and the energy W (which includes the rest
mass contribution c2) in powers of b.

W ¼W0 þ b W1 þ b
2

W2 þ . . . ; w ¼ w0 þ b w1 þ b
2

w2 þ . . . (5.131)
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D0 ¼
V c~rr~pp

c~rr~pp V�2c2

� �
; D1 ¼

0 ~rr~AA
c~rr~AA 0

 !
(5.132)

Now we use only one label, which counts orders in the magnetic perturbation. Hence,
formally, we only consider a single perturbation, but the generalization to more
than one magnetic field is straightforward. The zeroth and first order wavefunctions
are w0 ¼ ð’0; �0Þ and w1 ¼ ð’1; �1Þ respectively. For the counterparts W1 and W2 of
the non-relativistic first- and second-order properties E1 and E2 we get

W1 ¼ hw0 jD1 jw0i ¼ 2cReh’0 j~rr �~AAj�0i (5.133)

W2 ¼ Rehw0 jD1 jw1i ¼ cRefh’0 j~rr �~AAj�1i þ h’1 j~rr �~AAj�0ig (5.134)

with w0 and w1 solutions of

ðD0 �W0Þw0 ¼ ðD0 � E0 � c
2Þw0 ¼ 0 (5.135)

ðD0 �W0Þw1 ¼ �ðD1 �W1Þw0 ; hw0 jw1i ¼ 0 (5.136)

Note that W0 contains the rest mass contribution c2. The normalization condition
contained in Eq. (5.136) is convenient, because it removes W1 from the expression
for W2.

Like in the non-relativistic case we observe that D1 is a pseudoscalar operator and
hence W1 vanishes for non-degenerate (n-electron) states. For degenerate states W1

describes the Zeeman splitting, provided that ~AA0 represents a homogeneous external
field. For ~AAk due to a nucleus, W1 is the relativistic generalization of the hyperfine
interaction.

W2 consists of a single term, that formally resembles the paramagnetic contribu-
tion Ep

02 to E02 in non-relativistic theory, while there is no direct counterpart of Ed
02.

It is somewhat puzzling that W2 does, unlike in the non-relativistic theory, not
appear as the sum of a diamagnetic and a paramagnetic contribution. Such a
decomposition can be achieved, in a somewhat artificial way, in evaluating W2 by
means of the sum-over states formulation [17,18,19]

W2 ¼
P
q

jhw
0
jD1 jwq0

ij2

W0�Wq0

(5.137)

Unlike the non-relativistic Hamiltonian, the Dirac operator has both positive-energy
and negative-energy eigenstates. While the partial sum over the former to W2 looks
like the obvious relativistic generalization of the paramagnetic contribution, the par-
tial sum over negative energy states does not have a direct non-relativistic counter-
part. On the other hand this partial sum can (for the ground state ðq ¼ 0Þ) be esti-
mated as:
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W
neg
2 ¼

X

q;Wq0<0

jhw0 jD1 jwq0ij
2

W0 �Wq0
�

X

k;Wq0<0

jhw0 jD1 jwq0ij
2

W0 þ c
2 �

hw0 jD
2
1 jw0i

W0 þ c
2

¼ hw0
jc2 A2 jw

0
i

W0þc2 ¼ hw0 jA
2 jw0i½1þ

W0

c2 �
�1

(5.138)

� 1
2
hw0 jA

2 jw0i (5.139)

In the limit 2c2 ! 0 this approaches the non-relativistic Ed
02.

The interpretation of diamagnetism as due to negative-energy states is, although
formally plausible, unsatisfactory for various rather serious reasons [20]. Let us only
mention two of them

1. This would mean to recur to a different mechanism in the relativistic and the
non-relativistic context, with a discontinuity in the non-relativistic limit. In
this limit there are no negative-energy states.

2. The sum-over-states formalism involving negative-energy states is tedious
and inelegant, if it is performed in a brute-force way. It is unreliable and hard
to correct if one tries to approximate this sum by a closure approximation.

5.6.2
Unitary Transformation of the Dirac Operator

There is a much more convincing way to arrive at a decomposition of W2 into a
diamagnetic and a paramagnetic contribution, namely via a unitary transformation
of D [20] that removes the off-diagonal operator c~aa �~AA to the leading order in b.

~DD ¼ expf�bsgD expfbsg ¼ D0 þ b~DD1 þ b
2 ~DD2 þOðb3Þ (5.140)

s ¼ � 1
2c
�~aa �~AA ¼ �s

y
(5.141)

~DD1 ¼ D1 þ ½D0 ; s� ¼
1
2
�½~aa �~pp; ~aa �~AA�þ ¼ �f~AA �~ppþ

1
2
~rr �~BBg ¼ �H1 (5.142)

~DD2 ¼ ½D1 ; s� þ
1
2
½½D0 ; s�; s� ¼

1
2
�A

2 � 1
4c
½H1 ; ~aa �~AA�þ (5.143)

where we have used

�~aa ¼ �~aa�; ð~aa �~aaÞð~aa �~bbÞ ¼~aa �~bbþ i~rr � ð~aa�~bbÞ; r~AA ¼ 0; ~BB ¼ rot~AA (5.144)

~DD1 differs from the non-relativistic H1 (5.80) mainly in the fact that it acts on four-
component spinors. For W1 and W2 we now get
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W1 ¼ hw0 j~DD1 jw0i ¼ h’0 jH1 j’0i � h�0 jH1 j�0i (5.145)

W2 ¼W
p
2 þW

d1
2 þW

d2
2 (5.146)

W
p
2 ¼ Rehw0 j~DD1 �W1 j ~ww1i

¼ Refh’0 jH1 �W1 j~’’1i � h�0 jH1 þW1 j~��1ig (5.147)

W
d1
2 ¼

1
2
hw0 j�A

2 jw0i ¼
1
2
h’0 jA

2 j’0i �
1
2
h�0 jA

2 j�0i (5.148)

W
d2
2 ¼ �

1
2c

Reh’0 j½H1 ; ~rr �~AA�þ j�0i (5.149)

The first-order wavefunction ~ww1 is obtained from

ðD0 �W0Þ ~ww1 ¼ �ð~DD1 �W1Þw0 ; hw0 j ~ww1i ¼ 0 (5.150)

While the energy (i.e. the Wk) as well as w0 are unaffected by the transformation
from D to ~DD, the relation between ~ww1 and w1 is

~ww1 ¼ w1 þ
1
2c
�~aa �~AAw0 (5.151)

The expressions Eq. (5.147) to (5.149) [20] were first derived by Szmytkowski [21]
making use of the Gordon decomposition of the induced current density.

For the ground state of H-like ions one can easily evaluate W10 or W01, i.e the
relativistic Zeeman splitting and hyperfine interaction either from Eq. (5.133) or Eq.
(5.145). If one uses Eq. (5.145) for W01, one must ignore the delta-function term,
which becomes meaningless in this context. One gets

W10 ¼
2ms

3
ð1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

2
Z

2
p

Þ; W01 ¼
8Z3 ms

3
f2a

2
Z

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

2
Z

2
p

� 2g�1
(5.152)

Closed expressions are also available for the energy quantities related to the magnetiz-
ability ðW20Þ [30], and the NMR shielding ðW11Þ [31], but they are too complicated to be
reproduced here. We come, in Section (5.7.5), to their expansion in powers of a2.

5.7
The Leading Relativistic Corrections

5.7.1
Direct Perturbation Theory (DPT)

We can sketch the basic ideas of direct perturbation theory (DPT) of relativistic effects
only briefly, for details the reader is referred to a recent review [2] and the original
literature [20, 22, 23, 24, 25]. We start from the Dirac equation with modified metric
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(5.72) in block form (5.73). While in sec. 5.3.11 we only considered the limit
c�2 ! 0, we now expand (5.72) or (5.73) in powers of both c�2 and b as perturbation
parameters. We therefore write (see Eqs. (5.71) and (5.72))

0 ¼ ðD00 þ c
�2

D20 þ bD01 � ES0 � Ec
�2

S2Þ �ww (5.153)

D00 ¼
V ~rr�~pp
~rr�~pp �2

� �
; D20 ¼

0 0
0 V

� �
; D01 ¼

0 ~rr�~AA
~rr�~AA 0

 !
(5.154)

S0 ¼
1 0
0 0

� �
; S2 ¼

0 0
0 1

� �
(5.155)

E ¼
X

k;l

c
�k

b
l
Ekl ; �ww ¼

X

k;l

c
�k

b
l
w

kl
(5.156)

The first subscript counts orders in c�1 (only even orders are present), the second
subscript orders in b. Like in Sec. 5.6 we consider formally a single magnetic pertur-
bation, but the generalization to more perturbations is straightforward.

The lowest-order equations are:

ðD00 � E00 S0Þw00 ¼ 0 (5.157)

ðD00 � E00 S0Þw20 þ ðD20 � E20S0 � E00S2Þw00 ¼ 0 (5.158)

ðD00 � E00 S0Þw01 þ ðD01 � E01S0Þw00 ¼ 0 (5.159)

ðD00 � E00 S0Þw02 þ ðD01 � E01S0Þw01 � E02 S0w00 ¼ 0 (5.160)

ðD00 � E00 S0Þw21 þ ðD20 � E20S0 � E00S2Þw01

þ ðD01 � E01S0Þw20 � ðE21S0 þ E01S2Þw00 ¼ 0 (5.161)

All these equations can, of course, be written in block form like Eq. (5.75). The solu-
tions are not unique and we can impose a normalization condition. The unitary nor-
malization

1 ¼ hw00 jS0 jw00i ¼ h’00 j’00i (5.162)

0 ¼ hw20 jS0 jw00i þ hw00 jS0 jw20i þ hw00 jS2 jw00i

¼ h’20 j’00i þ h’00 j’20i þ h�00 j�00i (5.163)

0 ¼ hw01 jS0 jw00i þ hw01 jS0 jw01i ¼ h’01 j’00i þ h’00 j’01i (5.164)
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is recommended. From scalar multiplication of Eq. (5.157) by (5.161) from the left
by w00 one gets

E20 ¼ E20hw00 jS0 jw00i ¼ hw00 jD20 � E00S2 jw00i ¼ h�00 jV � E00 j�00i (5.165)

E01 ¼ E01hw00 jS0 jw00i ¼ hw00 jD01 jw00i ¼ 2Reh’00 j~rr �~AAj�00i (5.166)

E02 ¼ hw00 jD01 � E01S0 jw01i

¼ Refh’00 j~rr �~AAj�01i þ h’01 j~rr �~AAj�00ig � E01Reh’00 j’01i (5.167)

E21 ¼ hw00 jD20 � E20S0 � E00S2 jw01i þ hw00 jD01 � E01 S0 jw20i

�E01hw00 jS2 jw00i (5.168)

In analogy one obtains expressions for E40, E22, etc., which can be further simplified,
using identities based on Eq. (5.157) to (5.161).

5.7.2
The Leading Relativistic Corrections to the Energy

Although our interest is in the relativistic corrections to properties, we have to say a
few words on the relativistic corrections to the energy. The zeroth-order equation
(5.157) is in block form

V ~rr~pp
~rr~pp �2

� �
’00

�00

� �
¼ E00

1 0
0 0

� �
’00

�00

� �
(5.169)

or equivalently

ðH0 � E00Þ’00 ¼ 0; �00 ¼
1
2
~rr �~pp’00 ; H0 ¼ V þ 1

2
p

2
(5.170)

From (5.165) the leading relativistic correction to the energy is

E20 ¼ h�00 jV � E00 j�00i ¼
1
4
h~rr �~pp’00 jV � E00 j~rr �~pp’00i

¼ 1
4
h’00 j~rr~ppðH0 � E00 � TÞ~rr~ppj’00i

¼ 1
4
h’00 j~rr~pp½H0 ; ~rr~pp�j’00i þ

1
2
h’0 jTðH0 � E00Þj’00i �

1
2
h’00 jT

2 j’00i (5.171)

with T the operator of the kinetic energy. E20 can be interpreted as the sum of four
terms, with both (5.173) and (5.174) coming from the the first term in the last line
of (5.171):
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� 1
2
h’00 jT

2 j’00i ¼ mass–velocity (5.172)

1
8
h’00 jr

2
V j’00i ¼ Darwin term (5.173)

1
4
h’00 j~rr � ðrV �~ppÞj’00i ¼ spin–orbit term (5.174)

1
2
h’00 jTðH0 � E00Þj’00i ¼ correction term (5.175)

It is a matter of convention whether or not one includes the factor c�2 in the defini-
tion of these relativistic corrections. The first two of these terms represent scalar or
spin-independent corrections, the third term is spin-dependent and responsible for the
spin–orbit interaction, while the last term is a correction, that vanishes, if the non-
relativistic problem is solved exactly, and is therefore often ignored.

The spin–orbit interaction operator Hso can, for V a central potential (i.e. for an
atom) be rewritten as

Hso ¼
1
4
~rr � ðrV �~ppÞ ¼ 1

4r
dV
dr
~rr � ð~rr �~ppÞ ¼ 1

4r
dV
dr
~rr �~ll (5.176)

While a non-degenerate state is only affected by scalar relativistic corrections, there
is a splitting of degenerate states via spin–orbit interaction. For a relativistic (one-
electron) atom only~jj ¼~ll þ~ss, and no longer~ll and~ss separately commute with the
Dirac Hamiltonian. The spin–orbit term couples the orbital and spin angular
momenta~ll and~ss to a total angular momentum~jj.

Therefore, to account for relativistic corrections to a state that is degenerate in the
nrl, one must apply degenerate perturbation theory. Rather than to consider the relati-
vistic correction to the energy of a single state, one must use an effective Hamilto-
nian in the basis of the zeroth-order degenerate states [20],

L
ð2;0Þ
ij ¼ 1

4
h~rr~pp ’ð00Þ

i jV � 1
2
ðei þ ejÞj~rr~pp ’

ð00Þ
j i (5.177)

and diagonalize this to get the perturbation-adapted states and the leading relativis-
tic corrections to the energy. This is a generalization of Eq. (5.171).

For higher-order corrections one needs e.g. w20, that is determined from
Eq. (5.158) or in component form

ðV � E00Þ’20 þ ~rr~pp�20 � E20’00 ¼ 0 (5.178)

~rr~pp’20 � 2�20 þ ðV � E00Þ�00 ¼ 0 (5.179)

with the solution

ðH0 � E00Þ’20 ¼ �
�

1
4
~rr~ppðV � E00Þ~rr~pp� E20

�
’00 (5.180)
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�20 ¼
1
2

�
~rr~pp’20 þ ðV � E00Þ�00

�
(5.181)

There are also relativistic corrections to the electron interaction. These have two ori-
gins. The Coulomb interaction gives rise to two-electron contributions to the spin–
orbit interaction, which mainly shield the one-electron spin–orbit interaction to
some extent. If one includes the Breit interaction between the electrons, one takes
care of spin–other-orbit interaction, and electron-spin–spin interaction. There are
also scalar two-electron terms, and finally so-called radiative (QED) corrections. The
fact that we cannot comment on these additional terms, does not mean that they are
generally unimportant. For more details see e.g. ref. [2].

5.7.3
The Relativistic Corrections to First-Order Properties in the Absence of Zeroth-Order
Spin–Orbit Splitting

For relativistic corrections to properties one can apply DPT as sketched in Section
5.7.1 and evaluate the correction to first-order properties [24] from Eq. (5.168) or
rather from one of the two alternative expressions typical for double perturbation
theory [6]:

E21 ¼ 2Rehw00 jD20 � E20S0 � E00S2 jw01i � E01hw00 jS2 jw00i

¼ 2Rehw00 jD01 � E01 S0 jw20i � E01hw00 jS2 jw00i ¼ 2hw00 jD01 jw00i (5.182)

Alternatively one can apply DPT to the transformed Dirac operator of Section 5.6.2,
where one gets [20]:

E21 ¼ hw00 j~DD21 � E01S2 jw00i þ 2Rehw00 jD20 � E20 S0 � E00S2 j ~ww01i

¼ �h�00 jH1 þ E01 j�00i þ 2Reh�00 jV � E00 j~��01i (5.183)

E21 ¼ hw00 j~DD21 � E01S2 jw00i þ 2Rehw00 j~DD01 � E01 S0 jw20i

¼ �h�00 jH1 j�00i þ 2Reh’00 jH1 j’20i (5.184)

~DD01 ¼
H1 0
0 0

� �
; ~DD02 ¼

1

2
A2 0

0 0

 !
; ~DD21 ¼

0 0
0 �H1

� �

~DD22 ¼
0 ß ß�1

4
½H1 ;~rr�~AA�þ

�1

4
½H1 ;~rr�~AA�þ �1

2
A2

0
B@

1
CA (5.185)

with H1 the non-relativistic perturbation operator (5.80), see (5.142).
Both expressions (5.183) and (5.184) are valid in the unitary normalization

(5.164). They are related to each other by the Dalgarno exchange theorem. The term
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common to both expressions does not contain a perturbation correction to the wave-
function, somewhat like the diamagnetic contribution to non-relativistic second-
order properties (Section 5.5.4).

Concerning the relativistic corrections to magnetic properties, one must distin-
guish between states the degeneracy of which in the nrl is split by spin–orbit interac-
tion even in the absence of a magnetic field, and states without a spin–orbit splitting.
For the latter one can directly evaluate the leading relativistic corrections to the Zee-
man splitting or the hyperfine interaction. There are various equivalent formula-
tions, of which the expressions (5.183, 5.184) are particularly compact [20].

For atoms (without spin–orbit interaction) in a homogeneous field ~BB0, (5.183) or
(5.184) simplify to

E21 ¼ �h�00 jH1 þ E01 j�00i (5.186)

For the ground state of H-like ions the Zeeman splitting is

2bf1� a2 Z2

3
� a4 Z4

12
þOða6

Z
6Þg (5.187)

The deviation from the spin-only value bg ¼ 2b results from the fact that the relativis-
tic wavefunction is no longer an eigenfunction of sz. In the present case this is man-
ifest in the small component �00, which is a 1p1

2
function with g ¼ 2

3 (see Section
5.7.4). Note that this can be regarded as an effect of spin–orbit interaction, although
we would not have got this effect if we had simply added a spin–orbit term Hso to
the non-relativistic Hamiltonian.

For the evaluation of the relativistic correction to the hyperfine splitting the counter-
part of the expressions (5.183, 5.184) cannot be used, because although the sum of
the two terms is regular, they diverge individually, and a controlled cancellation of
the diverging terms is nontrivial. There is no problem with the expression [24]

E201 ¼ 2Refh’200 j~rr �~AAk j�000i þ h�200 j~rr �~AAk j’000ig (5.188)

based on Eq. (5.182). For the hyperfine splitting of the ground state of H-like ions
one gets

bdf4Z3

3
þ 2a

2
Z

5 þ 17
6

a
4
Z

7 þOða6
Z

9Þg (5.189)

A numerical study of such relativistic corrections was published by Hennum et al.
[26].

Generally the relativistic correction is not isotropic, i.e. the magnetic moment of a
molecule is not necessarily parallel to the direction of the field. Then the g-factor
has to be replaced by a g-tensor.

In order to describe experiments correctly, one must not forget that due to quan-
tum electrodynamic (QED) corrections even the g-factor of a free electron is not exactly
equal to 2, but rather g ¼ 2:0023193 � 2þ a=p [27]. This QED correction must sim-
ply be added to the corrections which result from relativistic effects.
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5.7.4
The Relativistic Corrections to First-Order Properties in the Presence of Zeroth-Order
Spin–Orbit Splitting

For a state, which is degenerate in the nrl, the splitting due to relativity in the
absence of a magnetic field, must usually be taken account of, before one switches
on the field. For an atomic state (we consider one-electron states) this means that it
can no longer be classified in terms of its quantum numbers l;ml; s;ms, but only in
terms of j;mj, while in the presence of a magnetic field only mj remains. The Zee-
man splitting in the nrl is then determined by the g value of the Land� formula.

For the projection of the total magnetic moment ~mm ¼~ll þ 2~ss on the total angular
momentum~jj ¼~ll þ~ss we get

h~mm�~jji
h~jj�~jji

¼ 1þ h~ss�
~jji
h~jj�~jji
¼ 1þ h~ss�

~lliþh~ss�~ssi
h~jj�~jji

¼ 1þ
1

2
h~jj 2�~ll 2�~ss 2iþh~ss 2i

jðjþ1Þ

¼ 1þ jðjþ1Þ�lðlþ1Þþsðsþ1Þ
2jðjþ1Þ ¼ g (5.190)

E01ðmjÞ ¼
b
2

g mj B0z (5.191)

In a second step we can, for the mj states evaluate the relativistic corrections as in
Section 5.7.3. This procedure only works for sufficiently weak magnetic fields, such
that the Zeeman splitting is small with respect to the spin–orbit splitting. If both
splittings have comparable magnitude, we must apply quasidegenerate perturbation
theory, i.e. take all states with the same l and s together as the basis of a matrix rep-
resentation of both relativistic corrections and interaction with the magnetic field.
The matrix elements then have a power series expansion in both perturbation pa-
rameters, but the eigenvalues of this matrix (to be evaluated for actual values of the
parameters) are not analytic in the two parameters (with some exceptions like
atomic states with mj ¼ j ¼ l þ 1

2) . Then we are in the regime of the anomalous Zee-
man effect.

A special case of spin–orbit splitting in molecules (where also electron spin–spin
interaction plays a role) is the zero-field splitting of triplet states (and states of higher
spin multiplicities). Here for molecules of sufficiently low symmetry the three-fold
degeneracy in the nrl is split into three components with the magnetic moments in
the direction of the three Cartesian axes in a molecule-fixed system. If one applies a
magnetic field, there is a competition between the Zeeman splitting and the zero-
field splitting, much like in the anomalous Zeeman effect.

5.7.5
The Leading Relativistic Corrections to Second-Order Properties

The relativistic corrections like E220 and E211 to second-order properties can be evalu-
ated by means of multiple direct perturbation theory in a straightforward way, but
the resulting expressions are rather lengthy [24] and not easily interpreted. Again we
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have the choice between DPT applied to the original Dirac equation [24] as sketched
in Section 5.7.1, and DPT applied to the transformed Dirac operator [20]. In the first
case one needs the first-order correction w01 ¼ ð’01; �01Þ of the wavefunction due to
the magnetic perturbation, obtained from Eq. (5.159), which after straightforward
manipulations leads to

ðH0 � E00Þ’01 þH1’00 ¼ 0; �01 ¼
1
2
~rr~pp’01 þ

1
2
~rr~AA’00 ; h’00 j’01i ¼ 0 (5.192)

In the second case one has to replace Eq. (5.159) by

ðD00 � E00 S0Þ ~ww01 þ ð~DD01 � E01S0Þw00 ¼ 0 (5.193)

and get ~ww01 ¼ ð~’’01; ~��01Þ from

ðH0 � E0Þ~’’01 þH1’00 ¼ 0; ~��01 ¼
1
2
~rr �~pp ~’’01 ; h’00 j~’’01i ¼ 0 (5.194)

One finds that ’01 ¼ ~’’01, and that this even agrees with the non-relativistic ’01, but
that �01 6¼ ~��01.

For our purposes a formulation based on the transformed Dirac operator is
recommended [20] in which E22 is, in analogy to the decomposition (5.146) of W2,
decomposed into one paramagnetic and two diamagnetic parts.

E22 ¼ E
d1
22 þ E

d2
22 þ E

p
22 (5.195)

E
d1
22 ¼ Reh’00 jA

2
0 j’20i �

1
2
h�00 jA

2
0 j�00i (5.196)

E
d2
22 ¼ �

1
2

Reh’00 j½H1 ; ~rr �~AA0 �þ j�00i (5.197)

E
p
22 ¼ h~��01 jV � E00 j~��01i � E20h~’’01 j~’’01i

�2Reh�00 jH1 þ E01 j~��01i þ 2Reh’20 jH1 � E01 j~’’01i (5.198)

We note that in view of Eq. (5.119) the spin-dependent part of H1 does not contribute
to Ep

22. In the special case of the ground state of H-like systems ’01 ¼ 0; ~��01 ¼ 0,
and hence Ep

22 ¼ 0, i.e. the paramagnetic term does not only vanish in the nrl, its
leading relativistic correction vanishes as well, relativistic effects enter to higher
order in Z2a2 only [29]. We get

� ¼ �b
2f 1

2Z2 �
2
3

a
2 þ 0:09516Z

2
a

4 þOðZ4
a

6Þg (5.199)

The correction � 2
3 has a contribution of � 13

24 from Ed1
22 and � 1

8 from Ed2
22.

The counterpart of (5.195) for a mixed second-order property, such as nuclear
magnetic shielding (or nuclear spin coupling) is
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E211 ¼ E
d1
211 þ E

d2
211 þ E

p
211 (5.200)

E
d1
211 ¼ 2Reh’000 j~AAk �~AAl j’200i � h�000 j~AAk �~AAl j�000i (5.201)

E
d2
211 ¼ �

1
2

Reh’000 j½H10 ; ~rr �~AAl �þ þ ½H01 ; ~rr �~AAk �þ j�000i (5.202)

E
p
211 ¼ h~��010 jV � E0 j~��001i � h~��001 jV � E0 j~��010i � 2ReE20h~’’010 j~’’001i

�2Reh�000 jH10 þ E010 j~��001i � 2Reh�000 jH01 þ E001 j~��010i

þ2Reh’200 jH10 � E010 j~’’001i þ 2Reh’200 jH01 � E001 j~’’010i (5.203)

Now we can argue that the spin-dependent contributions to ~’’010 and ~��010 vanish,
but that those to ~’’001 and ~��001 don’t. These can, together with spin-dependent parts
in ’200 yield non-vanishing net contributions to Ep

211, even for a closed-shell state. In
a sum-over-states formulation these contributions look like

X

p>0;q>0

h�0 jHso j�pih�p jH10 � E10 j�qih�q j~rrk �~BBk j�0i
ðe0 � epÞðe0 � eqÞ

(5.204)

where Hso is the spin–orbit interaction operator, and ~rrk �~BBk essentially the Fermi-
contact term. Such an expression was first proposed by Namura et al. [28] in a some-
what ad hoc study of spin–orbit effects on nuclear magnetic shielding.

For the ground state of H-like ions one gets [29]:

r ¼ a
2fZ

3
þ 97

108
Z

3
a

2 þ 289
216

Z
5
a

4 þOðZ7
a

6Þg (5.205)

The correction 97
108 has a contribution of 0 from Ed1

211 and � 1
3 from Ed2

211, 4
3 and � 11

108
come from the term �2Reh�0jH10 þ E010j~��001i with ~��001 a p1

2
and a p3

2
function

respectively. One can interpret the last term as a spin–orbit effect. For the relativistic
correction to nuclear spin–spin coupling, the formal expressions are quite similar,
but there is a large number of terms. Now there is even a coupling between spin-
dependent and spin-independent terms mediated by spin–orbit interaction. Chap-
ters 13, 14 and 15 treat relativistic effects on NMR parameters.

5.7.6
Second-Order [O(c4)] Relativistic Corrections

These have been evaluated [24], but cannot be documented here.
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5.8
Concluding Remarks

We could only cover a few aspects of the theory of atoms and molecules in a mag-
netic field. We have always assumed that the magnetic fields are so small that they
are sufficiently well described by the leading order of perturbation theory in the field
strength. This is usually realized for the external fields used in NMR or EPR experi-
ments, as well as for those due to the nuclei. Higher orders in the field strength do
not cause serious difficulties, but are usually not required. The theory of atoms or
molecules in very strong magnetic fields [32], where interesting new phenomena arise,
is beyond the scope of this review. We have always made the clamped-nuclei approx-
imation for molecules in a fixed geometry. We could not discuss the Born–Oppen-
heimer approximation in the presence of magnetic fields [33], which has non-trivial
aspects. We have further, not commented on the effect of magnetic fields on vibra-
tional and rotational motions (as studied in microwave spectra), nor on the effect of
zero-point vibrations or thermal averaging on magnetic properties. Something on
these aspects is found in Chapters 10 and 11.

In this review we were explicitly concerned with one-electron systems. Since mag-
netic perturbations are described by one-electron operators, most results are trans-
ferable to many-electron systems. For these the standard approach is coupled Har-
tree–Fock. To account for effects of non-dynamic electron correlation coupled MC-SCF
is appropriate. The IGLO method for the evaluation of nuclear magnetic shielding,
in which different gauge origins are used for different localized molecular orbitals,
has been formulated both in the coupled Hartree–Fock [11] and the coupled-MC-
SCF context [14]. To take care of the dynamic electron correlation, a MP2 (Møller–
Plesset of second order) [34] and a CC (coupled-cluster) theory [35] of magnetic prop-
erties have also been formulated. A cheap way to account for some correlation
effects is DFT in the presence of magnetic fields [36] and Chapter 6. While non-
relativistic coupled Hartree–Fock calculations based on IGLO or GIAO have become
routine, both sophisticated treatments of electron correlation and of relativistic
effects are still quite challenging.

Some results, mainly on relativistic effects, are published here for the first time.
The bibliography of this review consists mainly of references for further reading. We
have not attempted to document the history. For this see Ref. [16] and Chapters 2
and 3.
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6.1
Introduction

What is actually measured in a nuclear magnetic resonance (NMR) experiment is a
local magnetic field strength [1, 2]. As far as chemical shifts are concerned, the mag-
netic nucleus itself merely acts as a probe (measuring device): the orientation of its
magnetic moment is quantised which leads to discrete energy levels. Transitions be-
tween these energy levels can be induced by electromagnetic waves in the radio fre-
quency range. The energy differences which can thus be measured are proportional
to the local magnetic field strength at the nucleus. While the local magnetic field
can be computed at any position by quantum chemical calculations, only its value at
the position of the nuclei can thus be measured. The local magnetic field is a super-
position of the external magnetic field ~BBext and the magnetic field ~BBind induced by
the currents in the molecule.

~BBloc ~rrð Þ ¼ ~BBext ~rrð Þ þ~BBind ~rrð Þ (6.1)

In this chapter we only consider homogeneous external magnetic fields for which
~BBext is position-independent. According to the Biot–Savart law, a current density~jj ~rrð Þ
induces, at position~ss, a magnetic field

~BB
ind
~ssð Þ ¼ � 1

c2

Z
~jj ~rrð Þ � ~rr �~ssð Þ

~rr �~ssj j3
d~rr (6.2)

SI-based atomic units (Hartree) [3] are used throughout this chapter, and c is
the speed of light (in atomic units, c � 137). The pre-factor 1/c2 arises since, in
atomic units, 4�e0 ¼ 1 and the vacuum permeability l0 has thus the numerical
value 4p/c2. A more detailed discussion of electromagnetic units is given in this vol-
ume in Chapter 5 by Kutzelnigg on the fundamentals of the calculation of magnetic
properties.

We will only consider closed-shell molecules for which the current density~jj ~rrð Þ
vanishes in the absence of external magnetic fields. If such a molecule is put into a
homogeneous external magnetic field ~BBext, this field induces within the molecule a
non-vanishing current density. Once this induced current density has been calcu-
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6 Chemical Shifts with Hartree–Fock and Density Functional Methods

lated, ~BBind can be computed via Eq. (6.2). One defines the magnetic shielding con-
stant � as the negative ratio between the external and the induced field

~BBind ~ssð Þ ¼ �r ~ssð Þ~BBext (6.3)

For closed-shell atoms, ~BBind is anti-parallel to ~BBext at the position of the nucleus and
thus weakens~BBext, hence the name magnetic shielding. In general, ~BBind is not paral-
lel to ~BBext, such that the (position-dependent) shielding constant � is a non-sym-
metric tensor. In practice one cannot directly measure the magnetic shielding
because the magnetic field strength and the nuclear magnetic moments are not
known to ppm accuracy. Instead the difference between the magnetic shielding of a
reference compound and the probe is measured, and this difference is called the
chemical shift. We will only refer to the magnetic shielding constant since this is the
quantity that is calculated first and then converted to the chemical shift in an
obvious way.

To calculate chemical shifts which can be measured in an NMR experiment, one
only needs the magnetic shielding constants at the positions of the magnetic nuclei.
Magnetic shielding constants at other positions, also called “nucleus independent
chemical shifts” (NICS) [4] can be calculated but there is no experimental device to
measure them. They however are useful for discussion of the electronic structure.
For example, the magnetic shielding in the centre of aromatic rings gives informa-
tion on the induced current density and thus on the aromaticity of the molecule in
question [4, 5] (see also Chapter 24 by Heine et al.).

To evaluate the current density~jj ~rrð Þ we have to perform, in principle, a Hartree–
Fock or density functional calculation in the presence of the external magnetic field
~BBext. If ĤH 0ð Þ is the molecular Hamiltonian in the absence of magnetic fields, the
field-dependent Hamiltonian is obtained if we replace the operator for the linear
momentum, ~pp, by ~ppþ~AAextwhere ~AAext is the vector potential describing the external
magnetic field. One can always choose vector potentials which are divergence free,
thus we have

div~AAext ¼ ~rr~AAext ¼ 0;�curl~AAext ¼ ~rr�~AAext ¼ ~BBext (6.4)

and after a little algebra one obtains

ĤH ¼ ĤH
0ð Þ þ~AAext~ppþ

1
2
~AA

2
ext (6.5)

Unfortunately, there are still many choices for ~AAext for a given magnetic field. One
possible class of such choices is

~AAext ¼
1
2
~BBext � ~rr �~RR

� �
(6.6)

but there are many others. In Eq. (6.6), ~RR is the so-called gauge origin which can be
chosen arbitrarily. Inserting Eq. (6.6) into Eq. (6.5) finally gives the magnetic-field
dependent Hamiltonian
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6.1 Introduction

ĤH ~BBext ;~RR
� �

¼ ĤH 0ð Þ þ 1
2

~rr �~RR
� �

�~pp
� �

~BBext þ
1
8
~BBext � ~rr �~RR

� �� �2
(6.7)

which depends not only on the magnetic field but also on the choice of the gauge
origin ~RR. The current density can be computed from the wave function which is a
single Slater determinant in the Hartree–Fock approach. In the density functional
case, the wave function of the non-interacting Kohn–Sham reference system is also
a Slater determinant which makes the density functional computational procedure
very similar to the Hartree–Fock case although the computed objects have a differ-
ent meaning. We only consider closed-shell systems described by a single 2n-elec-
tron Slater determinant W built from n doubly occupied orbitals jk. Note that this
closed-shell structure is not destroyed by (weak) magnetic fields. The (charge) cur-
rent density is then given by

~jj ¼ i
Xn

k¼1

j
�
k
~rrj

k
� ~rrj�

k

� �
j

k

n o
� 2~AAext

Xn

k¼1

j
�
k
j

k
(6.8)

Note that we have included the (negative) unit charge of the electron in the defini-
tion of the current density and that the occupation number (2.0) of the occupied
orbitals is included in Eq. (6.8) and all that follows. Although ~AAext depends on the
choice of the gauge origin,~jj ~rrð Þ (and any other quantum mechanical observable)
does not, at least if the Hartree–Fock (or Kohn–Sham) equations are solved exactly.
To verify this, we note that Hamiltonians ĤH ~BBext;~RR

� �
from Eq. (6.7) for different

choices of ~RR are related by a gauge transformation

~AAext 7!~AAext � ~rrK ~rrð Þ

K ~rrð Þ ¼ 1
2
~BBext �~RR

0
� �

~rr

ĤH ~BBext ;~RRþ~RR
0

� �
¼ exp iKð ÞĤH ~BBext ;~RR

� �
exp �iKð Þ

¼ ĤH ~BBext ;~RR
� �

� i ĤH ~BBext ;~RR
� �

;K
h i

� 1
2

ĤH ~BBext ;~RR
� �

;K
h i

;K
h i

(6.9)

Likewise, if jk
~BBext;~RR
� �

are the Hartree–Fock (or Kohn–Sham) orbitals for the
Hamiltonian ĤH ~BBext;~RR

� �
, the orbitals for the Hamiltonian with shifted gauge origin

are given by

j
k
~BBext ;~RRþ~RR

0
� �

¼ exp iKð Þj
k
~BBext ;~RR
� �

(6.10)

It is left as an (instructive) exercise to show that the current density, Eq. (6.8) is the
same for both gauge origins. Note however that unless ~BBext ¼ 0, the orbitals them-
selves depend strongly on the chosen gauge origin.
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6.2
Linear Response and the Gauge Origin Problem

For magnetic field strengths available in the experimental set-up (up to about 20 T),
the induced current density in closed-shell molecules is, to a good approximation,
linear in the strength of the field, and terms of second and higher order in the mag-
netic field strength are rather small. In this regime, the magnetic shielding constant
is independent of the strength of the external field. It is therefore well justified to
perform calculations in the limit ~BBext ! 0. Therefore we can use static linear
response theory (perturbation theory) to evaluate the induced current density. We
thus expand the one-particle Hamiltonian and the Hartree–Fock (or Kohn–Sham)
orbitals as

ĥh ¼ ĥh
0ð Þ þ iĥh

1ð Þ þO B
2
ext

� �

j
k
¼ j

0ð Þ
k
þ ij

1ð Þ
k
þO B

2
ext

� �
(6.11)

where j 0ð Þ
k are the Hartree–Fock orbitals in the absence of external magnetic fields,

and ij 1ð Þ
k the first-order response of the orbitals when switching on the magnetic

field. The orthonormality condition for the field-dependent orbitals yields the condi-
tion

j
0ð Þ

k

��� j 1ð Þ
l

D E
� j

1ð Þ
k

��� j 0ð Þ
l

D E
¼ 0 (6.12)

For closed-shell systems, the j 0ð Þ
k can always be chosen real, and it will become clear

later that, in this case, the first-order change of the orbitals is purely imaginary such
that the j 1ð Þ

k are real as well. The (real) current density vanishes if there is no exter-
nal magnetic field,

~jj ¼~jj 1ð Þ þO B
2
ext

� �
(6.13)

its linear response to the magnetic field is

~jj
1ð Þ ¼ 2

Xn

k¼1

j
1ð Þ

k
~rrj 0ð Þ

k
� j

0ð Þ
k
~rrj 1ð Þ

k

n o
� 2~AAext

Xn

k¼1

j
0ð Þ

k
j

0ð Þ
k

(6.14)

and consists of two terms: the first term, called the paramagnetic part of the current
density, involves the linear response of the orbitals, while the second term, the dia-
magnetic part, can be evaluated without knowing j 1ð Þ

k . This separation is not
unique: under a gauge transformation (Eqs. (6.9) and (6.10)), the first-order orbitals
and the paramagnetic and diamagnetic parts of the first-order current density
change as
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j
1ð Þ

k
7!j

1ð Þ
k
þKj

0ð Þ
k

~jj
1ð Þ

para 7!~jj 1ð Þ
para � 2 ~rrK

Pn

k¼1

j
0ð Þ

k
j

0ð Þ
k

~jj
1ð Þ

dia 7!~jj
1ð Þ

dia þ 2 ~rrK
Pn

k¼1

j
0ð Þ

k
j

0ð Þ
k

(6.15)

while, of course, the sum of the paramagnetic and diamagnetic parts does not
depend on the gauge origin if the Hartree–Fock equations are solved exactly. Note
that both terms get very large in absolute value if the gauge origin is far away from
the system.

This situation changes if the orbitals are expanded in a finite basis set. It may
happen that j 1ð Þ

k can reasonably be expanded in the given basis set for specific
choices of the gauge origin while other choices only allow a poor representation of
j 1ð Þ

k . For a closed-shell atom for example, the j 1ð Þ
k vanish for symmetry reasons if

the gauge origin is located at the position of the nucleus. Therefore~jj 1ð Þ and the mag-
netic shielding at the nuclear position is easily calculated

~jj
1ð Þ
~rrð Þ ¼ �2~AAext

Xn

k¼1

j
0ð Þ

k
j

0ð Þ
k
¼ � ~BBext �~rr

� �Xn

k¼1
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and we see that the nuclear shielding tensor r is diagonal (~BBind is antiparallel to ~BBext

at the position of the nucleus), the diagonal value being 1/3c2 times the expectation
value of r�1 (this result was first obtained by Lamb [1]). If the gauge origin is now
shifted to ~RR, the first-order orbitals become, according to Eq. (6.14)

j
1ð Þ

k
¼ Kj

0ð Þ
k
¼ 1

2
~BBext �~RR
� �

~rrj
0ð Þ

k
(6.17)

The heart of the gauge origin problem is that the j 1ð Þ
k cannot be expanded in basis

sets conventionally used for atomic and molecular calculations. For example, if j 0ð Þ
k

is a 2p orbital of a neon atom, then j 1ð Þ
k requires a set of d functions which is as

large as the p set (“fully polarised” basis sets). In practice, a calculation on a small
molecule like methane requires several polarisation functions on each atom, and
even then a non-negligible gauge dependence remains. In Table 6.1, the isotropic
shielding constants (mean value of the diagonal elements of the r tensor) at the
position of a hydrogen nucleus in the methane molecule are given. Three different
gauge origins were used: at the position of the carbon nucleus, at the position of the
hydrogen nucleus whose shielding is calculated, and at the position of one of the
other three hydrogen atoms.

Four different basis sets were used: first, an unpolarised triple zeta basis set (TZ)
from Ref. [6], the same basis set augmented by three sets of polarisation functions
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(TZ +3P), the TZ+3P basis set but further decontracting the p functions on carbon
from 411 to 21111 (TZ-dec +3P), and an extended uncontracted basis set
(19s19p19d4f for carbon, 10s10p4d for hydrogen) in which the s, p, and d basis func-
tions for carbon and the s and p basis functions for hydrogen have the same (even-
tempered) exponents. The extended basis set is close to “full polarisation“, which
means that ~rr j 0ð Þ

k can decently be expanded in the basis sets for all occupied Har-
tree–Fock orbitals. From the data in Table 6.1 we can deduce how basis sets must be
constructed to allow a decent approximation of the first-order orbitals in a magnetic
field: First, all atoms should have polarisation functions. Furthermore, further
decontraction of the 2p orbital reduced the gauge dependence significantly because
this allows for a better polarisation of the s orbitals. But even for the TZ-dec+3P
basis set, the gauge dependence of the hydrogen shift is much too large, given that
the experimental hydrogen shielding scale has a width of about 10 ppm. For larger
molecules with more than a few non-hydrogen atoms it is virtually impossible to
obtain a result close to the basis set limit with any choice of the gauge origin. The
practical problem is not the fact that the results depend on the choice of the gauge
origin, but that there is no choice for the gauge origin which gives reasonably con-
verged results with basis sets that can routinely be used.

6.3
Determination of the First-Order Orbitals

Before we address the problem of how to circumvent the gauge origin problem, let
us recall how the first-order orbitals j 1ð Þ

k are determined. In a basis set Hartree–Fock
or density functional calculation, there are, besides the occupied orbitals jk, also the
unoccupied orbitals ja. We will use the indices k, l, m for occupied and a, b, c for
unoccupied (virtual) orbitals. The combined set of occupied and unoccupied orbitals
form an orthonormal basis of the linear hull of the basis functions. The number of
unoccupied orbitals, Nvirt, is of course the difference between the basis set size Nbas

and the number of occupied orbitals. For practical reasons, we will expand both
occupied and virtual j 1ð Þ

p in the orbitals of the field-free calculation:

6 Chemical Shifts with Hartree–Fock and Density Functional Methods90

Table 6.1 Isotropic hydrogen magnetic shielding constants for methane. a)

Basis Set Common Gauge Origin at
C atom same H other H

IGLO GIAO

TZ 28.58 62.01 17.43 32.48 32.57
TZ +3P 30.97 41.22 27.56 31.29 31.35
TZ-dec +3P 30.98 32.07 30.62 31.20 31.34
Extended 31.23 31.26 31.22 31.24 31.25

a) Absolute magnetic shielding constants in ppm. Hartee–Fock calcu-
lations with a common gauge origin and with the IGLO and GIAO
variants of distributed gauge origins. See text for a description of
the basis sets.
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The requirement that the field-dependent orbitals are orthogonal for all values of the
magnetic field strength gives the additional constraint Ypq ¼ Yqp. This implies that
only Ypq with one index referring to occupied and the other to virtual orbitals contri-
butes to the first-order current, so only these need be computed.

The stationarity condition for the Hartree–Fock energy requires that matrix ele-
ments of the Fock operator between occupied and unoccupied orbitals vanish:
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Here we have used the Mulliken notation for the two-electron integrals, and ĥh is the
one-particle Hamiltonian. In the Kohn–Sham density functional method, the “Fock”
matrix elements look similar, the last term being replaced by the matrix elements of
the exchange-correlation potential. The first-order orbitals j 1ð Þ

k are determined from
the condition that the first-order change of all the Fak vanishes, that is, the stationar-
ity condition is required to hold for all values of the magnetic field strength. For the
first-order (in the magnetic field strength) change of the Fock matrix elements one
gets after some algebra
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with the magnetic Hessian
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The equation to determine the Yak , which reads F 1ð Þ
ak ¼ 0, is thus
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with the first-order Hamiltonian iĥh 1ð Þ

ĥh
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1
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In the Hartree–Fock case, the linear system Eq. (6.22) is called the coupled Hartree–-
Fock equation, first used for the determination of magnetic shielding constants in
Ref. [7]. The name alludes to the fact that Eq. (6.22) has to be solved iteratively for
larger systems. An obvious simplification arises for the Hessian if the orbitals are
canonical, i.e. if the Fock matrix is diagonal. This also speeds up the convergence of
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the iterative solution of Eq. (6.22) since the Hessian is more diagonal dominant in
this case. In density functional calculations, again the last two terms of the Hessian
vanish, which makes the solution of the linear system trivial for canonical orbitals.
In this case, one obtains the coefficients of the first-order orbitals and the first-order
current density as

Yak ¼ �
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a

� �� ĥh 1ð Þ j 0ð Þ
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This is why, in the density functional case, Eq. (6.24) is sometimes called the
uncoupled DFT equation. Equations (6.24) and (6.25) are also called a sum-over-states
(SOS) formula. In many chemical shift calculations based on density functional the-
ory, one goes beyond uncoupled DFT. This can be done by including current-depen-
dent terms in the exchange-correlation energy (which is discussed in Section 6.6) or
by using so-called hybrid functionals that include “exact exchange” expressions.

Hybrid functionals such as B3LYP are very popular nowadays. Here the
exchange-correlation energy is a functional of the electron density (as in the density
functional case) augmented by the Hartree–Fock expression for the exchange energy
scaled down to (typically) 20%. The calculation of chemical shifts with such func-
tionals proceeds exactly as in the Hartree–Fock case but with the last two terms of
Eq. (6.21) scaled down accordingly.

6.4
Distributed Gauge Origins, IGLO and GIAO Approaches

Because of the problems associated with a common gauge origin for a large mole-
cule, all practical methods for the calculation of chemical shifts introduce the con-
cept of distributed gauge origins which spread over the molecule. To illustrate this
concept, we consider an ensemble of closed-shell atoms well apart (such that their
densities do not overlap). We choose ~RR ¼ 0 as the gauge origin. The current density
in the vicinity of atom A at position ~RRA is not affected by the presence of the other
atoms and reads, according to Eq. (6.16)
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k
j

0ð Þ
k (in the vicinity of atom A) (6.26)

If the orbitals j 0ð Þ
k are chosen localised on the atoms, and if we let ~RRk be the charge

centre of orbital j 0ð Þ
k , then for the orbitals localised on atom A, ~RRk � ~RRA and we get
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Note that while Eq. (6.26) only holds in the vicinity of atom A, Eq. (6.27) is valid
everywhere. We have thus expressed the first-order current as a sum of local diamag-
netic orbital contributions, in which we have assigned individual gauge origins ~RRk to
the localised orbitals j 0ð Þ

k (first line of Eq. (6.27)). Since the last term of the second
line of Eq. (6.27) is identified as the diamagnetic part (for gauge origin ~RR ¼ 0) of the
first-order current, we have (an approximation to) the paramagnetic current and
thus to the first-order orbitals (for that gauge origin)
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The nature of the physical system thus gives us some information on the first-order
orbitals, and this information should of course be exploited in our calculations. We
can thus, for any molecular system, use the ansatz
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in which the first-order orbital is written as a sum of the gauge term and the yet
unknown “rest” ~uu 1ð Þ

k ~rrð Þ which has to be expanded in the basis set. If the orbitals are
localised with charge centre ~RRk and the gauge factors Kk chosen according to
Eq. (6.28), we can expect that the “rest” ~jj 1ð Þ

k is much smaller than the full first-order
orbital j 1ð Þ

k , which leads to reduced errors if it is expanded in the finite basis set. In
other words, the gauge term �Kkj

0ð Þ
k contains most of that part of j 1ð Þ

k which can-
not be expanded in the basis set. Using Eq. (6.29), the first-order current and the
induced magnetic field at position~ss read
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and again involve local diamagnetic contributions (from the localised orbitals with
their individual gauge origins).

The use of localised orbitals has some disadvantages: the coupled Hartree–Fock
equations converge faster if the magnetic Hessian is expressed in terms of canonical
orbitals (see Section 6.3), and in the density functional case, the sum-over-states for-
mula Eqs. (6.24) and (6.25)) can only be used with canonical orbitals. While the orig-
inal formulation of the IGLO method [8, 9] works as described above, modern imple-
mentations of IGLO [10] transform everything back to canonical orbitals once the
ansatz Eq. (6.29) has been made: First one localises the orbitals, that is, one calcu-
lates the transformation matrix U from the canonical orbitals j 0ð Þ

k to the localised
orbitals j L;0ð Þ

k :

j
L;0ð Þ
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Since the localised orbitals also form an orthonormal set, the matrix U is orthogonal.
Next one applies the ansatz Eq. (6.29) to the expansion of the canonical orbitals in
terms of localised orbitals:
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If one calculates~jj 1ð Þ from these first-order orbitals one gets
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which is equivalent to Eq. (6.30) in the sense that the diamagnetic part is given as a
sum of local contributions. Note that the final results obtained in the two variants of
IGLO do not differ.

The IGLO concept has been used in conjunction with the Hartree–Fock [8] and
multi-configuration Hartree–Fock [9] methods and within density functional calcula-
tions of magnetic shielding constants [11–15]. It was the first solution to the gauge
origin problem which produced a large body of accurate computational data and has
therefore been a milestone in the quantum chemical computation of magnetic
shielding constants. However there are also some disadvantages which stem from
the necessity to use (at least in an intermediate way) localised orbitals:

1. Orbital localisation is not always uniquely defined. This means that for a
given basis set and molecular geometry, the magnetic shielding constants
also depend on the particular choice of localised orbitals.

2. If the charge centres of the localised orbitals have a lower symmetry than the
molecular framework itself, then different magnetic shielding constants may
be obtained at symmetry-equivalent positions. In a linear molecule like HCl
for example, the localisation of the L shell yields four sp3 hybrids, and the two
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components of the shielding tensors perpendicular to the molecular axis
need not be the same. Likewise, the localised orbitals of the cyclopentadienyl
anion will not reflect the fivefold symmetry and different magnetic shielding
constants are computed for the five carbon atoms.

3. Not all computational methods allow for orbital localisation. Localised orbit-
als for multi-configuration Hartree–Fock wave functions can only be con-
structed in the CASSCF case, and even then a full-valence CAS is required in
most cases to get reasonably localised orbitals.

These problems are absent if one introduces the distributed gauge origins at the
level of basis functions (instead of molecular orbitals). This leads to the GIAO
(gauge including atomic orbitals) method, first used within the coupled Hartree–
Fock scheme by Ditchfield [17]. The GIAO approach only works with localised,
atom-centred basis functions but apart from this requirement, GIAO can be com-
bined with wave functions of any type. To understand how GIAO works we again
start from Eq. (6.28) but expand the orbitals into Nbas basis functions vl:
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In complete analogy to Eqs. (6.29) and (6.33) one makes the GIAO ansatz
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with ~RRl being the centre of the basis function vl, that is the position of the nucleus
which carries that particular basis function. A comparison of Eqs. (6.33) and (6.36)
reveals the formal analogy between IGLO and GIAO. In the GIAO ansatz Eq. (6.36)
the first-order current density becomes
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Similar to the IGLO case, we have a local diamagnetic contribution with individual
gauge origins for basis functions (third term), a paramagnetic contribution which is
calculated from the ~jj 1ð Þ

k (first term) and an additional term which vanishes in our
example of well-separated closed-shell atoms (two basis functions either share the
same centre or they do not overlap). This second term is absent in the IGLO variant
because of the orthogonality of the localised molecular orbitals. Early applications of
the GIAO concept were hampered by the fact that the calculation of the two-electron
integrals involving the gauge term was very slow. It was the main advantage of the
IGLO method that such integrals could be avoided [8]. It was only much later that
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GIAO became more popular than IGLO, when modern techniques were used to
evaluate the integrals [18].

It is beyond the scope of this chapter to derive the working equations for the
GIAO and IGLO methods, and to explain the additional approximations involved in
existing implementations of IGLO. Both methods are rather successful, as can be
seen from Table 6.1: the magnetic shielding constants obtained both with IGLO and
GIAO converge spectacularly faster to the basis set limit than calculations based on
a common gauge origin, no matter where it is. As a rule of thumb, basis sets of
triple to quadruple zeta quality with two to three sets of polarisation functions give
results close to the basis set limit.

6.5
Distributed Gauge Origins in Real Space, a “Continuous Set of Gauge Transformations”

While most chemical shift calculations today are based either on the IGLO or GIAO
concept of distributed gauge origins, another method has been proposed which
works quite differently: Eq. (6.2) shows that the induced magnetic field can be com-
puted as a three-dimensional integral involving the current density. Let us assume
we would evaluate this integral by numerical quadrature. Then we would compute
the current density at a large set of grid points and then perform the integration. It
is perfectly legitimate to restart the computation of~jj 1 ~rrð Þ at each grid point, using a
gauge origin which is most appropriate for computing~jj 1 ~rrð Þ at that specific location.
Although this is not a gauge transformation in a mathematical sense, this procedure
has been termed “continuous set of gauge transformations” (CSGT) [19]. Formally
one might consider the computed first-order current as a function of two variables:
the position~rr in space where the current is computed and the location ~RR ~rrð Þ of the
gauge origin, which might depend on~rr. At first glance it seems highly inefficient to
compute the first-order orbitals at thousands of grid points, each time using a differ-
ent gauge origin. However, since the j 1ð Þ

k are determined from a set of linear equa-
tions, one only needs to solve two sets of coupled Hartree–Fock equations from
which the first-order orbitals are easily computed for any gauge origin [19]. First
applications used the choice ~RR ~rrð Þ ¼~rr. In this case, the diamagnetic part of the first-
order current formally vanishes. In the original work, the integrals involving~jj 1 ~rrð Þ
were evaluated by numerical quadrature, but it was shown later that in the case
~RR ~rrð Þ ¼~rr the integrals can be done analytically [20] and that the working equations
are equivalent to a method proposed earlier by Geertsen [21] within a propagator
formalism. It is generally a good idea to keep the diamagnetic contributions small,
since then the more difficult paramagnetic contributions will also be small in abso-
lute value. However ~RR ~rrð Þ ¼~rr is not the optimal choice. This has been deduced from
numerical results in Ref. [19] and also follows from a theoretical analysis in Ref.
[22]. It can clearly be understood that, from the picture of the gauge origin problem
laid out in Section 6.2, in the case of separated closed-shell atoms, the best choice
for ~RR ~rrð Þ is the position of the nearest nucleus. Such a shift of the gauge origin has
been used together with the CSGT method [19, 23] and is similar to what had been
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termed “individual gauge for atoms in molecules” (IGAIM) [24]. From the data pre-
sented in Ref. [23] a reasonable convergence towards the basis set limit can be con-
cluded, similar to (but not outperforming) the GIAO method. It has also been sug-
gested to determine ~RR ~rrð Þ such that the paramagnetic part of~jj 1 ~rrð Þ (at least the com-
ponents perpendicular to the external magnetic field) vanish [25]. Although this
looks attractive since the paramagnetic terms are the “difficult” ones, the results
were not convincing.

6.6
Beyond Pure Density Functional Theory

In the density functional framework, the density, and thus the exchange-correlation
energy, is not changed through first order in the magnetic field strength. On the
one hand, this fundamental difference to the Hartree–Fock case leads to a very sim-
ple computational procedure for the calculation of the first-order current, namely
the sum-over-states formula Eqs. (6.24) and (6.25). On the other hand, it looks phys-
ically incorrect that there is no first-order change of the exchange-correlation poten-
tial although this follows, in the last analysis, from the Hohenberg–Kohn theorem.
This theorem has been formulated for an electronic system in an arbitrary external
potential but does not consider magnetic fields. In this case, the density as the basic
variable is not enough, there must be an additional variable that depends on the
current density. Such a (non-relativistic) current density functional theory has been
formulated by Vignale and Rasolt [26–28]. The problem is that, in contrast to the
relativistic case, the wave function does not determine the current density, which
also depends on the external vector potential through its diamagnetic part. The para-
magnetic part alone is not gauge invariant, but a gauge invariant variable ~mm can be
obtained by defining

~mm ¼ �i
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k

r
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A local (in r and ~mm) exchange-correlation functional has been proposed in Refs. [26,
28]. Equations using such a functional in IGLO and GIAO chemical shift calcula-
tions have been given in Ref. [29], and the first implementation (using the GIAO
framework) has been reported in Ref. [30]. The outcome was rather disappointing.
Table 6.2 reports results of density functional calculations of the magnetic shielding
at the fluorine nucleus in the F2 molecule. This molecule is a hard test case: the
HOMO–LUMO (p and r�) energy difference is rather small at the density functional
level, and this is mainly responsible for the overestimation of the paramagnetic con-
tributions to the shielding [31] in (uncoupled) density functional calculations.
Including current-dependent terms in the exchange-correlation functional does not
cure this situation: in fact, including current-dependent terms has less effect than
changes in the basis set or using different exchange-correlation functionals.
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Malkin, Malkina and Salahub have developed a quite different strategy to improve
upon uncoupled density functional calculations: based on a comparison of the Har-
tree–Fock and density functional equations, they introduced additional terms in the
molecular Hessian which resulted in a rather complicated numerical scheme
(“coupled DFT IGLO“). However, as can be seen from Table 6.2, in problematic
cases like the fluorine molecule, the results were greatly improved. Since this meth-
od is much more expensive than uncoupled DFT, and since it is not invariant
against orbital rotations within the occupied space, it was soon replaced by the so-
called “sum over states” (SOS) density functional method. Here one starts from
Eq. (6.24) but introduces corrections to the “energy denominators” F 0ð Þ

aa � F 0ð Þ
kk , that

is, one replaces

F
0ð Þ

aa � F
0ð Þ

kk ! F
0ð Þ

aa � F
0ð Þ

kk þ Dak (6.39)

where the motivation for the correction again comes from a comparison with the
Hartree–Fock case. The resulting procedure is computationally as inexpensive as
uncoupled DFT, but improves the results substantially (see Tab. 6.2). This method
has been applied in numerous cases and has been shown to be rather useful. Note
that the substitution Eq. (6.39) destroys the gauge invariance of the first-order cur-
rent [29], but this is more a theoretical than a practical drawback [32, 33].

Using hybrid exchange-correlation functionals including “exact exchange” (such
as the popular B3LYP functional) one implicitly includes current-dependent terms
in the exchange energy. For typical molecules containing only main-group elements,
B3LYP chemical shifts are not consistently better than results obtained from pure
density functionals [14, 23, 34]. For example, the B3LYP result for F2 (see Tab. 6.2) is
no improvement over the results from pure density functionals. Other hybrid func-
tionals have been tested with about the same success [35]. Note that for chemical
shifts of most transition metal atoms, the situation seems to be quite different and
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Table 6.2 Density functional results for the (absolute) magnetic shielding in F2.

Method Exchange-Correlation functional
LDA BP PW91 BLYP B3LYP

Uncoupled DFT GIAO –283 a)

–308 f)

–284 f) –272 a)

CDFT GIAO –293 a) –281 a)

SIC DFT GIAO –278 f)

Uncoupled DFT IGLO –272 b) –251 b) –245 d)

Coupled DFT IGLO –216 c) –198 c)

SOS DFT IGLO –203 d)

Hybrid DFT LORG –252 e)

WAH-DFT LORG –186 e)

a) Ref. [30], b) Ref. [11], c) Ref. [12], d) Ref. [13], e) Ref. [38],
f) Ref. [39], calculated at DFT-optimised geometry. The experimental
re-value is –193 ppm [16].



B3LYP is a substantial improvement over pure density functional methods [36, 37],
see also Chapter 26 by B�hl on transition metal compounds.

While the Malkin correction addresses the energy denominators in the sum-over-
states formula Eq. (6.24), Wilson et al. (WAH) have argued that it is also the shape
of the Kohn–Sham orbitals that need to be improved. They suggested a procedure in
which the occupied and virtual orbitals j 0ð Þ

k ;�j 0ð Þ
a and orbital energies F 0ð Þ

aa ;�F 0ð Þ
kk

are obtained from a hybrid functional density functional calculation and then
plugged into the sum-over-states formula Eq. (6.24). The amount of exact exchange
had to be reduced from 0.20 to 0.05 in the B3LYP functional, and the final results
depend critically on this parameter. This procedure also yields greatly improved
magnetic shielding constants, but shares with Malkin�s method that it breaks gauge
invariance [14]. The major deficiency in the exchange-correlation potential comes
from the improper cancellation of self-interaction in the Coulomb and exchange en-
ergy. Therefore a self-interaction-corrected (SIC) version of density functional theory
has also been tested in magnetic shielding calculations [39, 40]. The method is
somewhat problematic since the energy and all properties derived from it depend
on the particular choice of the occupied orbitals. For the fluorine molecule (see
Tab. 6.2) at least, no improvement can be observed. Note that the magnetic shielding
constants from Ref. [39] have been obtained at the equilibrium distance at density
functional level and will be about 30 ppm larger (i.e., smaller in absolute value) if
one repeats the calculation at the experimental equilibrium distance.

Originally it was believed that the neglect of the current-dependent contributions
to the exchange-correlation energy is the reason for the unsatisfactory results from
uncoupled density functional calculations. But now it is generally accepted that a
pure density functional should be able to give accurate magnetic shielding con-
stants, provided that it is tailored to the calculation of magnetic properties [34, 38].

6.7
Conclusions

The most important ingredient in a Hartree-Fock or density functional calculation
of magnetic shielding constants is the introduction of distributed gauge origins. In
contrast to the success of density functional theory for the calculation of molecular
structures and energetics, it does not provide a systematic improvement over Har-
tree–Fock for the calculation of magnetic shielding. “Emperical” corrections like the
recipe of Malkin et al. or the suggestion of Wilson et al. dramatically improve the
density functional results although they break gauge invariance, which is a funda-
mental property of the theory. It seems that we will still have to wait some time for a
rigorous density functional method which gives good magnetic shielding constants.
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7.1
Introduction

Nuclear magnetic resonance (NMR) spectroscopy constitutes an extremely useful
tool for the determination of molecular electronic structure and molecular confor-
mation. Apart from the shielding constants, the indirect nuclear spin–spin coupling
constants represent the most important source of structural information of high-res-
olution NMR. First, the magnitude of the indirect spin–spin coupling constants
depends on the electron distribution between the coupled nuclei, providing valuable
information on chemical bonding. Second, since the indirect spin–spin coupling
constants are highly sensitive to the molecular geometry, they are extensively used
in conformational studies [1–5]. In both cases, quantum-chemical calculations of in-
direct spin–spin constants can play an important role in the interpretation of the
measured coupling constants in terms of the electronic and geometric
structure [6,7].

Nowadays, the need for inexpensive computational techniques capable of reliably
predicting spin–spin coupling constants stems from arguably the most important
application area of high-resolution NMR spectroscopy: the elucidation of the native
structures of biopolymers, in which the indirect spin–spin coupling constants play a
crucial role. Vicinal (three-bond) coupling constants, in particular, have for a long
time been used to determine dihedral angles [1,2]. One-bond coupling constants
(especially those of carbon and nitrogen), geminal (two-bond) coupling constants,
and even long-range proton–proton coupling constants have also found widespread
use in molecular-structure elucidations [4,5,8–10]. Very recently, the discovery of
coupling constants transmitted through hydrogen bonds has made the spin–spin
couplings even more useful for the determination of the high-order structures of
biopolymers [11–17].

Realistic models of biomolecules are necessarily of substantial size, thus the need
for fast-scaling computational methods for spin–spin coupling constant calculations
by means of ab initio theory. Unfortunately, the accurate calculation of indirect
nuclear spin–spin coupling constants has proved to be significantly more difficult
than that of the other NMR parameters, such as the nuclear magnetic shielding con-
stants and the nuclear quadrupole coupling constants. First, in nonrelativistic the-
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7 Spin–Spin Coupling Constants with HF and DFT Methods

ory, there are several distinct mechanisms contributing to the spin–spin coupling
constants [18]: the diamagnetic spin–orbit (DSO) term, the paramagnetic spin–orbit
(PSO) term, the spin–dipole (SD) term, and the Fermi-contact (FC) term. Although,
in most cases, the FC term dominates the isotropic coupling, none of the contribu-
tions can be a priori neglected, increasing the programming and computational
efforts. Next, the FC and SD terms involve triplet perturbations, requiring a flexible
description of the molecular electronic structure. Finally, for an accurate calculation
of the FC contribution, it is necessary to provide a good description of the electron
density at the nuclei, something which is difficult to achieve by means of Gaussian
orbitals, which are used in most ab initio calculations. Clearly, therefore, the routine
calculation of indirect nuclear spin–spin coupling constants for large systems such
as biomolecules presents a formidable challenge for computational chemistry. Al-
though the spin–spin coupling constants of small molecular systems can be calcu-
lated by a number of methods, including high-level coupled-cluster theory with the
inclusion of connected triple excitations [19], the only methods currently capable of
routinely treating systems containing more than 10 to 20 atoms are those provided
by density-functional theory (DFT).

The present chapter is intended as an introduction to the calculation of indirect
nuclear spin–spin coupling constants by means of self-consistent field (SCF) the-
ories, that is, by Hartree–Fock theory and, in particular, by Kohn–Sham DFT. First,
in Section 7.2, we provide some theoretical background for the calculation of spin–
spin coupling constants; next, in Section 7.3, we briefly review the application of
DFT to the calculation of these constants.

7.2
The Calculation of Indirect Nuclear Spin–Spin Coupling Constants

The elements of the reduced indirect nuclear spin–spin coupling tensor KKL of
nuclei K and L can be identified as the mixed second derivatives of the total electron-
ic energy E (M1, M2, . . .) of the molecular system with respect to the magnetic
moments MK and ML of nuclei K and L:

KKL ¼
d2 E M1 ;M2 ;���ð Þ

dMK dML

�����
MK¼ML¼���¼0

; (7.1)

where we have ignored the direct (through-space) contribution to the coupling ten-
sor DKL, which arises from purely nuclear–nuclear interactions and does not con-
tribute to the electronic energy E (M1, M2, . . .). Usually, the indirect nuclear spin–
spin interactions are expressed not in terms of the reduced coupling tensor KKL of
Eq. (7.1) but rather in terms of the indirect nuclear spin–spin coupling tensor

JKL ¼ h
c

K

2p

c
L

2p
KKL ; (7.2)
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7.2 The Calculation of Indirect Nuclear Spin–Spin Coupling Constants

where cK and cL are the magnetogyric ratios of the two nuclei. For freely tumbling
molecules in the gas or liquid phases such as those observed in high-resolution
NMR, only the isotropic part of the indirect coupling tensor is observed:

JKL ¼
1
3
Tr JKL : (7.3)

Since DKL is traceless, there is no direct contribution to the coupling in such cases.

7.2.1
Ramsey’s Nonrelativistic Theory of Nuclear Spin–Spin Coupling Constants

Since the nuclear spin–spin coupling tensors may be expressed as second deriva-
tives of the electronic energy, they may be calculated using standard second-order
response theory, within a relativistic or nonrelativistic framework. In the nonrelati-
vistic closed-shell case, treated here, it is instructive to consider the equivalent sum-
over-states expression of second-order perturbation theory, first presented by Ram-
sey in 1953 [18]:

KKL ¼ 0 h
DSO
KL

���
���0

D E
� 2

X

nS 6¼0

0 h
PSO
K

���
���nS

D E
nS ðh

PSO
L ÞT

���
���0

D E

EnS
� E0

�2
X

nT

0 h
FC
K þ h

SD
K

���
���nT

D E
nT ðh

FC
L Þ

T þ ðhSD
L Þ

T
���

���0
D E

EnT
� E0 :

(7.4)

We have here introduced the diamagnetic spin–orbit (DSO), paramagnetic spin–
orbit (PSO), Fermi-contact (FC), and spin–dipole (SD) operators (in atomic units)

h
DSO
KL ¼ a

4 X

i

r
T
iK riL I3 � riK r

T
iL

r
3
iK r

3
iL

; ð7:5Þ

h
PSO
K ¼ �ia

2 X

i

riK �ri

r
3
iK

; ð7:6Þ

h
FC
K ¼ 8pa

2

3

X

i

dðriK Þsi ; ð7:7Þ

h
SD
K ¼ a

2 X

i

3r
T
iK si riK � r

2
iK si

r
5
iK

; ð7:8Þ

where a » 1/137 is the fine-structure constant, riK is the position of electron i relative
to nucleus K, I3 is the three-by-three unit matrix, d(riK) is the Dirac delta function,
and si is the spin of electron i. In the reduced coupling tensor Eq. (7.4), the first
summation is over all excited singlet states nSj i with energy EnS and the second
summation is over all triplet states nTj i with energy EnT

; in the one-electron opera-
tors Eqs. (7.5)–(7.8), the summations are over all electrons. In all expressions, super-
script T denotes vector transposition.
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We first note that all four operators Eqs. (7.5)–(7.8) are local with respect to the
positions of the nuclei, making the spin–spin couplings small for large internuclear
separations. The FC operator, in particular, is extreme in this respect, since only the
electrons at the nuclei contribute to the coupling. Moreover, whereas the DSO and
PSO operators in Eqs. (7.5) and (7.6) are singlet operators, coupling the nuclear
magnetic moments to the orbital motion of the electrons, the FC and SD operators
in Eqs. (7.7) and (7.8) are triplet operators, coupling the nuclear moments to the
spin of the electrons. In nonrelativistic theory, therefore, there is a clear physical
distinction between, on the one hand, the orbital contribution to the indirect spin–
spin coupling tensor (mediated by the DSO and PSO operators) and, on the other
hand, the spin contributions (mediated by the FC and SD operators).

Among the different mechanisms contributing to the indirect spin–spin cou-
pling, by far the most important is the FC mechanism. Formally, its importance
stems from the large prefactor of 8p/3 in the FC operator Eq. (7.7), ensuring that
the pure FC and mixed FC–SD contributions to the spin–spin coupling tensor
usually dominate, in particular, for one-bond couplings. However, since the FC
operator is purely isotropic and the SD operator is purely anisotropic, there are no
mixed FC–SD contributions to isotropic coupling constants (as measured in isotro-
pic liquids and gases) and, likewise, no pure FC contributions to anisotropic cou-
pling constants (as measured in liquid crystals and solids). In short, whereas isotro-
pic coupling constants are typically dominated by the pure FC contribution, aniso-
tropic coupling constants are typically dominated by the mixed FC–SD contribution;
the remaining DSO, PSO, and pure SD contributions are usually less important, at
least for one-bond couplings. Nevertheless, none of the contributions can be a priori
neglected, since each may become important in special cases. In the HF molecule,
for example, the FC and PSO contributions are both large and of the same sign; a
substantial PSO contribution is also characteristic of fluorine couplings in other
molecules [20, 21]. The N2 molecule is also atypical in this respect: the PSO contri-
bution is about twice as large as the FC contribution, while the SD contribution is
about as large as the PSO contribution but of opposite sign.

We finally note that the indirect nuclear spin–spin coupling constants depend
sensitively on the molecular geometry, in particular, the FC contribution, which may
change dramatically with small changes in the geometry. For example, in some
cases, the usually dominant FC contribution may change sign or become very small
at certain geometries. Clearly, in calculations of the spin–spin couplings, the molec-
ular geometry must be chosen with great care. By the same token, the vibrational
corrections to the indirect spin–spin coupling constants may be very large (10% or
more). Therefore, for a meaningful comparison with experiment, these corrections
should be evaluated.

7.2.2
The Calculation of Indirect Spin–Spin Coupling Tensors by Response Theory

The paramagnetic contributions to the reduced spin–spin coupling tensor involve,
in Ramsey’s theory Eq. (7.4), the summation over a complete set of excited states. In
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practice, these states are inaccessible to us and the sum-over-states terms are calcu-
lated differently, using linear response theory. In this theory, the response of the
electronic system is obtained from the solution of a set of linear equations, one
equation for each independent perturbation. In the following, we give a brief sum-
mary of the calculation of indirect spin–spin coupling constants by response theory.
For a more general introduction to the application of response theory to the calcula-
tion of NMR parameters, in particular, to the calculation of nuclear shielding tensors
and indirect nuclear spin–spin coupling tensors, we refer to the recent review by
Helgaker, Jaszuński, and Ruud [6].

7.2.2.1 Parametrization of the One-Electron Density Matrix
In SCF theory, we work in terms of a determinantal wavefunction constructed from
a set of N orthonormal spin orbitals uI(x), where x denotes collectively the spatial
coordinates r and the spin coordinate s of the electron. In Hartree–Fock theory, this
wavefunction represents our approximation to the true N-electron ground-state
wavefunction; in Kohn–Sham theory, it corresponds to a noninteracting reference
state, whose electron density represents the true ground-state density of the system.

From the occupied spin orbitals, we may calculate the electron spin density of the
electronic system in the following manner:

rðxÞ ¼
X

I

u
�
I ðxÞuI ðxÞ: ð7:9Þ

As we perturb the system by introducing a set of nuclear magnetic moments, collec-
tively denoted by M, the corresponding determinantal wavefunction changes. The
resulting perturbed electron density may then be calculated as

rðx; kÞ ¼
X

PQ

DPQ ðkÞu
�
P ðxÞuQ ðxÞ; ð7:10Þ

where the summation is now over all pairs of spin orbitals (not just over those that
are occupied in the unperturbed system) and where the DPQ(k) are the elements of
the one-electron density matrix, parametrized in an exponential manner:

DðkÞ ¼ exp 0 � k
y

k 0

� �
IN 0
0 0

� �
exp 0 k

y
�k 0

� �
: ð7:11Þ

Here the dimension of the unit matrix IN is equal to the number of occupied spin
orbitals N, while the dimension of the rectangular matrix k is equal to V � N, where
V is the number of unoccupied spin orbitals. By freely choosing the real and imagi-
nary parts of k,

kAI ¼
R
kAI þ i

I
kAI ; (7.12)
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we can generate any valid spin density matrix D(k) and spin density r(x;k) from
Eq. (7.11) [22]. In the above and the following equations, we use the convention that
capital letters I and J denote occupied spin orbitals, A and B denote unoccupied spin
orbitals, while P, Q, R, and S are used for general (occupied or unoccupied) spin
orbitals.

To calculate molecular properties such as the indirect nuclear spin–spin coupling
constants, it is necessary to determine the first and second derivatives of the density
matrix with respect to the real and imaginary components of k. Expanding the den-
sity matrix Eq. (7.11) to second order in k and differentiating, we obtain

@DPQ

@
R
kAI

¼ dPA dQI þ dPI dQA ; ð7:13Þ

@DPQ

@
I
kAI

¼ i dPA dQI � dPI dQA

� �
; ð7:14Þ

@
2
DPQ

@
R=I

kAI@
R=I

kBJ

¼ dIJ dPA dQB þ dPBdQA

� �
� dAB dPI dQJ þ dPJ dQI

� �
; ð7:15Þ

@
2
DPQ

@
I
kAI@

R
kBJ

¼ i dIJ dPA dQB � dPB dQA

� �
þ i dAB dPI dQJ � dPJ dQI

� �
: ð7:16Þ

We note that these expressions are valid only at k= 0, which is sufficient for the cal-
culation of properties at M = 0.

7.2.2.2 The Electronic Energy
From k and hence D(k) and r(x; k), we can calculate all other properties in SCF
theory. In particular, to calculate the total electronic energy, we first introduce the
one- and two-electron integrals:

hPQ ðMÞ ¼ �
1
2

Z
u
�
PðxÞr

2
uQ ðxÞ dx�

X

K
ZK

Z
u
�
P ðxÞr

�1
K uQ ðxÞ dx

þ
X

K

M
T
K

Z
u
�
P ðxÞ h

PSO
K þ h

FC
K þ h

SD
K

� �
uQ ðxÞ dx

þ 1
2

X

KL

M
T
K

Z
u
�
P ðxÞh

DSO
KL uQ ðxÞ dx ML ; ð7:17Þ

gPQRS ¼
Z Z

u
�
P ðx1ÞuQ ðx1Þr

�1
12 u

�
Rðx2ÞuSðx2Þ dx1 dx2 : ð7:18Þ
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where the PSO, FC, and SD operators are given in Eqs. (7.5)–(7.8) (but with no sum-
mation over electrons), and where ZK and MK are, respectively, the charge and the
magnetic moment of nucleus K. From these integrals, we may calculate the Kohn–
Sham energy as

EðM;kÞ ¼
X

PQ

DPQ ðkÞhPQ ðMÞ þ 1
2

X

PQRS

DPQ ðkÞDRSðkÞgPQRS

� 1
2

c
X

PQRS

DPSðkÞDRQ ðkÞ gPQRS þ EXC

�
rðx;kÞ

�
þ hnuc ; ð7:19Þ

The exchange–correlation energy EXC [r(x;k)] is a functional of the electron spin den-
sity r(x;k). In the local-density approximation (LDA), EXC [r(x;k)] is local in the den-
sity; in the generalized gradient approximation (GGA), it is local in the density gra-
dient as well:

EXC ½rðx;kÞ� ¼
Z

f
�
rðx;kÞ; fðx;kÞ

	
dx; ð7:20Þ

where

fðx;kÞ ¼ rrðx;kÞ � rrðx;kÞ: (7.21)

In hybrid DFT, some proportion c of the exact exchange is added to the Kohn–Sham
energy; in pure DFT, c = 0. In Hartree–Fock theory, c = 1 and there is no contribu-
tion from the exchange–correlation functional EXC [r(x;k)] = 0.

For the optimized electronic state, the energy is stationary with respect to varia-
tions in the elements of k:

@E M;kð Þ
@kAI

¼ 0: (7.22)

Introducing the Kohn–Sham matrix

FPQ ¼ hPQþ
X

J

gPQJJ � cgPJJQ

� �
þ
Z

@f
@r

uP uQ þ 2
@f
@f
rr � ruP uQ

� �
dx ð7:23Þ

where we have assumed that the exchange–correlation functional is local in the den-
sity r(x) and in the gradient norm f(x), we may calculate these derivatives as

@EðM;kÞ
@kAI

¼ 2FAI : (7.24)

Thus, for a variationally optimized SCF state, the Kohn–Sham matrix is block diag-
onal FAI = 0. In canonical Kohn–Sham theory, the Kohn–Sham matrix is chosen to
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be diagonal at convergence, with diagonal elements corresponding to the orbital
energies

FPQ ¼ dPQ eP : (7.25)

In the following, we shall assume doubly occupied real canonical orbitals for the
unperturbed system.

7.2.2.3 Linear Response Theory
Let us now consider how the energy changes as we perturb the system by introduc-
ing a set of nuclear magnetic moments M. In SCF theory, we then assume that, for
all values of M, the electronic energy remains fully optimized with respect to k so
that the energy satisfies the stationary condition

@EðM;kÞ
@k

�����
k¼kopt

¼ 0 (7.26)

for all values of M. In this expression, kopt represents the optimized value of the
variational parameters. For M = 0, we have chosen kopt = 0; for M „ 0, it follows that
kopt „ 0. In the following, we tacitly assume that all derivatives are taken at M = 0
with k= 0 and suppress the arguments to E (M;k) for brevity.

Taking the total derivative of the optimized energy with respect to MK, using the
chain rule, and invoking the stationary condition Eq. (7.26), we obtain:

dE
dMK

¼ @E
@MK

þ @E
@k

@k
@MK

¼ @E
@MK

: (7.27)

Further differentiation with respect to ML and use of the chain rule give the follow-
ing expression for the reduced spin–spin coupling constant:

KKL ¼
@

2 E
@MK@ML

þ @
2 E

@MK@k
@k
@ML

; (7.28)

where ¶k/¶ML represents the response of the wavefunction to the nuclear magnetic
moment ML. To determine ¶k/¶ML, we take the total derivative of the variational
condition Eq. (7.26) with respect to ML and obtain the first-order response equa-
tions:

@
2E

@k2

@k
@ML

¼ � @
2E

@k@ML

: (7.29)

For the calculation of the indirect nuclear spin–spin coupling constants by linear
response theory, Eqs. (7.28) and (7.29) constitute the central equations.
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In the following, we first discuss the evaluation of the electronic Hessian ¶2E/¶k2

in Section 7.2.2.4. Next, in Section 7.2.2.5, we consider the solution of the linear
response equations Eq. (7.29) and, in particular, the evaluation of their right-hand
sides ¶2E/¶k¶ML. Finally, in Section 7.2.2.6, we consider the evaluation of the
reduced spin–spin coupling constants according to Eq. (7.28).

7.2.2.4 The Electronic Hessian
In the previous subsection, we introduced the electronic Hessian in the spin-orbital
representation, whose elements are given by:

GAI;BJ ¼
@

2 E
@kAI@kBJ

: (7.30)

These elements may be evaluated in the spin-orbital basis, by applying the rules in
Eqs. (7.13)–(7.16). However, it is more convenient to work not directly in terms of
kAI but rather in terms of the real and imaginary components of the singlet and
triplet rotation parameters, here given in Cartesian form:

R=I
k

0
ai ¼

R=I
kaa;ia þ

R=I
kab;ib ;

R=I
k

z
ai ¼

R=I
kaa;ia �

R=I
kab;ib ;

R=I
k

x
ai ¼

R=I
kaa;ib þ

R=I
kab;ia ;

R=I
k

y
ai ¼

I=R
kaa;ib �

I=R
kab;ia : (7.31)

In this representation, the Hessian of a closed-shell electronic state becomes block
diagonal, with no coupling between elements belonging to the different rotational
classes. Lower-case subscripts are here used for orbitals, to distinguish these from
spin orbitals.

To determine the Hessian, we assume that the exchange–correlation functional
depends locally on the density and on the spin density along the spin-quantization
axis (here the z axis)

rsðrÞ ¼
X

pq

DpaqaupaðrÞuqaðrÞ þ
X

pq

Dpbqb u
pb
ðrÞu

qb
ðrÞ; ð7:32Þ

rtðrÞ ¼
X

pq

DpaqaupaðrÞuqaðrÞ �
X

pq

Dpbqbu
pb
ðrÞu

qb
ðrÞ; ð7:33Þ

and possibly on their gradient scalar products

fss ðrÞ ¼ rrsðrÞ � rrs ðrÞ; fstðrÞ ¼ rrsðrÞ � rrtðrÞ; fttðrÞ ¼ rrt ðrÞ � rrtðrÞ; (7.34)

in the following manner:

EXC rðxÞ½ � ¼
Z

f rsðrÞ; rtðrÞ; fssðrÞ; fstðrÞ; fttðrÞ
� 	

dr: ð7:35Þ
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Taking the second derivatives of the electronic energy Eq. (7.19) with respect to the
R
k

0

ai and with respect to the
R
k

z

ai, we then find that the elements of the Hessian for
real singlet rotations

RR
G

ss
and for real triplet rotations

RR
G

tt
may be written in the

form:

RR
G

uu
ai;bj ¼ dij dab ea � ei

� �
þ 4dsu g

aibj
� c g

abij
þ g

ajib

� �
þ
Z
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2
f
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uj dr

þ2
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@f
@fuu
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� �
� ru

b
uj

� �
dr þ

Z
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rrs � rua ui

� �
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b
uj

� �
dr

þ
Z
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2
f

@ru@fsu
rrs � rua u

i

� �
u

b
uj þ ua u

i
rrs � ru

b
uj

� �h i
dr; ð7:36Þ

where the second, two-electron Coulomb term is present only in the singlet case
(u= s). The exchange–correlation contributions are in the singlet case calculated
from the derivatives of f (rs, rt, fss, fst, ftt) with respect to r

s
and fss ; in the triplet

case, they are obtained from the derivatives with respect to r
t
, fst , and ftt . In LDA,

only the first, second, and fourth terms in Eq. (7.36) contribute to the Hessian; in
GGA, all terms contribute. In Ref. [23], the singlet and triplet Hessians are given in
a slightly different form.

For closed-shell systems, the triplet Hessians are the same in all three Cartesian
directions, as follows from general considerations involving the Wigner–Eckart the-
orem. We may therefore calculate the triplet Hessians in the x and y directions
(obtained by differentiation with respect to the

R
k

x

ai and the
R
k

y

ai, respectively) accord-
ing to Eq. (7.36), but with the densities Eqs. (7.32)–(7.34) set up with spin quantiza-
tion along the x and y axes, respectively. However, we note that, in order for the
equivalence of the three triplet Hessians to arise naturally, the exchange–correlation
functional must be defined in a more general manner than in Eq. (7.35), depending
on all four components of the spin density r(x) and its gradient scalar products. The
present approach is adequate, provided the three Cartesian directions are treated
separately.

With respect to imaginary rotations, the electronic Hessian takes the same, sim-
ple form in the singlet and triplet cases:

II
G

uu
ai;bj ¼ dij dab ea � eið Þ � c g

abij
� g

ajib

� �
: (7.37)

We note, in particular, that there are no contributions from the exchange–correlation
functional except through the orbital energies. Also, in pure DFT (c = 0), the imagi-
nary Hessian Eq. (7.37) becomes diagonal, whereas the real Hessian Eq. (7.36) is
always nondiagonal. In LDA and GGA, therefore, imaginary perturbations, for
example, first-order perturbations involving the orbital motion of the electrons, are
easily treated.
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7.2.2.5 The Response Equations
To obtain the responses of the wavefunction to the perturbations in Eq. (7.29), we
need to evaluate the elements of the right-hand sides:

RL;AI ¼
@

2 E
@kAI@ML :

(7.38)

In principle, we need only solve three response equations for each nucleus, one for
each Cartesian component of ML. However, to take advantage of the symmetries of
the operators that contribute to the right-hand sides, we decompose RL;AI as follows:

RL;AI ¼ R
PSO
L;AI þ R

FC
L;AI þ R

SD
L;AI : (7.39)

From Eqs. (7.6)–(7.8), we recall that h
PSO

L is an imaginary singlet operator, whereas
h

FC

K and h
SD

K are isotropic and anisotropic triplet operators, respectively. We begin by
considering the contribution from the PSO operator to RL,AI.

Differentiating the electronic energy Eq. (7.19) with respect to ML and kAI, we
obtain:

R
PSO
L;AI ¼

X

PQ

@DPQ

@kAI
uP h

PSO
L

���
���uQ

D E
: ð7:40Þ

Because of the special symmetries of h
PSO

L , only derivatives with respect to imaginary
singlet rotations

I
k

0

ai in Eq. (7.31) give nonzero contributions to the right-hand side:

R
PSO
L;ai ¼

X

PQ

@DPQ

@
I
k

0
ai

uP h
PSO
L

���
���uQ

D E
¼ 2a

2
Z

uaðrÞr
�3
L rL �ruiðrÞ dr: ð7:41Þ

Thus, to calculate the response of the wavefunction to this operator, we need only
solve linear equations involving imaginary singlet rotations:

X

bj

II
G

ss
ai;bj k

PSO
L;bj ¼ �R

PSO
L;ai : ð7:42Þ

In pure DFT,
II

G
ss

is diagonal and k
PSO

L;bj is obtained directly, in a noniterative manner.
Conversely, in Hartree–Fock theory and in hybrid DFT, the presence of exact
exchange makes the Hessian nondiagonal. The three components k

PSO

L;bj are then cal-
culated iteratively, using some direct method that avoids the explicit construction of
II

G
ss

.
From the isotropy of the triplet h

FC

L operator, we find that the expectation value of
each Cartesian component ½RFC

L �l (l = x,y,z), when differentiated with respect to the
corresponding Cartesian component

R
k

l

ai, gives rise to the same right–hand ele-
ment:
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R
FC
L;ai ¼

X
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@DPQ

@
R
k

l
ai

uP

���� h
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L

h i

l

����uQ


 �
¼ 8pa

2

3
uaðqLÞuiðqLÞ; ð7:43Þ

where qL is the position of nucleus L. All other derivatives vanish. Since, in addition,
the Hessian is the same for the three Cartesian components, we need only solve one
set of equations to obtain the FC response:

X

bj

RR
G

tt
ai;bj k

FC
L;bj ¼ �R

FC
L;ai : ð7:44Þ

By contrast, the anisotropic SD operator requires more effort. As seen from Eq. (7.8),
each Cartesian component of R

SD

L;ai contains one contribution from each of the three
Cartesian components of the spin operators si. Because of the different symmetries
of these components, they are treated separately, giving rise to a total of nine SD
right-hand sides for each nucleus:

R
SD
L;ai ¼ a

2
Z

uaðrÞr
�5
L 3rL r

T
L � r

2
L I3

� �
uiðrÞ dr: ð7:45Þ

However, since the three-by-three R
SD

L;ai matrix is symmetric and since the same Hes-
sian is used for each component, there are only six distinct SD response equations
to be solved:

X

bj

RR
G

tt
ai;bj k

SD
L;bj ¼ �R

SD
L;ai : ð7:46Þ

Unlike the imaginary Hessian
II

G
ss

in Eq. (7.42), the real Hessian
RR

G
tt

in
Eqs. (7.44) and (7.46) is nondiagonal. To obtain the triplet responses k

FC

L;bj and k
SD

L;bj,
we must therefore solve a total of seven sets of linear equations for each nucleus L.

7.2.2.6 Evaluation of the Spin–Spin Coupling Tensors
Having obtained the response of the system to the magnetic nuclei ML by solving
ten response equations for each nucleus Eqs. (7.42), (7.44), and (7.46), the calcula-
tion of the indirect spin–spin coupling tensors is trivial. We first note that, according
to Eq. (7.28), the static contribution to the reduced spin–spin coupling tensor corre-
sponds to an expectation value of the DSO operator in Eq. (7.5):

K
DSO

KL
¼

@
2
E

@MK@ML

¼ 2a
4 X

i

Z
u

i
ðrÞr�3

K
r
�3

L
r

T

K
rL I3 � rK r

T

L

� �
u

i
ðrÞ dr; ð7:47Þ
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where the summation is over all occupied orbitals ui(r). Because of the rather com-
plicated structure of the DSO integral, this term is usually evaluated by numerical
quadrature.

Having calculated the static contribution Eq. (7.47) as well as the responses
Eqs. (7.42), (7.44) and (7.46), we may now assemble the total reduced coupling ten-
sor

KKL ¼ K
DSO
KL þ

X

ai

k
PSO
ai;K R

PSO
ai;L

� �T
þI3

X

ai

k
FC
ai;K R

FC
ai;L þ

X

ai

k
SD
ai;K R

SD
ai;L

þ
X

ai

k
FC
ai;K R

SD
ai;L þ

X

ai

R
SD
ai;K k

FC
ai;L ; ð7:48Þ

where we recall that, whereas R
PSO

ai;L is a three-dimensional column vector and R
FC

ai;L is
a scalar, R

SD

ai;L is a three-by-three symmetric matrix. Since R
SD

ai;L is traceless, we obtain
for the coupling constant KKL between nuclei K and L:

KKL ¼ 1
3

Tr K
DSO
KL þ 1

3

X

ai

k
PSO
ai;K

� �T
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PSO
ai;L þ
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ai;K R
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ai;L þ 1

3
Tr
X

ai

k
SD
ai;K R

SD
ai;L ; ð7:49Þ

with no coupling between the FC and SD perturbations. We finally note that, to
obtain all couplings to a given nucleus L, we need to solve the response equations
only for that nucleus; for the remaining nuclei K „ L, it is sufficient to calculate
their right-hand sides. However, if all couplings among all nuclei are required, then
we must solve a total of 10n linear equations, where n is the number of magnetic
nuclei in the molecule.

7.2.2.7 Finite Perturbation Theory
Up to now, we have considered the fully analytical approach to the calculation of
nuclear spin–spin coupling constants according to Eqs. (7.28) and (7.29). Alterna-
tively, the spin–spin coupling constants may be calculated by finite perturbation the-
ory (FPT), a mixed numerical–analytical scheme developed by Pople and coworkers
in the late 1960s [24, 25]. From Eq. (7.27), we note that, for example, the FC contri-
bution to the spin–spin coupling constants can be expressed as

K
FC
KL ¼

X

PQ

dDPQ

dMK

Z
uP ðxÞh

FC
L uQ ðxÞ dx ð7:50Þ

In this summation, the first factor is an element of the total derivative of the one-
electron density matrix with respect to MK. In FPT, the perturbed density matrix is
calculated by finite difference, requiring the optimization of the electronic wave-
function in the presence of the nuclear magnetic moment MK (made artificially
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large to avoid problems with finite precision). The FPT method is easy to implement
(but requires a spin-unrestricted code), see also Chapter 19 by O. Malkina. However,
it is less efficient and more susceptible to numerical errors than the fully analytical
approach. We also note that, in principle, the spin–spin coupling constants may be
evaluated by a fully numerical approach, obtaining the second derivatives by finite
difference of the electronic energy. However, this approach is inefficient and rarely
used.

Finally, we note that, in SCF theory, the nuclear spin–spin coupling constants
may also be calculated in a more approximate manner, using the sum-over-states
(SOS) approach. In this approach, the numerators and denominators of the para-
magnetic terms in Ramsey’s expression Eq. (7.4) are approximated so as to enable
an evaluation of the nuclear spin–spin coupling constants without solving linear
equations. We note, however, that the SOS approach often works poorly for the
dominant FC contribution.

7.2.3
SCF Implementations of Spin–Spin Coupling Constants

Today, a number of quantum-chemistry packages offer the capability of carrying out
spin–spin coupling calculations at the Hartree–Fock level, using response theory.
Probably, the first purely analytical approach at the Hartree–Fock level is that by
Ditchfield and Snyder from 1972 [26]. We also note the multiconfigurational SCF
(MCSCF) implementation of Vahtras et al., which includes Hartree–Fock theory as a
special case [27]. For a historical overview of the early development of methods for
the calculation of spin–spin coupling constants at the semi-empirical and ab initio
levels of theory, see the review by Kowalewski from 1977 [28]; for a more recent
review with emphasis on ab initio theory, see Ref. [6]. For a more general historical
review of the theory of NMR parameters, see Chapter 2 by P. Pyykk�.

The first successful (and still very popular) implementation of Kohn–Sham theory
for the calculation of indirect nuclear spin–spin coupling constants is that of Malkin,
Malkina, and Salahub from 1994 [29–31], at the LDA and GGA levels. In their imple-
mentation, the FC term is calculated by FPT and the SD term is omitted, although
the important SD–FC contribution to the spin–spin coupling anisotropy is obtained
by FPT. The PSO term is approximated by using the SOS approach.

Another early DFT implementation of indirect nuclear spin–spin coupling con-
stants is that at the LDA level of Dickson and Ziegler from 1996 [32], also with the
neglect of the SD contribution. Relying on Slater rather than Gaussian atomic orbit-
als, it avoids the problem of representing the nuclear cusp, so crucial to the accurate
description of the FC interaction. Their approach has subsequently been made ana-
lytical at the GGA level, and also extended to account for relativity by means of the
zeroth-order regular approximation (ZORA) [33, 34], see Chapter 15 by Autschbach
and Ziegler.

The first fully analytical DFT implementations of indirect nuclear spin–spin cou-
plings, including all four terms in Ramsey’s theory, are those presented in 2000 by
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Sychrovsk�, Gr�fenstein, and Cremer [35] and by Helgaker, Watson, and Handy [36].
Both implementations include hybrid DFT, as well as LDA and GGA.

7.3
Examples of Applications

From the discussion in Section 7.2, it is clear that the calculation of indirect nuclear
spin–spin coupling constants is very similar in Hartree–Fock and Kohn–Sham the-
ories, differing only in their treatment of exchange and correlation. Moreover, both
theories can be applied to a wide variety of molecular systems; for instance, unlike
the correlated ab initio methods developed for the calculation of spin–spin coupling
constants, they can easily be extended to large systems by invoking linear-scaling
techniques. However, as we shall see in the present section, the quality of the calcu-
lated Hartree–Fock and Kohn–Sham indirect spin–spin coupling constants is very
different. Whereas the Hartree–Fock model is erratic and often produces physically
meaningless spin–spin coupling constants, the Kohn–Sham method consistently
produces results of high quality, although some problematic areas remain.

7.3.1
Hartree–Fock Theory

It is well known that Hartree–Fock theory yields triplet excitation energies that are too
low, especially for molecules with multiple bonds, such as C2H2, and C2H4. This
phenomenon, called triplet instability, manifests itself also in calculations of spin–
spin coupling constants, since the usually leading FC term stems from the triplet
perturbation. A more complete discussion of triplet instability is provided in Ref. [37].

Because of triplet-instability problems, the Hartree–Fock model is rarely used
nowadays for calculating indirect nuclear spin–spin coupling constants. Applica-
tions of Hartree–Fock theory are therefore only briefly discussed here. As a rule of
thumb, the Hartree–Fock one- and three-bond coupling constants of organic and
simple inorganic molecules without multiple bonds are usually correct with respect
to the sign but are overestimated by at least 20% to 30%, see the coupling constants
of HF, H2O, NH3, CH4, C2H6, or CH3NH2 in Table 7.1. The geminal coupling con-
stants, such as the tabulated 2JHH couplings of H2O, NH3, or CH4, and 2JCH of
C2H6, are even more strongly overestimated. Finally, for molecules such as CO, HCN,
C2H2, and C2H4 in Table 7.1, the Hartree–Fock model gives nonsensical results.

Although, in special cases, some information can be extracted from the spin–spin
coupling constants calculated at the Hartree–Fock level, the use of this model for
the calculation of such constants should be discouraged. Indeed, more reliable
results are often obtained by means of semi-empirical approximations to the Har-
tree–Fock model [38, 39], such as the extended H�ckel approximation [40] and the
intermediate neglect of differential overlap (INDO) approximation [24, 25]. The
semi-empirical approaches to the calculation of NMR parameters are reviewed by
Heine and Seifert in Chapter 9.
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Table 7.1 Calculateda and experimentalb indirect nuclear spin–spin coupling constants (Hz). The vibrational
correction has been calculated at the B3LYP/HIII-su3 level [58], with exception of FHF–, for which all results have
been obtained with the aug-cc-pVDZ-su1 basis

Jeq
HF Jeq

LDA Jeq
BLYP Jeq

B3LYP Jeq
CAS Jeq

RAS Jeq
SOPPA Jeq

CCSD Jeq
CC3 J vib

B3LYP J tot
exp

HF 1JHF 668.9 395.9 390.0 416.6 542.6 544.2 529.4 521.6 521.5 –38.0 500
CO 1JCO –5.5 26.8 22.8 18.4 11.5 16.1 18.6 15.7 15.3 0.7 16.4
14N15N 1JNN –15.4 –2.9 4.1 2.9 0.5 0.8 2.1 1.8 1.8 0.1 1.8
FHF– 2JFF 656.8 –175.3 –112.6 24.9 358.1 239.8 438.6 –26.9 »247

1JHF 181.0 17.0 0.4 38.4 126.5 104.5 81.6 17.1 107.0
H2O 1JOH –103.8 –65.7 –72.6 –75.9 –83.9 –76.7 –80.6 –78.9 –78.5 5.4 –80.6

2JHH –22.8 –3.3 –11.1 –7.5 –9.6 –7.8 –8.8 –7.8 –7.4 0.9 –7.3
HC15N 1JCN –10.3 –7.6 –12.2 –19.2 –19.8 –18.2 –17.9 2.0 –18.5

1JCH 224.4 224.2 284.6 283.5 258.9 245.8 242.1 5.1 267.3
2JNH –35.4 –6.2 –5.8 –7.8 –6.8 –7.7 –7.7 0.8 –7.4

14NH3
1JNH 53.3 35.6 43.1 45.7 42.3 43.6 44.3 41.8 –0.3 43.8
2JHH –22.7 –4.6 –8.0 –10.1 –9.8 –11.3 –11.3 –12.1 0.7 –9.6

CH4
1JCH 156.6 100.2 133.3 132.6 116.7 120.6 122.3 5.3 125.3
2JHH –27.1 –7.3 –12.5 –13.3 –13.2 –13.2 –14.0 –0.7 –12.8

C2H2
1JCC 424.8 176.8 201.0 205.1 187.7 184.7 190.0 –10.0 174.8
1JCH 420.8 215.6 276.8 271.9 238.5 244.3 254.9 4.6 247.6
2JCH –59.5 48.9 57.2 56.0 47.0 53.1 51.7 –3.0 50.1
3JHH 89.7 6.5 10.3 10.6 12.1 10.9 11.3 –0.1 9.6

C2H4
1JCC 1270.2 50.6 68.6 74.7 75.7 68.8 70.3 70.1 0.9 67.6
1JCH 754.5 128.5 167.2 165.3 155.7 151.6 157.2 153.2 5.1 156.3
2JCH –572.0 1.3 0.1 –1.3 –5.8 –1.6 –3.1 –3.0 –1.2 –2.4
2JHH –344.2 4.8 5.3 2.9 –2.4 1.1 1.0 0.4 0.3 2.3
3Jcis 360.4 9.9 13.0 13.5 12.4 11.5 11.8 11.6 1.2 11.7
3Jtrans 400.0 14.6 20.3 20.7 18.4 17.8 18.4 17.8 2.3 19.0

C2H6
1JCC 60.6 18.6 29.5 32.6 38.4 34.1 34.5
1JCH 149.1 94.0 122.7 122.6 120.3 114.1 125.2
2JCH –11.3 –1.2 –2.2 –3.0 –5.5 –4.4 –4.7
2JHH –24.1 –6.5 –10.4 –11.3 –14.4 –12.1
3JHH

ave 9.6 6.0 8.0 7.8 7.3 6.7 8.0
CH3

15NH2
1JCN –15.3 1.9 –0.3 –2.3 –6.5 –5.1 –4.5–0.5
1JCH 159.2 98.5 129.4 129.5 128.3 120.9 132.5–0.2
1JNH –78.1 –52.3 –62.4 –63.3 –65.0 –61.7 –65.0–0.2
2JCH –9.9 –0.1 –1.1 –1.9 –4.4 –3.3
2JNH 0.5 –1.7 –2.3 –3.0 –0.7 –0.9 –1.0–0.1
2JHCH –22.7 –5.7 –9.1 –10.1 –13.3 –11.1
2JHNH –20.9 –3.6 –6.2 –7.6 –10.8 –9.3
3JHH

ave 8.2 5.40 7.2 6.9 6.3 5.8 7.1–0.1

a For references to the literature theoretical data, see Refs. [36, 46, 58]. CAS = com-
plete active space, RAS = restricted active space, SOPPA = second-order polariza-
tion propagator approximation. The Hartree–Fock and Kohn–Sham results have
been obtained by the authors, as have the results for FHF–.

b For references to the literature experimental data, see Refs. [15, 36, 46, 58].



7.3.2
Density-Functional Theory

In recent years, DFT has been extensively applied to the calculation of indirect
nuclear spin–spin coupling constants, for a variety of systems. The discussion given
below is by no means complete. Rather, we focus on some typical application areas
of DFT and point to the remaining problems. Some less routine applications of DFT
to the calculation of spin–spin coupling constants such as the calculation of vibra-
tional, solvent, and relativistic corrections are also outlined.

7.3.2.1 Calculations on Large Systems
We begin our discussion with calculations on models of biologically active com-
pounds. One of the most important concepts in structural chemistry is the Karplus
relation, which relates vicinal coupling constants to dihedral angles [1, 2]. DFT has
been applied to the study of this relation as well as to other conformational studies
in models of biomolecules [31, 41–44]. Thus, the conformational dependence of the
spin–spin coupling constants has been studied by means of DFT in carbohydrates
(methyl-b-d-xylopyranoside [31] and methyl-a-d-xylopyranoside [43]) and in dipep-
tides (cyclo(l-Pro-l-Pro) [44]). The DFT method has also been used to investigate
the effects of hydrogen-bond formation and of pyrimidine- and purine-ring
conformation on the one- and two-bond spin–spin coupling constants in nucleic
base pairs [45]. Many examples of modeling the angular dependence of spin–spin
coupling constants by means of DFTare found in Ref. [42]. We note that the DFT
results for the vicinal 3JHH coupling constants should be quite reliable since it has
been shown that, for such couplings in ethane, methylamine, methanol [46] and
for glycolaldehyde [41], the three-parameter Becke–Lee–Yang–Parr (B3LYP)
functional [47, 48] provides an accuracy comparable to that of the coupled-cluster
singles-and-doubles (CCSD) model.

Hydrogen-bond-transmitted nuclear spin–spin coupling constants offer another
interesting subject for theoretical investigations. Indeed, soon after their observation
in proteins and in nucleic acids, these coupling constants were successfully calcu-
lated, by means of DFT, in nucleic base pairs and in protein models [49]; calculations
on the 16-atom model of the Watson–Crick guanine–cytosine pair were reported in
Ref. [8]. DFT calculations of intermolecular coupling constants in biopolymer mod-
els have also been carried out for cyclic [50] and linear [51] formamidine dimers, for
an acetylethylamine–imidazole complex [52], for the DNA triplets T · A–T and
C+ · G–C [53], for nucleotide-type complexes between Mg[PO4(CH3)] and
[PO4(CH3)2]–, and for several amino acids [54]. The calculated 1H, 15N, 13C, and 31P
coupling constants agree at least semi-quantitatively with experiment and have
proved helpful in structural studies. A comparison of the intermolecular spin–spin
coupling constants calculated by means of DFT on the one hand and by means of
the MCSCF and CCSD methods on the other hand indicates that the conclusions
drawn from the calculations mentioned above should be correct [55]. A comprehen-
sive review of the calculations of this type of coupling constants is provided by Pecul
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and Sadlej in Ref. [56], while J. E. DelBene in Chapter 22 describes CCSD calcula-
tions of them.

DFT has been also applied to the calculation of spin–spin coupling constants in
large inorganic systems. Perhaps the largest, in terms of the number of basis func-
tions, DFT calculation of the full set of indirect nuclear spin–spin coupling con-
stants carried out to date is that for fullerene C60 [57]. Examples of relativistic DFT
calculations of spin–spin coupling constants in inorganic molecules are discussed
by Autschbach and Ziegler in Chapter 15.

7.3.2.2 Vibrational, Environmental and Relativistic Effects
Since the indirect spin–spin coupling constants depend critically on the molecular
geometry, the vibrational corrections to them are often substantial. Unfortunately,
the inclusion of vibrational corrections is very expensive, requiring the calculation of
the couplings for a large set of molecular geometries. Until recently, therefore, such
corrections have only been calculated for rather small systems [6]. However, with the
recent emergence of inexpensive but accurate DFT techniques, the calculation of
such corrections has become feasible also for larger molecules. Such studies have
recently been undertaken [58] and some of the calculated vibrational corrections to
spin–spin coupling constants are shown in Table 7.1. Clearly, since the corrections
typically constitute 5% of the total coupling (and sometimes more than 10%), their
inclusion is needed for a meaningful comparison with experiment (in highly accu-
rate work) and also for benchmarking the performance of less accurate methods.
We note that, in many cases, the best agreement with experiment is currently
obtained by combining highly accurate equilibrium spin–spin coupling constants
evaluated at the coupled-cluster level with DFT vibrational corrections. The subject
is more fully discussed by Ruden and Ruud in Chapter 10.

DFT has also been used to calculate indirect spin–spin coupling constants in the
condensed phase, taking into account the influence of the environment. For exam-
ple, the coupling constants in a liquid environment described by the polarizable con-
tinuum model (PCM) have recently been calculated for benzene [59]. Although a
direct comparison with experiment is difficult, this approach appears to offer a reli-
able and relatively inexpensive way to account for solvation, as is necessary for a
fully quantitative comparison with liquid-phase measurements. The PCM and expli-
cit-solvent DFT models have also been used to study the effects of hydration on the
spin–spin coupling constants in nucleic base pairs [32]. The description of solvation
by either method improves the agreement between calculated and experimental val-
ues of the coupling constants. A more complete discussion of solvent effects is pro-
vided by Ciofini in Chapter 12.

Since the indirect nuclear spin–spin coupling constants depend critically on the
description of the electronic density at the nuclei, they are sensitive to relativistic
effects. In the ZORA approach of Autschbach and Ziegler, such effects are
included [33, 34]. However, since their approach is discussed elsewhere in this vol-
ume (Chapter 15), we only mention here that it has been successfully applied to the
calculation of several types of heavy-atom couplings [60–62].
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7.3.2.3 Problems
The accumulated computational experience with DFT shows that, with the present
standard exchange–correlation functionals, the most urgent problem is the accuracy
of the calculated spin–spin constants for electron-rich atoms, as first observed by
Malkin et al. for fluorine couplings [30]. In general, the DFT description of the FC
contribution to the spin–spin coupling constants deteriorates with increasing num-
ber of lone pairs on the coupled atoms. This behavior has been observed for one-
bond coupling constants in simple inorganic molecules such as HF [30, 36, 63, 64],
for fluorine couplings transmitted through many bonds in organic molecules [20,
21], and for hydrogen-bond-transmitted fluorine couplings [15, 55]. Examples of this
behavior are found in Table 7.1, where the coupling constants of HF and FHF– are
significantly underestimated by DFT. To a lesser extent, the same problem occurs
for oxygen [46, 55], although we note that, for 1JOH of H2O in Table 7.1, the B3LYP
result is only slightly less accurate than the CCSD and restricted active-space SCF
(RASSCF) results. The use of DFT to calculate coupling constants of fluorine and
other halogens is therefore discouraged unless the couplings are dominated by the
PSO term, as is often true for fluorine–fluorine coupling constants [20, 21, 61].

Extensive studies of the suitability of the different exchange–correlation func-
tionals for spin–spin calculations have not been carried out yet. However, the experi-
ence accumulated so far suggests that hybrid functionals such as the B3LYP func-
tional are the best ones for spin–spin calculations [36, 64], see Table 7.1. The good
performance of the B3LYP functional has been demonstrated not only for isotropic
spin–spin coupling constants but also for anisotropic components of the coupling
tensors [64].

7.4
Conclusions

We have reviewed the non-empirical calculation of indirect nuclear spin–spin cou-
pling constants by SCF theories, in particular, by means of Hartree–Fock and Kohn–
Sham theories. While both methods are relatively inexpensive and can be applied to
large systems, the Kohn–Sham method provides coupling constants that are far su-
perior to those rendered by Hartree–Fock theory. Whereas the Hartree–Fock model
is unreliable, often providing results that bear little resemblance to the true coupling
constants, the Kohn–Sham DFT method produces spin–spin coupling constants
whose accuracy often rivals that of highly correlated ab initio methods. Nevertheless,
some problem areas persist, in particular for the spin–spin couplings to electron-
rich atoms such as the fluorine atom. These problems may be solved with the intro-
duction of better exchange–correlation functionals but, for the moment, their pres-
ence prevents Kohn–Sham theory from emerging as a fully quantitative predictive
method for calculations of indirect nuclear spin–spin coupling constants.
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8.1
Introduction

Consideration of electron correlation is essential for the accurate prediction of
nuclear magnetic shielding constants and the related nuclear magnetic resonance
(NMR) chemical shifts. However, this was not fully realized for some time, since
Hartree–Fock self-consistent-field (HF-SCF) calculations have been quite useful for
the prediction of relative shifts [1] where error cancellation plays a major role.
Accordingly, methods for including electron correlation effects in NMR chemical
shift calculations have been developed only within the last decade [2–5]. For obvious
reasons, the initial focus in the development of reliable methods for the prediction
of NMR chemical shifts focused on the gauge-origin problem [6] which was a seri-
ous obstacle for quite some time and is the source of the observed slow basis-set
convergence. The gauge-origin problem is nowadays routinely handled with the so-
called local gauge-origin schemes [7–12]. At least for molecular calculations with
atom-centered basis functions, the gauge-including atomic orbital (GIAO) approach
[7–10] represents the preferred choice and has become something of a de facto stan-
dard. Another complication that slowed development of electron-correlated calcula-
tions of NMR chemical shifts is that the nuclear magnetic shielding tensor is a sec-
ond-order property. Calculation of NMR chemical shifts thus requires evaluation of
a second derivative of the energy (or of some related sum-over-states expressions) [4,
5]. However, because the involved perturbations transform the real wavefunction of
the unperturbed molecule into complex field-dependent wavefunctions, magnetic
properties, unlike electric properties and other second-order quantities such as har-
monic force constants, cannot be computed easily using numerical differentiation
techniques. Hence, development of analytic differentiation schemes [13] was neces-
sary and represented the main bottleneck in the development of correlated schemes
for the calculation of chemical shifts.

Although predated by some early developments based on the use of a single, com-
mon gauge-origin [14–16], the field of electron-correlated calculations of NMR
chemical shifts started with the work of Bouman and Hansen [17]. Their scheme
known as the second-order localized orbital/local origin (SOLO) approach is based
on the localized orbitals/local origin (LORG) scheme [12] to handle the gauge-origin
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8 Electron-Correlated Methods for the Calculation of NMR Chemical Shifts

problem and the second-order polarization propagator approximation (SOPPA) [18]
for the inclusion of electron correlation. However, numerical results obtained with
this approach were less than satisfactory and SOLO is now rarely used. The more
successful schemes have been developed within the framework of GIAOs and analy-
tic derivative theory and this is the basis for the standard tools now used to compute
NMR chemical shifts. The initial implementation of the GIAO approach within sec-
ond-order Møller–Plesset (MP2) perturbation theory [19, 20] was used almost imme-
diately to resolve outstanding problems in (car)borane and carbocation chemistry
[21, 22]. The GIAO approach was soon thereafter extended to higher orders of per-
turbation theory (MP3, MP4) [23, 24], various coupled-cluster (CC) models [24–29],
as well as to multi-configurational SCF (MCSCF) wavefunctions [30]. The develop-
ment culminated in the recent implementation of a GIAO scheme within the full
CC singles, doubles, triples (CCSDT) model [29]. Parallel to these developments in
the GIAO framework, a multi-configurational (MC) extension of the individual
gauge for localized approach (IGLO) [11] has also been reported [31–33]. More
recently, MCSCF and SOPPA calculations using the continuous set of gauge trans-
formation (CSGT) method [34, 35] to deal with the gauge problem have been pre-
sented [36].

It should be mentioned that the use of density-functional theory (DFT) to com-
pute NMR chemical shifts has turned out to be a pragmatic alternative to sophisti-
cated electron-correlated approaches (see Ref. [37] as well as Chapter 6 by van W�l-
len). However, since these schemes involve an implicit rather than explicit treatment
of electron correlation, they will not be discussed further here. Nevertheless, it is
appropriate to note that highly accurate CC calculations (preferably at the CCSD(T)
level) have been used as the standard benchmark results to calibrate the perfor-
mance of DFT methods for computing this important chemical property.

The current chapter gives a brief overview of the field of NMR chemical shift cal-
culations, with specific attention to how explicit treatment of electron correlation is
included. For this purpose, we sketch the required background (definition of the
shielding tensor, local gauge-origins, electron-correlated methods, analytic second
derivatives; see Section 2), list the methods available for the computation of chemi-
cal shifts and comment on their advantages and disadvantages (Section 3), describe
a few special developments (e.g., integral-direct approaches and local-correlation
schemes for the treatment of larger molecules; Section 4), and cite some numerical
results which demonstrate the usefulness of these methods (Section 5). An outlook
and discussion of future developments in this otherwise rather mature area of quan-
tum chemistry concludes this chapter.
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8.1 Introduction

8.2
Theoretical Background

8.2.1
The Shielding Tensor

Elements of the chemical shielding tensor r that governs the magnitude of the ob-
served NMR chemical shift of the Nth nucleus in a molecule can be expressed as the
second-order response to the external magnetic field B (Bx, By, and Bz) and compo-
nents of the corresponding nuclear magnetic moment mN (mN

x , mN
y , and mN

z ). This
means that the tensor elements can be computed as the corresponding second deriv-
atives of the electronic energy

rij ¼
dEelectronic

dBj dmN
i

 !

B;mN¼0

(8.1)

In an exact theory, this is precisely equivalent to the sum-over-states expression

rij ¼ W0

����
@

2
H

@Bj@m
N
i

����W0

* +
þ
X

I

hW0 j@H=@Bj jWI ihWI j@H=@mN
i jW0i

E0 � EI
ð8:2Þ

where W0 and E0 denote the wavefunction and energy of the (unperturbed) electron-
ic ground state. The sum runs over all excited states WI with energies EI and
¶H/¶Bj, ¶H/¶mN

i , and ¶2H/¶Bj¶mN
i denotes the differentiated Hamiltonian (see

Eqs. (8.3) to (8.6)).
To evaluate the derivative (or the corresponding sum-over-states expression), it is

necessary to specify the Hamiltonian for a molecule in an external magnetic field.
This Hamiltonian can be given in the following form

H ¼ H0 þ
X

j¼x;y;z

@H
@Bj

Bj þ
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H0 is the usual field-free, non-relativistic Hamiltonian of a molecule and the pertur-
bation contributions are given by

@H
@Bj

¼
X

k

1
2

��
rðkÞ � RO

�
� pðkÞ

�

j
ð8:4Þ
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where r(k) and p(k) are the position and momentum operators for the kth electron,
RO the gauge origin, RN the position of the Nth nucleus, and a is the fine-structure
constant.

8.2.2
Gauge-Origin Dependence and Local Gauge-Origin Methods

Use of a common gauge origin in NMR chemical shift calculations, i.e., of

B ¼ r� A (8.7)

with the vector potential

AðrÞ ¼ 1
2

B� ðr � ROÞ (8.8)

together with an arbitrary gauge-origin RO, leads to unsatisfactory results in the
sense that the computed shieldings depend (often strongly) on the chosen gauge
origin, and is the source of agonizingly slow basis-set convergence in the calcula-
tions.

While a detailed discussion of the gauge-origin problem is beyond the scope of
this contribution (see Chapter 6 by van W�llen), it should be noted that standard
approaches intended for the routine calculation of NMR chemical shifts all use one
of a small number of local gauge-origin approaches. While the individual gauge for
localized orbital (IGLO) approach [11] (the use of localized occupied molecular orbit-
als together with individual gauge-origins chosen for each occupied orbital at its cor-
responding centroid) remains popular for calculations at the HF-SCF level, the
gauge-including atomic orbital (GIAO) approach [7–10] (the use of local gauge ori-
gins for atomic orbitals) has become the overwhelmingly most popular choice for
electron-correlated calculations. This is due to the fact that the GIAO approach does
not impose any restriction on the molecular orbitals used and therefore is easier to
apply in conjunction with treatments of electron correlation. For example, Møller–
Plesset perturbation theory is usually formulated in terms of delocalized canonical
orbitals and not in terms of localized orbitals as required for the IGLO and closely
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related LORG [12] treatments. The GIAO approach is usually not described as a
�local gauge-origin’ method but rather in the sense that the calculations are per-
formed with the following field-dependent basis functions, viz.

vlðBÞ ¼ exp � i
2

�
B� ðRl � ROÞ � r

�� �
vl (8.9)

instead of the usual field-independent functions (Gaussians) vl centered at Rl. This
reformulation facilitates the treatment of shielding tensors in an energy-derivative
formalism (see, for example, Ref. [38]) together with perturbation-dependent basis
functions, which build upon well-known treatments for the analytic evaluation of
forces on nuclei and harmonic force constants [13].

Nevertheless, it should be noted that the use of “local gauge-origin” approaches
does not actually resolve the gauge problem. Rather, they provide a means to gener-
ate unambiguous and unique results (due to the choice of a well-defined set of local
gauge origins) and can be shown to ensure rapid basis-set convergence. For some
electron-correlated approaches, specifically the non-variational MP and CC schemes,
gauge-invariance is not even preserved in the basis-set limit since these methods do
not satisfy the hypervirial theorem [39]. However, this issue can be ignored in the
calculation of NMR chemical shifts, but might prove relevant for other magnetic
properties [40].

It is also appropriate at this point to mention the continuous set of gauge-trans-
formation (CSGT) approach of Keith and Bader [34] (which is equivalent to the con-
tinuous transformation of origin of the current density (CTOCD-DZ) scheme of Laz-
zeretti et al. [35]). However, calculations reported so far indicate that the basis-set
convergence of this method for avoiding the gauge-origin problem is inferior to that
found with the GIAO approach [36]. Hence, we believe it unlikely to have a major
impact on the field in the future.

8.2.3
Electron Correlation Treatments

Over the years, many approaches for the treatment of electron correlation have been
developed [41]. In the following, we will briefly summarize those which are cur-
rently relevant for the calculation of NMR chemical shifts. The corresponding
schemes can be classified as to whether they are based on a single Slater determi-
nant (in most cases, but not necessarily, the HF-SCF wavefunction) or a multi-con-
figurational (MC) ansatz and to whether electron correlation is treated via variational
methods such as configuration interaction (CI) or nonvariational approaches based
on perturbation or CC theory. The MC approaches are thought to be needed for the
description of so-called static correlation effects (in the limit that they are very
large); dynamical correlation is best treated via the so-called single-reference ap-
proaches. For (closed-shell) molecules at their equilibrium geometry, usually what is
of interest in NMR chemical shift calculations, static correlation effects are often
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less important so that it is not surprising that the single-reference approaches are
more commonly used in this area of quantum chemical applications.

Amongst the single-reference approaches, second-order Møller–Plesset perturba-
tion theory (MP2, also known as second-order many-body perturbation theory
[MBPT(2)]) is the most popular approach for the low-level treatment of electron cor-
relation [42, 43]. It is the least expensive and the conceptually simplest correlation
treatment and can therefore be applied to very large molecules. The domain of
applicability for MP2 has been significantly extended by the use of integral-direct
implementations [44], exploitation of local-correlation schemes [45] and the use of
resolution-of-identity (RI) techniques [46]. Higher-orders of MP perturbation theory
(MP3, MP4, etc.) are less useful, and consequently less popular. Third order (MP3)
is nowadays considered to be essentially useless, since results obtained at this level
are usually inferior to MP2, a phenomenon that arises from the characteristically
oscillatory convergence of perturbation theory. MP4 offers some improvement
(inclusion of triple excitations), but has also been found to be of limited use. MP5
and MP6 are also available, but far too expensive for routine application [47].

Quantitative treatments of electron correlation are best achieved and accessed in
a systematic way by the coupled-cluster approaches [48], which are based on an expo-
nential ansatz for the wavefunction and involve infinite-order summations of many
classes of perturbation theory diagrams. In particular, the CC singles and doubles
(CCSD) approximation [49] and CCSD augmented by a perturbative treatment of
triple excitations, CCSD(T) [50] are routinely applied. In comparison to those
schemes, the full CC singles, doubles, triples (CCSDT) model [51] and augmented
CCSDT approaches that feature corrections for quadruple and even higher excita-
tions [52] are currently too expensive for routine application, but it can be expected
that they will be used more commonly in the future. Variational CI methods [53]
were very popular in the seventies, but the problem of size-consistency (the quality
of the correlation treatment degrades systematically as the size of the system under
consideration increases) and the not-unrelated superiority of results obtained with
corresponding CC approaches (i.e., CCSD in comparison with CISD) have signifi-
cantly diminished the use of single-reference CI techniques in quantum chemical
applications.

MC approaches [54–56] are based on the MCSCF method, which involves the opti-
mization of molecular orbitals within a restricted subspace of electronic occupations
and provides a means to treat static electron correlation effects if the “active space”
is appropriately chosen. Dynamical correlation effects can be treated within this
framework via perturbation theory (the essentially identical CASPT2 and MR-MP2
methods) [55] or in a more complete manner via configuration interaction (MR-CI).
However, there is still a lack of size-consistency in MR-CI, and this has led to the
development of some interesting approaches that are loosely based on ideas similar
to those underlying coupled-cluster theory. Perhaps most prominent among these
are the MR averaged coupled-pair-functional (MR-ACPF) [57] and MR average quad-
ratic coupled-cluster (MR-AQCC) [58] methods.

8 Electron-Correlated Methods for the Calculation of NMR Chemical Shifts128



8.2.4
Analytic Second Derivatives

The calculation of the shielding tensor in GIAO-based electron-correlated methods
is based on the energy derivative formula (see Eq. (8.1)) together with the Hamilto-
nian given in Eqs. (8.4) to (8.6). Hence, these calculations are based on “analytic
derivative theory” [13] which was first used by Stephens, Pitzer and Lipscomb [59]
for magnetic properties (within common gauge-origin calculations) and in its more
general form originates from the classic work of Pulay [60]. The formulation of com-
putationally efficient expressions for second derivatives exploits two fundamental
considerations. First, it is important to realize that analytic computation of first de-
rivatives does not require any perturbed wavefunction parameters [13]. While it is
trivial to demonstrate this for a variational approach such as HF-SCF or MCSCF, it
also holds for non-variational approaches such as perturbation theory and CC. How-
ever, an additional perturbation-independent linear equation must be solved in the
latter class of methods, the solution of which can be shown to account for the first-
order response of the wavefunction using the interchange theorem of perturbation
theory [61]. Within the context of orbital response contributions, this is known as
the Z-vector method of Handy and Schaefer [62] while recovery of effects associated
with relaxation of the cluster amplitudes in CC theory leads to the so-called K equa-
tions [63]. Overall, for any method, the corresponding expression for first derivatives
corresponding to one-electron perturbations can be written as [64]

@E
@x
¼
X

lm

Dlm
@hlm

@x
ð8:10Þ

where Dlm are elements of the corresponding (effective) one-particle density matrix,
@hlm=@x elements of the perturbed one-electron Hamiltonian matrix, and the
indices l and m refer to the atomic orbital basis functions. The density matrix Dlm is
constructed in HF-SCF theory from the MO coefficients. In perturbation theory, it is
augmented by contributions from the excitation amplitudes and the Z-vector equa-
tions, in CC theory from the cluster amplitudes, the Z-vector equations and the solu-
tion to the K equation, and finally in CI from the CI coefficients and the Z-vector
contribution. On the other hand, in MCSCF theory, knowledge of the MO coeffi-
cients and configuration expansion coefficient suffices. Gradients in MR-CI and
MR-MP theory again require consideration of a Z-vector contribution to account for
the orbital response since the energy is no longer stationary with respect to rotations
that mix different orbital spaces. The second issue is that it is not clear a priori in
what order (with respect to the perturbations) the energy should be differentiated
when the perturbations belong to distinct classes. This is of course the case for the
nuclear magnetic shielding (see above) [19]; this ambiguity is important because the
first differentiation as outlined above does not introduce any dependence on per-
turbed wavefunction parameters, while the second necessarily does. Thus, it is
advantageous to perform the initial differentiation with respect to mN

i and subse-
quent differentiation with respect to Bj. This results in an expression that requires
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perturbed wavefunction parameters only for the magnetic field components (of
which there are three), while differentiating first with respect to Bj and then with
respect to mN

i yields expressions that involve the perturbed wavefunction for all
[three times the number of atoms Natoms] components of the nuclear magnetic
moments. As the cost for the determination of the first-order wavefunction for each
perturbation is more or less similar (at least in the scaling with the size of the sys-
tem) to the cost required for the computation of the unperturbed wavefunction, it is
clear that the first choice is the preferred one. Use of a symmetrized expression is
less desirable than either of the options considered above since perturbed wavefunc-
tion parameters would be needed for all (3Natoms+3) perturbations. The best strategy
is consequently to compute shieldings via the following “asymmetric” second deriva-
tive expression [19]
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On the basis of Eq. (8.11), the cost for the calculation of shieldings is thus about 6
(MP2, CCSD) to 9 (CCSD(T)) times that of a corresponding gradient calculation,
where it is assumed that calculation of the perturbed wavefunction parameters costs
about two to three times as much as the solution of the equations for the unper-
turbed parameters.

It should be emphasized that Eq. (8.11) holds also for the use of GIAOs, as the
first differentiation (with respect to mN

i , a perturbation on which the basis functions
do not depend) involves just a one-electron perturbation and the two-electron pertur-
bation is only introduced in the second step. The same is not true if the differentia-
tions are carried out in the opposite order.

Apart from MCSCF, which is formally similar to the simple HF-SCF method,
implementations of electron-correlated schemes for the calculation of shieldings
have two prominent features [20, 24, 26]:

1. Steps required for the calculation of unperturbed wavefunction parameters.
Those steps include one- and two-electron integral evaluation, solution of
HF-SCF equations, AO to MO integral transformation, and if necessary, solu-
tion of equations for cluster amplitudes/CI coefficients, for K amplitudes, as
well as the computation of the unperturbed one- and two-particle density
matrices. These steps are all that is needed to compute the “diamagnetic”
contribution to the shielding which involves just the unperturbed density
matrix.

2. Steps required for the calculation of the perturbed wavefunction parameters.
These steps are best, but not necessarily, (see, for example, Ref. [65]) carried
out within an outer loop over the components of the magnetic field. For each
component, the one- and two-electron integral derivatives (the latter are
needed only when GIAOs are used) are computed, the coupled-perturbed HF
(CPHF) equations for the determination of the perturbed MO coefficients are
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solved, the perturbed integrals transformed into the MO basis, the equations
for the perturbed wavefunction parameters (cluster amplitudes, CI coeffi-
cients and/or K amplitudes) are solved, and the perturbed density matrices
are computed. These steps yield then, as a final result, the so-called paramag-
netic contribution to the shielding. However, note that these terms should
not be taken too literally in practical GIAO-based computations, as there is a
great deal of ambiguity. For a more in-depth discussion of their meaning
within the GIAO framework, see, for example, Ref. [66].

Disk space requirements, which can be a limiting factor in many large-scale cor-
related calculations, are roughly a factor of two greater for a shielding calculation
than for corresponding gradient calculations. The CPU timings are roughly 3 to 9
times that for a gradient calculation with the exact ratio depending on the method.
It simplifies the implementation and computations somewhat that electron-corre-
lated shielding calculations do not require a transformation of the two-particle den-
sity matrix from the MO to the AO basis. For further technical details concerning
the implementation of electron-correlated schemes, we refer the reader to the origi-
nal work [20, 24, 26, 30].

8.2.5
Polarization-Propagator Approaches

For the HF-SCF ansatz, an alternative and equivalent formulation is given by the
sum-over-states expression with the ground-state wavefunction given by the HF
state and the excited states determined via the random-phase approximation (RPA).
The sum-over-states expression can also be used as a starting point for the introduc-
tion of electron correlation. Using a perturbation expansion starting with the HF
wavefunction as zeroth-order state and considering all contributions to the sum-
over-states expressions, (transition moments and excitation energies) up to second-
order in the so-called electron–electron interaction (often termed the “fluctuation
potential”) yields what is known as second-order PPA (SOPPA) [18]. This ansatz has
been successfully used for excitation energies [67] and, for example, indirect spin–
spin coupling constants [68], but is somewhat less satisfactory for nuclear shield-
ings. Also, there is not a strict one-to-one correspondence between a specific ground
state wavefunction and properties calculated with the SOPPA method, so that it can-
not be properly considered as an MP2 treatment of the second-order property.
Another unpleasant aspect is that the electron-correlation contribution to the dia-
magnetic term, given by a simple expectation value, cannot be as easily treated as
the paramagnetic contribution.

Some effort has been made to improve SOPPA by using the converged doubles
amplitudes from CCSD calculations instead of the corresponding first-order (MP2)
approximations [69]. There are somewhat unappealing theoretical aspects of this
method (for example, the singles amplitudes from CCSD are completely ignored so
that the weight of the doubly-excited determinants is not properly approximated by
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just the double-excitation amplitudes), but it does seem to provide a generally sys-
tematic improvement over the original SOPPA method.

A further problem with SOPPA and SOPPA(CCSD) is that implementations are
currently available only for one-electron perturbations and these can of course not
be used with GIAOs. Besides the unsatisfactory common gauge-origin scheme,
SOPPA implementations are available within the LORG treatment (the SOLO
approach of Bouman and Hansen [17]) and more recently within the CSGT scheme
mentioned earlier in this work [36]. However we do not believe that these methods
will play a major role in future calculations of NMR chemical shifts.

8.3
Electron-Correlated Treatment of NMR Chemical Shifts

Figure 8.1 gives an overview summarizing currently available schemes for the calcu-
lation of nuclear magnetic shielding constants at electron-correlated levels (again
with the caveat that we are not discussing DFT-based approaches in this review). It
is seen that such schemes are available within the GIAO framework for a wide selec-
tion of methods that ranges from MP2 to various CC levels up to CCSDT. For all
other schemes to deal with the gauge problem, the state-of-the-art is far behind this
standard; application of IGLO is so far restricted to MCSCF, while LORG has only
been used in connection with the SOPPA scheme. The CSGT method has been
implemented within SOPPA and MCSCF.

From a practical point of view, the most important methods are probably GIAO-
MP2, GIAO-CCSD(T), and GIAO-MCSCF. GIAO-MP2 (which has an N5 scaling of
the computational cost; N stands here for the number of AOs) offers an, in many
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electron-correlated calculation of NMR chemical shifts using
schemes to handle explicitly the gauge-origin problem.



cases, reasonable and often excellent treatment of electron correlation effects and is
a clear improvement over HF-SCF. Its applicability (discussed below) extends to
molecules with roughly 50–70 atoms treated by more than 600 basis functions. The
GIAO-CCSD(T) approach (N7 scaling) allows a near-quantitative treatment of elec-
tron correlation and is the method of choice when MP2 is not sufficient. Due to the
increased CPU demands of GIAO-CCSD(T) relative to the corresponding MP2 cal-
culation, it can only be applied to small to medium-sized systems (up to 10 to 15
atoms) described by up to 400 basis functions. GIAO-CCSDT calculations (with a N8

scaling) are of some interest for benchmarking, but otherwise clearly too expensive
to date for routine application. For cases with strong static correlation, GIAO-
MCSCF offers an interesting alternative, although, except for very small molecules
in which the active space configuration expansion begins to approach the full CI
space, no quantitative treatment can be expected. The cost of these calculations
depends strongly on the size of the chosen active space with respect to which it is
factorial in nature. Hence, the range of applicability for large-scale and accurate
MCSCF calculations is limited.

For the routine use of the electron-correlated schemes for NMR shifts, only the
Acesii (Austin-Mainz version) [70] includes all of the GIAO-MP and GIAO-CC
schemes. The GIAO-MP2 method is also available in Turbomole [71] and Gaussian
[72]. GIAO-MCSCF and SOPPA calculations can be carried out with the Dalton
package [73], while methods based on IGLO and LORG are found only in somewhat
less accessible packages.

8.4
Special developments

One of the main focuses of current methodological developments in quantum
chemistry is the treatment of large molecules. Hence, there is a clear need also to
extend the applicability of the conventional electron-correlated schemes. While cor-
responding developments (i.e., integral-direct techniques, linear-scaling, local corre-
lation, resolution-of-identity approaches) have been pursued, the bulk of these have
focused only on energy calculations. For NMR chemical shifts, it is only at the
GIAO-MP2 level where some of these ideas have been applied [65, 74, 75].

An integral-direct implementation of GIAO-MP2 [65, 74] was developed and
included in the Turbomole program package [71], which enables calculations with
up to several hundred basis functions. The efficient use of point-group symmetry (if
present) further enhances the applicability [65] which is limited only by CPU
requirements. The usefulness of this technique is illustrated by calculations on
Al4(C5H5)4 (D2d symmetry) and B4(t-Bu)4 (Td) with more than 600 basis functions
[65].

To reduce the CPU time in GIAO-MP2 calculations, exploratory work has been
done within the framework of local correlation. Initial results obtained for a GIAO-
local-MP2 (GIAO-LMP2) scheme with a pilot code are encouraging [75]. It is
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expected that an optimal implementation will further extend the range of applicabil-
ity of the existing GIAO-MP2 schemes.

8.5
Numerical Results

The purpose of the current chapter is clearly not the in-depth discussion of the appli-
cation of electron-correlated NMR chemical shift calculations to chemical problems.
However, a brief discussion of some numerical results is nevertheless warranted in
order to demonstrate the performance of the discussed approaches and to show the
improvements over HF-SCF when electron correlation is considered.

We first consider N2 for which correlation effects are significant. Figure 8.2 dis-
plays the deviation of the shielding constants computed at different levels of theory
in comparison with the corresponding experimental value. It is seen that MP2 over-
estimates the correlation contribution by nearly 20 ppm, while MP3 underestimates
it by 15 ppm. MP4 again overestimates the correlation corrections, in particular
when triple excitations are included. On the other hand, the CC results are very
accurate and lend credence to the idea that near quantitative accuracy can be
achieved with these methods. The observed “oscillatory behavior” of perturbation
theory appears here and is characteristic, although there are also cases (for example,
BH [77]) which exhibit monotonic convergence. Other electron correlated methods
do not perform as well for N2. SOPPA calculations [78] significantly underestimate
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Figure 8.2 15N shielding constant of N2 calculated at different
levels of theory in comparison to the corresponding experimen-
tal equilibrium value (computational results from Ref. [24],
experimental value from Ref. [76]).



correlation effects (the values are in the range of –72 to –82 ppm as opposed to the
correct value of ca. –55 ppm); results obtained with MCSCF [30, 32] exhibit a strong
dependence on the chosen active space.

A more comprehensive comparison of the different methods is given in Tab. 8.1
where shielding constants for HF, H2O, NH3, CH4, CO, and F2 are summarized.
The results support our previous conclusions: oscillatory behavior is seen when per-
turbation theory is used, while CCSD(T) agrees satisfactorily with experiment in all
cases. The GIAO-MCSCF results in Tab. 8.1 show that this approach works best for
simple cases such as HF and H2O, while less satisfactory results are found for the
other molecules. In particular, the GIAO-MCSCF treatment of F2 features an alar-
mingly slow convergence with respect to the chosen active space [30]. On the other
hand, there are cases where static correlation is important and where MCSCF meth-
ods thus are appropriate. One example is the ozone molecule (see Tab. 8.2), where
HF-SCF and MP calculations are an unmitigated disaster. However, MCSCF calcula-
tions (MC-IGLO and GIAO-MCSCF) yield qualitatively correct descriptions [31, 79]
in satisfactory agreement with experiment [80, 81] even though it should be noted
that the highest-level CC treatments are at least as good for this pathological exam-
ple.

There are some recent review articles [5, 4, 83] which further discuss applications
of electron-correlated calculations of NMR chemical shifts to problems in inorganic
and organic chemistry. To this, we would like to add that a recent benchmark study
of 13C shieldings demonstrates that CCSD(T) calculations using large basis sets to-
gether with consideration of vibrational corrections enable the prediction of gas-
phase shieldings with an accuracy of about 1 to 2 ppm [82]. This study is perhaps
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Table 8.1 Comparison of nuclear magnetic shielding constants (in ppm) calculated at HF-SCF,
MP2, MP3, MP4, CCSD, CCSD(T), and MCSCF levels of theory using the GIAO ansatz.a

Molecule Nucleus HF-SCF MP2 MP3 MP4 CCSD CCSD(T) MCSCF exp. re
b

HF 19F 413.6 424.2 417.8 419.9 418.1 418.6 419.6 420.0 – 1.0
1H 28.4 28.9 29.1 29.2 29.1 29.2 28.5 28.90 – 0.01

H2O 17O 328.1 346.1 336.7 339.7 336.9 337.9 335.3 357.6 – 17.2
1H 30.7 30.7 30.9 30.9 30.9 30.9 30.2

NH3
15N 262.3 276.5 270.1 271.8 269.7 270.7 273.3 – 0.3
1H 31.7 31.4 31.6 31.6 31.6 31.6

CH4
13C 194.8 201.0 198.8 199.5 198.7 199.1 198.2 198.4 – 0.9
1H 31.7 31.4 31.5 31.5 31.5 31.5 31.3

CO 13C –25.5 10.6 –4.2 12.7 0.8 5.6 8.2 3.29 – 0.9
17O –87.7 –46.5 –68.3 –44.0 –56.0 –52.9 –38.9 –38.7 – 17.2

F2
19F –167.9 –170.0 –176.9 –180.7 –171.1 –186.5 –136.6 –196.0 – 1.0

a HF-SCF, MP2, CCSD, CCSD(T) results from Ref. [24], MP3 results
from Ref. [23], MP4 results from Ref. [5], and MCSCF results from
Ref. [30].

b Experimental equilibrium values for HF, CO, and F2 derived from
r0 values and rovibrational corrections given in Ref. [76], re values
for H2O, NH3, and CH4 as compiled in Ref. [24].



the most detailed and extensive set of calibrations yet performed for NMR chemical
shift calculations based on CC theory.

8.6
Summary and Outlook

The last ten years have witnessed the growth of electron-correlated NMR chemical
shift calculations from infancy to the point at which the field can be regarded as
mature. Several types of methods are available, featuring different treatments of the
gauge-origin problem and ways in which correlation effects are included. These
methods have also been complemented somewhat by DFT schemes that, although
plagued by some still unresolved formal difficulties, have proven to be quite popular
and useful for practitioners of quantum chemistry.

Now that the basic methods are developed and their ability to predict NMR spec-
tra is fairly well-established, it seems clear that GIAO-MP2 is a useful approach for
medium-sized molecules, with GIAO-CCSD(T) calculations necessitated only when
very high accuracy is desired or there are significant non-dynamical correlation
effects present. In the latter case, GIAO-MCSCF represents an equally attractive
alternative. For large molecules, DFT methods currently are the preferred choice. It
is certain that the next decade of methodological development in this area will focus
on extending the range of applicability of GIAO-MP2 and GIAO-CCSD(T) approach-
es further. To some degree, the foundations for this work have already been laid,
and an efficient implementation of GIAO-LMP2 should probably be made in the
next few years. It will then be possible to carry out electron-correlated calculations of
NMR chemical shifts for large molecules, an opportunity that will almost certainly
lead to biological application of the approach. Another path to be explored is the use
of resolution-of-identity (RI) techniques within GIAO-MP2.
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Table 8.2 Comparison of computed and experimental 17O nuclear magnetic shielding constants
(in ppm) of ozone.

Metod Oterminal Ocentral Ref.

IGLO-HF –2814 –2929 [31]
GIAO-HF –2862 –2768 [24]
MC-IGLO –1153 –658 [31]
GIAO-MCSCF –1126 –703 [79]
GIAO-MP2 +1248 +2875 [24]
GIAO-CCSD –1403 –968 [24]
GIAO-CCSD(T) –1183 –724 [24]
GIAO-CCSDT-1 –927 –415 [29]
GIAO-CCSDT –1261 –775 [29]
Exp. –1290 –724 [80]

–1289 – 170 –625 – 240 [81]



However, the development of other highly accurate approaches will not stop. It
would be particularly worthwhile to consider GIAO-based NMR calculations within
MR-MP and MR-CI (or the related ACPF/AQCC methods) for the treatment of very
difficult cases. These include transition metal systems and singlet biradicals. In the
former area, the incorporation of relativistic effects within a GIAO-based electron-
correlated scheme will also be useful and probably important in order to achieve a
high level of accuracy.
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9.1
Introduction

Various methods for the calculation of the nuclear magnetic shielding have been
developed and applied since the fundamental formulation of the theory by Ramsey
[1]. Originally, most of the methods for “ab initio” or “first principle” treatments of
NMR parameters in molecules were based on the Hartree–Fock (HF) formalism in
connection with perturbation theory to consider the external magnetic field. Linear
combination of atomic orbitals (LCAO) “ab initio” calculations with large basis sets
have been performed within the coupled HF perturbation theory (CHF) (see e.g.
Ref. [2]). The effect of electron correlation was studied and NMR schemes were de-
veloped for many post-HF methods (for review, see Ref. [3]).

Significant improvements for the calculation of the NMR parameters could be
achieved by the GIAO (gauge including atomic orbitals, originally called “gauge
invariant atomic orbitals” or “London orbitals”) approach from Ditchfield [4], as well
as by the method of individual gauge for localised orbitals (IGLO) from Kutzelnigg
and Schindler [5]. Since the early 90s, both methods (see, for example, for IGLO
[6, 7], for GIAO [8, 9]) have been also successfully applied within density-functional
theory (DFT) and the local density approximation (LDA) or the generalised gradient
approximation (GGA) – for reviews see e.g. Refs. [10, 11]. However, it has been
pointed out already by Bieger et al. [12] that the calculation of the nuclear magnetic
shielding cannot strictly be justified within DFT, as the presence of the magnetic
field requires an extension. This extension is given by the CDFT (current density
functional theory) [13].

The application of semiempirical quantum chemical methods for NMR calcula-
tions goes back to the 1960s. After studies with simple model wavefunctions, already
back in the 1950s, the semiempirical NDO (neglect of differential overlap) methods
[14] were used in connection with an uncoupled Hartree-Fock perturbation treat-
ment (UCHF) [15]. This is also known as the “sum-over-states” (SOS) method [16].
Combinations of the complete NDO (CNDO) and intermediate NDO (INDO) meth-
od with GIAOs were also developed and applied [17, 18], as well as combinations
with the method of individual gauge transformations [19, 20].
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9 Semiempirical Methods for the Calculation of NMR Chemical Shifts

Most widely used was a rather crude model for estimations of nuclear magnetic
shieldings, the so called “DE” model. This model can formally be derived from the
UCHF treatment, where the energy denominator in the perturbation expansion
with the virtual orbitals is just replaced by an “averaged” energy denominator (DE).
Though it is a very strong approximation, it was successfully applied for qualitative
interpretations of chemical shifts, see e.g. Ref. [21]. It can give simple relations be-
tween chemical shifts and corresponding charges of atoms obtained from quantum
chemical calculations, but it also makes clear that there are generally no simple cor-
relations between chemical shifts and charges, for example.

After a short description of the basics for calculating nuclear magnetic shielding
in (closed shell) molecules, the “sum-over-states” (SOS) as well as the “DE” model
are described briefly. As examples of modern semiempirical schemes the GIAO-
MNDO (modified NDO) [18, 22] and the IGLO-DFTB [23] methods are discussed.
The capabilities of these methods are illustrated by a few representative applications.
Finally, concluding remarks concerning the outlook and limitations of semiempiri-
cal calculations of nuclear magnetic shieldings are given. We will not discuss here
the manifold of models, which are not based on quantum chemical calculations.

9.2
Methods

9.2.1
General Considerations

The nuclear magnetic shielding tensor (rk « rab
k ) describes the induced field (~BBind)

at a nucleus k in presence of an external field (~BB0 ):

ð~BBindÞa ¼ �
X

b

r
k
abð~BB0Þb ð9:1Þ

Biot-Savart’s law gives the relation between the induced field and the current density
in a molecule (Gaussian units):

~BBind ¼ 1
c

Z ~JJ �~rrk

r
3
k

d
3
r ð9:2Þ

The current density (~JJ) is given by the electronic wavefunction:

~JJ ¼ i
2
ðrW

� ÞW�W
�ðrWÞ

� �
� 1

c
~AAW

�
W: ð9:3Þ

~AA is the vector potential of the external magnetic field. According to the definition of
the shielding tensor as a linear response property, only terms in first order of ~BB0 are
needed in a Taylor series of J:
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Jð~BB0Þ ¼~JJ
0 þ~BB0

@~JJ

@~BB0

þ ::: (9.4)

~JJ
0
, the current density in the absence of an external magnetic field, is zero for mole-

cules with no permanent magnetic moment. The first order current density is then
given by:

~BB0 J
1 ¼ i

2
ðrW

0ÞW1 �W
1ðrW

0Þ
h i

� 1
c
~AAW

0
W

0
: (9.5)

I.e., the first order current density ~BB0 J
1 � @~JJ

@~BB0

� �
with the first order perturbed

wave function (W1), has to be considered in Biot-Savart’s law for calculations of
nuclear magnetic shielding tensors. Within a Coulombic gauge for the vector poten-
tial (~AA ¼ 1=2ð~BB�~rrÞ), one obtains finally for the shielding tensor at nucleus k:

r ¼ 1
2c

2 W
0
���
~rr~rrk I �~rrk �~rr

r
3
k

���W0

* +
� 2

c
W

0
��� ~LL
r

3
k

���~WW1

* +
ð9:6Þ

The first term is the so-called diamagnetic contribution (rdia) of the shielding tensor,
whereas the second term is called the paramagnetic term (rpara). Expanding the per-
turbed wavefunction (W1) in terms of the excited states of the unperturbed wave-
function (W

0

n
) one obtains:

r
para ¼ � 1

c

X

n 6¼0

1
En � E0

W
0
n

��� ~LL
r

3
k

���W0
0

* +
W

0
0

���~LL
���W0

n

D E
; ð9:7Þ

where E0 and En are the ground state and the excited state energies, respectively, and
~LL is the angular momentum operator. The diamagnetic term remains unchanged
because it depends only on the unperturbed wavefunction. This is the “classical”
representation of the nuclear magnetic shielding tensor in diamagnetic molecules
as already derived by Ramsey [1]. It is also the basis of most of the semiempirical
treatments of (nuclear) magnetic shieldings in molecules.

9.2.2
The SOS and the “DE” Model

Using a simple molecular orbital (MO – wi) expansion for the wave functions (Wn),
and an LCAO representation of the MOs (wi ¼

P
l

ci
lul), the nuclear magnetic

shielding tensor may be written as:

r ¼ 1
2c

2

Xocc

i

X

lm

c
i
lc

i
m ul

���
~rr~rrkI �~rrk �~rr

r
3
k

���um

* +
�
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The summation includes occupied (“occ”) and unoccupied (“unocc”) MOs and is
often called the “sum-over-states” (SOS) method [16]. A very crude estimation of the
nuclear magnetic shielding tensor is possible, if the summation over the occupied
and unoccupied MOs in the paramagnetic term is replaced by an averaged energy
denominator (DE) [24]:

r
para ¼ � 2

c
2

1
DE

Xocc

i

X

lm

c
i
lc

i
m ul

���~LL �~LL
r

3
k

���um

* +
ð9:9Þ

The diamagnetic term remains again unchanged. Often, DE is correlated with the
HOMO–LUMO gap, or experimental excitation energies, or just taken as a fixed
empirical parameter. In this approximation, the paramagnetic term also contains
only contributions from occupied MOs.

9.2.3
The CHF Equations within Semiempirical Schemes, GIAO-MNDO

After some early trials [17] and several attempts in between [25–28] to apply the
GIAO treatment within the semiempirical NDO methods, recently Patchkovskii and
Thiel [18, 22] proposed a combination of the MNDO method with GIAOs. In this
method, GIAOs [4] have been introduced to ensure gauge invariance

jl ~rrð Þ ¼ ul ~rrð Þ exp � i
2c

~BB�~RRl

� �y
~rr

� �
; ð9:10Þ

where ul is a real atomic basis function (e.g., Slater function or Gaussian), centered
at a position ~RRl. The shielding is expressed as the second derivative of the energy
with respect to the magnetic field and the magnetic moment of the nucleus, which
leads to the CHF equations within the MNDO approximation (for details, see Ref.
[22]). The wavefunction perturbed in ~BB is expressed using first-order perturbation
theory in an expansion of unoccupied states. The phase factors of the GIAOs cancel
for all one- and two-center two-electron integrals within the MNDO approximation.
The magnetic field enters the one-electron Fock matrix contribution in the CHF
equations, which has the form
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F
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which is notably simpler than in ab initio theory. NDO-type approximations further
simplify this expression to

H
a0
lm ¼ 1

2c

(
~RRl �~RRm

� �
H

MNDO
lm
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� b

N
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u
l

���L̂LRm
���um

D E
þ 1

2
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���ul

D E)

a

: ð9:12Þ

The equivalent expression (except for having bN
lm ¼ blm as a parameter which can be

varied independently) was used previously in INDO [25] and MNDO [26] studies of
the shielding tensors. An earlier INDO study [27] used a similar expression, but
omitted the second term, while an uncoupled MNDO study [28] retained only the
two last terms.

Finally, the GIAO-MNDO equations can be written as (gauge-independent) dia-
and paramagnetic contributions:

r
dia
ab ¼

X

lm

H
abðdÞ
lm Plm ð9:13Þ
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where ~RR is the position of the nucleus (or point in space) at which the shielding
tensor is evaluated. These equations completely define the NMR shielding tensor
within the MNDO approximation.

GIAO-MNDO parameters have been created for H, C, N, and O, and tested for an
extensive set of molecules [18, 22]. Linear correlation with experimental data gave
correlation coefficients of 0.994 for 13C NMR parameters. In the parametrisation of
Patchkovskii and Thiel, which uses nine parameters for four elements, the RMS
value for 13C NMR chemical shift is 12.6 ppm (out of a test set of 94 molecules) [22],
which is considerably lower than in earlier GIAO-MNDO treatments. However, indi-
vidual differences of 50 ppm have been observed for some sp3 carbons, and these
errors can become larger than 100 ppm for shifts in the high upfield region. The
performance of 17O and 15N shifts is similar, but for 1H shifts the results can be
improved to an individual error of ~3 ppm if three-center integrals are taken into
account in the MNDO treatment [22].

9.2.4
IGLO-DFTB, a Semiempirical Method within the CDFT

The density-functional based non-orthogonal tight-binding (DFTB) method [29, 30]
is an approximation to DFT. The DFTB method is based on an LCAO Ansatz for the
Kohn–Sham molecular orbitals. The expansion coefficients ci

m are found by solving
the secular problem

X

l

c
i
l Hlm � ei Slm


 �
¼ 0 for all m ð9:18Þ

which is expressed in terms of the Kohn–Sham matrix elements Hlm=Æul|T̂T+Veff|umæ
and overlap matrix elements Slm=Æul|umæ. The effective potential Veff is approximated
as a superposition of atomic contributions, each determined by an LDA–DFT calcu-
lation on a fictitious spherical pseudo-atom subjected to an additional potential
(r/r0)n. The valence wavefunctions and the effective potential are both taken from
the pseudo-atomic calculation. It is only necessary to consider two-center elements
of the Kohn–Sham matrix [29]

Hlm ¼
hul jT̂T þ Vj þ Vk jumi for j 6¼ k
el for l ¼ m
o otherwise;

8
<

: (9.19)

containing the effective potentials Vj, Vk of the atoms j and k that carry functions ul

and um. In the case of j = k, the one-particle energies of the free atom el are used,
giving the correct reference energy in the dissociation limit. Restriction to two-cen-
ter terms leads to a Kohn–Sham matrix similar to empirically parametrised non-or-
thogonal tight-binding schemes, but all parameters are obtained here consistently
from LDA–DFT calculations.
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In the present IGLO-DFTB implementation, the atomic orbitals and the atomic
electron density are expanded in a set of contracted Gaussian-type orbitals (CGTO),
which are computed in a modified version of the program package deMon [31], but
this way the GTO-DFTB method can be implemented in any conventional wave-
function-based package for property calculations in quantum chemistry.

So far, it has been applied with the deMon-NMR package [6,7], which uses the
IGLO method [5]. This choice has the advantage of reducing the gauge dependence
and the paramagnetic contributions, thereby minimising the sensitivity to basis sets
in the final computed result. As in present DFT-NMR treatments, IGLO-DFTB is an
uncoupled theory. For the computation of the shielding tensor the deMon-NMR
package [6] is used. Localised molecular orbitals were constructed with the iterative
Foster–Boys procedure [32] which gives a relatively strong localisation. In the IGLO-
DFTB method, only valence orbitals are treated. Fullerenes with their half-full
valence shells are favourable cases as their virtual spaces usually span all necessary
symmetries of the perturbed molecular orbitals [33].

Chemical shifts are calculated from the calculated shieldings of the fullerene site
and C60 and then transformed to dTMS values. The same technique is applied in ab
initio computations of chemical shifts of fullerenes to remove a systematic error
(see Chapter 25 by Heine).

The raw calculated 13C NMR spectra span too large a range of shifts in compari-
son to experiment. This feature arises from an overestimation of the spread of the
paramagnetic parts of the shieldings. We therefore apply an empirical correction,
multiplying the paramagnetic part of all shieldings by a constant scaling factor. This
is equivalent to making a correction of the energies of the unoccupied molecular
orbitals. It is well known that approximate DFT treatments, including many LDA
and GGA functionals, give poor energies for unoccupied orbitals [34] and more-or-
less sophisticated correction schemes have been proposed [7]. The simple multipli-
cative factor chosen here is 0.7, as this gives a reasonable value for the sp2–sp3 differ-
ence in the C60 dimer.

9.3
Representative Applications

A major field of recent application of semi-empirical methods for the evaluation of
NMR parameters have been fullerenes and their derivatives (see also Chapter 25).
These are relatively large molecules (60 and more atoms, hence 240 and more basis
functions in a minimal basis treatment), and usually several isomers needed to be
treated. Two questions have been addressed in the literature using these methods:
Nucleus-independent chemical shifts [35] of the centers of organic rings [36] and
fullerenes [37], and the computation of 13C NMR chemical shifts of fullerenes and
their derivatives [23, 38–40].
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9.3.1
NICS of Organic Molecules

GIAO-MNDO was used to compute the NICS for a wide range of organic molecules,
including [n]-annulenes, polycyclic hydrocarbons, heterocycles, cage molecules, ful-
lerenes, and pericyclic transition states [36]. In general, there was reasonable agree-
ment with NICS data from ab initio and density functional calculations, which is
visualised in Fig. 9.1.

The semiempirical NICS values tend to be smaller in absolute value than their ab
initio counterparts, but they often show similar trends. The aromatic or antiaromatic
character of a given system can normally be assigned correctly on the basis of the
MNDO NICS values.

9.3.2
Endohedral NICS Values in Fullerenes

NICS values in the centers of fullerenes have been discussed as a useful criterion
for the aromaticity of fullerenes [41]. The NICS values at cage centers are essentially
equal to the experimentally accessible 3He endohedral shift, which is one possibility
for the characterisation of fullerenes using a single index (for a review, see Ref. [42]).
Chen and Thiel [37] evaluated endohedral NICS values for a large series of fuller-
enes, including small fullerenes C20 to C50, and fullerenes with isolated pentagons
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C60 to C102. In these computations, the geometry of the cages has been computed by
MNDO and B3LYP/6-31G* levels. The endohedral NICS values have been evaluated
using the GIAO-MNDO and using GIAO-CHF/3-21G for the higher, and GIAO-
CHF/6-31G* for the lower fullerenes. Thus, the influence of the computational level
of the geometry and of the shielding computation on the chemical shift can be eval-
uated.

The results are compared in Fig. 9.2. It can clearly be seen that the correlation
between MNDO and CHF shifts is much better for the higher than for the lower
fullerenes. Two possibilities can explain this result: (i) the MNDO method works
better for the higher fullerenes due to their larger HOMO–LUMO gap and higher
stability, and/or (ii) this fact is due to the relatively small 3-21G basis set, which has
only one s and one p function more than the minimal MNDO basis itself, which
was used for the CHF computations for the higher fullerenes.

9.3.3
C119, an Odd-Numbered Fullerene

Fullerenes contain even numbers of trivalent, sp2-like atoms [43]. However, McEl-
vany et al. [44] observed additional odd-numbered species C119, C129 and C139 by
mass spectroscopy, which are expected to be dimeric structures of C60 and C70 fuller-
enes, where several sp3-like bridging atoms link the two moieties with overall loss of
one atom [45]. These molecules can be produced e.g. by reacting fullerenes with
ozone [44] or by thermolysis of C120O at 550–600 �C with a yield of ~1 % [46]. The
C119 species has a single predominant isomer for which the 13C NMR spectrum was
recorded by Gromov et al. [46]. The observed pattern is compatible with an isomer of
C2 symmetry with two signals in the sp3 carbon region accounting for three (2+1)
atoms.

In agreement with other calculations, the DFTB method finds the isomer A (C2)
to be favoured energetically by ~1.9 eV among eight plausible candidates for the
structure of C119 [39]. The calculated 13C NMR chemical shifts [39] are compatible
with the experimental spectrum, and identify this isomer as the species obtained
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Figure 9.2 Scatter plot of semiempirical/DFT vs. ab initio NICS
values (in ppm), (a) for higher, (b) for smaller fullerenes. These
plots have been kindly provided by Dr. Z. Chen.



experimentally by Gromov et al. [46]. The structures and 13C NMR data are shown
in Fig. 9.3.
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Figure 9.3 Structures (top and side view) and 13C NMR pat-
terns of proposed C119 isomers are displayed on the left, the
idealised experimental [46] (top) and computed 13C NMR pat-
terns on the right side. Displayed data is taken from Ref. [39].
NMR chemical shifts are given in ppm with respect to TMS.



9.4
Concluding Remarks: Limitations of Semi-Empirical Methods for the Calculation
of NMR Parameters

In all present implementations NMR parameters are computed as a sum represent-
ed by a diamagnetic and a paramagnetic part. The diamagnetic part is simply an
expectation value, while the paramagnetic part is calculated over an expansion series
of unoccupied molecular orbitals. While the diamagnetic part can be calculated at
satisfactory accuracy in semi-empirical methods, the paramagnetic part suffers the
limitations of the expansion series by the fact that a minimal valence basis is used.
In semi-empirical methods it is not straightforward to go towards a basis set limit,
as the change of basis will influence the parametrisation of the method itself. In
addition to the well-known removal of gauge dependence it is therefore absolutely
necessary to reduce the paramagnetic contribution by an efficient gauge transforma-
tion, as for example IGLO or GIAO.

For the same reasons, those applications work best for semiempirical methods
which have either a small paramagnetic contribution (for example which are nearly
spherical symmetric, such as noble gases), or large systems with a large number of
virtual basis functions, which may compensate for the drawback of the minimal
basis to some extent. Similar comments can be made for ab initio methods employ-
ing small basis sets, and the quality of semi-empirical results for fullerenes are com-
petitive with CHF-computations at the 3-21G level (see the fullerene dimer discus-
sion in Chapter 25.).

With the success of density-functional theory, the availability of inexpensive and
performant computational hardware and the development of highly efficient algo-
rithms for quantum-chemistry software, the importance of semi-empirical methods
within quantum chemistry has been strongly reduced. Still, these types of methods
have their niche, for example for orienting computations, evaluation of trends, com-
parison of many isomers and computation of very large molecules.

This conclusion may have been given for any other type of structure, energy or
property computation with semi-empirical methods. However, generally for NMR
computations only one single point calculation is necessary, and in most cases this
is a feasible task, even though it may take a long computing time.
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10.1
Introduction

In order to compare theoretical results with accurate experimental observations, it is
important to account for the motion of the nuclear framework. Nuclear shieldings
and indirect spin–spin coupling constants often show a strong dependence on the
molecular geometry, and studies have demonstrated that the effects of molecular
motion may change NMR properties by more than 10 % [1]. Furthermore, secondary
isotope effects observed in NMR and the temperature dependence of nuclear shield-
ing and indirect spin–spin coupling tensors are usually determined by the ro-vibra-
tional part of the molecular wavefunction alone, necessitating the consideration of
ro-vibrational contributions to these properties. In calculations comparing relative
chemical shifts, however, the errors introduced in the calculation when neglecting
ro-vibrational corrections are often somewhat reduced compared to the case of abso-
lute shieldings, since the ro-vibrational corrections often go in the same direction.
Exceptions to this rule, such as for instance the fluorine shieldings in difluoroben-
zene [2], do exist, however, making it difficult to determine a priori whether the
neglect of ro-vibrational corrections will increase or reduce the difference with
respect to experimental relative chemical shifts.

There are numerous methods for calculating ro-vibrationally averaged molecular
properties, which are all well developed and documented [3–7]. In this chapter we
will focus on the use of second-order perturbation theory for calculating ro-vibra-
tional contributions to NMR properties. To date this is the approach most widely
used for calculating ro-vibrational contributions to polyatomic molecules for these
properties, and other approaches will therefore only be discussed briefly.

In the following we will first describe the calculation of zero-point vibrational con-
tributions to NMR properties within the perturbational approach, before briefly dis-
cussing strategies for calculating secondary isotope effects and the temperature
dependence of the properties within the perturbation formalism. In this formalism
the expressions used to calculate ro-vibrationally averaged molecular properties vary,
depending on the reference geometry used [8–11], the choice of coordinates [12] and
on the presence of additional electric or magnetic fields [13, 14]. We will thus outline
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10 Ro-Vibrational Corrections to NMR Parameters

a general perturbation theory approach, pointing out differences between various
methods where appropriate.

Other approaches for calculating vibrational contributions are then briefly dis-
cussed, before we conclude by giving a few examples of the results that can be
obtained, and their importance in comparison to the electronic contributions.

10.2
Perturbation Theory

In this section, the use of perturbation theory for calculating ro-vibrationally aver-
aged properties will be discussed. We first discuss the calculation of zero-point vibra-
tional effects on the properties, and then discuss isotope and temperature effects.

10.2.1
Zero-Point Vibrational Contributions

The nuclear framework of a molecule is moving even at 0 K, leading to what is com-
monly referred to as zero-point vibrational corrections (ZPVC) to molecular proper-
ties. In order to account for these effects we need to evaluate (using here the nuclear
shielding tensor r as an example)

rh i ¼
W rel RKð Þ
�� ��W

� �

WjWh i ð10:1Þ

where rel is the electronic contribution to the nuclear shielding tensor r(RK), and
where we have explicitly indicated the dependence of the shielding tensor on the
molecular geometry. W is the vibrational ground state wavefunction. Expanding the
nuclear wavefunction in a perturbation expansion, we may write Eq. (10.1) as

rh i ¼
X1

n¼0

r
ðnÞ

D E
¼
X1

n¼0

Xn

k¼0

�
k

k
W
ðkÞ

rel

�� ��kn�k
W
ðn�kÞ

D E�

�
"

1þ
X1

l;m¼1

ð�1Þm
�

k
l
W
ðlÞ
���kl

W
ðlÞ

D E�m
#

ð10:2Þ

where Ær(n)æ is the nth order contribution to the vibrationally averaged shielding ten-
sor considered. In Eq. (10.2) we have also expanded the normalization of the wave-
function in a Taylor expansion around the unperturbed wavefunction W(0). It is
worth noticing that the perturbation expansion only changes the normalization of
W(0) to second or higher orders in k. Since we in the following will only consider
perturbation corrections to the vibrational wavefunction to first order, we will ignore
the contributions arising from the reorthonormalization.
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10.2 Perturbation Theory

In order to proceed, a zeroth-order nuclear Hamiltonian is needed, and this is
commonly chosen to be the regular harmonic oscillator Hamiltonian [15]

H
ð0Þ ¼ 1

2

X

K

P
2
K þ x

2
K Q

2
K

� 	
ð10:3Þ

where QK is the normal coordinate K with a harmonic frequency xK ¼
ffiffiffiffiffiffiffiffi
FKK
p

¼ d2E
dQ2

K
,

with E being the electronic energy of the molecule. PK is the momentum operator
for the same normal coordinate.

The unperturbed ground state vibrational wavefunction can be written as a prod-
uct of harmonic oscillator wavefunctions in the different normal coordinates

W
ð0Þ ðQÞ ¼ U0ðQÞ ¼

Y

K

u
0
K ðQK Þ ð11:4Þ

where un
K is the nth excited harmonic-oscillator state of the Kth vibrational normal

mode.
The anharmonicity of the potential energy surface is treated as perturbations to

this reference Hamiltonian, the nth order Hamiltonian in the perturbation expan-
sion being

H
ð1Þ ¼

X

K

FK QK þ 1
6

X

KLM

FKLM QK QL QM ð10:5Þ

H
ðnÞ ¼ 1

ðnþ 2Þ!
X

KLMN���
FKLMN���QK QL QM QN � � � ; n � 2 ð10:6Þ

where FKLMN_ is the ith derivative of the electronic energy with respect to the nor-
mal coordinates QK, QL, QM, QN _ at some reference geometry.

The first-order correction to the ground-state vibrational wavefunction is
expanded in the full set of virtual excitations from W(0) (Q). Assuming a fourth-
order Taylor expansion of the potential energy surface, the only contributions to the
first-order perturbed wavefunction are from single and triple excitations [8, 10]

W
ð1Þ ðQÞ ¼

X

K

a
1
K U

1
K ðQÞ þ a

3
K U

3
K ðQÞ

h i
þ
X

K 6¼L

b
21
KL U

21
KLðQÞ

þ
X

K 6¼L6¼M

c
111
KLM U

111
KLM ðQÞ ð10:7Þ

where Uklm
KLM (Q), for example, has been obtained from U0 (Q) by exciting the Kth,

Lth, and Mth modes to the kth, lth, and mth harmonic-oscillator states, respectively.
The expansion coefficients in Eq. (10.7) are given by [10]
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a
1
K ¼ � 1ffiffiffi

2
p

x
3=2
K

FK þ 1
4

X

L

FKLL

xL

 !
ð10:8Þ

a
3
K ¼ �

ffiffiffi
3
p

36xK
5=2

FKKK ð10:9Þ

b
21
KL ¼ �

FKKL

4xK
ffiffiffiffiffiffiffi
xL
p ð2xK þ xLÞ

ð10:10Þ

c
111
KLM ¼ �

FKLM

12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xK xL xM
p ðxK þ xL þ xM Þ

ð10:11Þ

and can be calculated using the gradient (FK), the harmonic frequency (xK ¼
ffiffiffiffiffiffiffiffi
FKK
p

)
and cubic force-field (FKLM).

In a similar manner as for the vibrational force field, we expand the shielding
tensor in a Taylor series in normal coordinates around some reference geometry

r Qð Þ ¼ r0 þ r1 þ r2 � � � ¼ rref þ
X

K

dr
dQK

QK

þ 1
2

X

K 6¼L

d
2
r

dQK dQL
QK QL � � � ð10:12Þ

We can now order the contributions to the ZPVC according to the order in k of the
vibrational wavefunction as defined in Eq. (10.2). For the unperturbed wavefunction,
the only non-vanishing terms are those of even order in Eq. (10.12) [8]

r
ð0Þ

D E
¼ W

ð0Þ
r0 þ r2 � � �j jWð0Þ

D E
ð10:13Þ

The first two contributions can be calculated as [8, 10]

W
ð0Þ

r0

�� ��Wð0Þ
D E

¼ r ð10:14Þ

W
ð0Þ

r2j jW
ð0Þ

D E
¼ 1

4

X

K

1
xK

d
2
r

dQ
2
K

ð10:15Þ

156



10.2 Perturbation Theory

The contributions to first order in k only contain terms of odd orders in Eq. (10.12) [8]

r
ð1Þ

D E
¼ 2 W

ð0Þ
r1 þ r3 � � �j jWð1Þ

D E
ð10:16Þ

where the two leading terms can be calculated as [8, 10]
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Although higher-order terms have been investigated for diatomic molecules [3, 16],
most calculations include only the three terms

rh i ¼ W
ð0Þ

r0j jW
ð0Þ

D E
þ W

ð0Þ
r2j jW

ð0Þ
D E

þ 2 W
ð0Þ

r1j jW
ð1Þ

D E
ð10:19Þ

which may alternatively be written in the form

rih ¼ r þ
X

K

dr
dQK

QK ih þ 1
2

X

K

d
2
r

dQ
2
K

Q
2
K

D E
ð10:20Þ

Still, these terms have been shown to account for more than 90 % of the vibrational
contribution to the shielding constants in four diatomic molecules [3].

The discussion has so far been concerned with the expansion of the potential en-
ergy and shielding tensor surfaces around an arbitrary molecular geometry. The
most obvious choice of expansion point is the equilibrium geometry. At this geome-
try, the molecular gradient is zero, and Eq. (10.19) can be reduced to [8,9]

rh i ¼ req þ 1
4

X

K

1
xK

d
2
req

dQ
2
K

� 1
xK

dreq

dQK

X

L

F
eq
KLL

xL

" #
ð10:21Þ
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An alternative expansion point, referred to as the effective geometry, can be found by
minimizing the energy functional [17]

~EE ¼ V
0 þ W

ð0Þ jH0 j W
ð0Þ

D E
ð10:22Þ

with respect to the expansion point. The minimization of Eq. (10.22) is equivalent to
requiring that [10]

F
eff
K þ 1

4

X

L

F
eff
KLL

xL
¼ 0 ð10:23Þ

Inserting Eq. (10.23) into Eq. (10.8) shows that all a1
K coefficients are zero at this

expansion point. In other words, the leading anharmonic contributions in Eq. (10.16)
vanish at this geometry, and the vibrationally averaged shielding tensor is then
given as [11]

rh i ¼ reff þ 1
4

X

K

1
xK

d
2
reff

dQ
2
K

ð10:24Þ

and by comparing with Eq. (10.20) we note that the effective geometry is character-
ized by having the averaged linear displacements vanish. Since the force field in
Eq. (10.24) is calculated at a non-equilibrium geometry, spurious imaginary frequen-
cies may occur [18], and care has to be used in how these are treated. Most often
these imaginary frequencies are related to delocalized vibrational motions such as
internal rotations of methyl groups. We note that the determination of the effective
geometry requires the same information as required in Eq. (10.21), since the effec-
tive geometry has to be determined using parts of the cubic force field [10]

Q
eff
K ¼ Q

eq
K � 1

4x
2
K

X

L

F
eq
KLL

xL
ð10:25Þ

This expression is identical to the expression one would obtain for the vibrationally
averaged geometry using Eq. (10.19), and thus corresponds to what is often denoted
rz geometries. For diatomic molecules it has been shown that the use of the effective
geometry as an expansion point reduces the magnitude of the higher-order anhar-
monic corrections compared to an expansion around the equilibrium geometry [16].
The importance of the anharmonic corrections does of course, in general, vary, but a
study of different molecular properties for four diatomics showed that the use of the
effective geometry recovered 98–106% of the exact zero-point vibrational correction,
whereas the same span for the use of the equilibrium geometry was 88–101%. The
differences between the two approaches are therefore small, although the effective
geometry in general had a much smaller deviation from the exact result than the
equilibrium geometry.
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As we have demonstrated, the calculation of the ZPVCs to a molecular property is
in the perturbation approach reduced to the calculation of a series of geometrical
derivatives of the molecular energy and the properties. To the best of our knowledge,
there are no analytical implementations of the derivatives needed for spin–spin cou-
pling constants or, in the case of nuclear shieldings, analytical implementations of
shielding derivatives that also solve the gauge origin dependence. However, there
are several ways that such derivatives can be evaluated numerically. One approach is
to fit an analytic hypersurface to the properties and energies calculated at different
geometries. The derivatives can then be obtained by differentiation of the fitted sur-
face [19–27]. Alternatively, the necessary derivatives may be calculated numerically
[28], relying as much as possible on available analytical derivatives [29]. Such an
approach can easily be automated, making the calculation of vibrational corrections
straightforward, though time consuming. For instance, if we assume that analytical
gradients and no property derivatives are available analytically, we will need to carry
out 6N–11 property and gradient calculations, where N is the number of atoms, to
get the necessary derivatives. The calculation of zero-point vibrationally averaged
NMR properties, and spin–spin coupling constants in particular, will therefore be
dominated by the time needed for the calculation of the property derivatives.

10.2.2
Isotope Effects

Whereas the electronic wavefunction in the Born–Oppenheimer approximation is
independent of the exact nature of the nuclei, and thus does not depend on the
nuclear magnetic moments or the nuclear masses, the NMR parameters are not.
Through their dependence on the nuclear magnetic moments, the substitution of,
for instance, a hydrogen atom with a deuterium will lead to a large change in the
NMR signals observed for this nucleus, known as primary isotope shifts. Although
small changes in the chemical shielding of the nucleus will also occur due to the
change in the nuclear part of the wavefunction when the mass of the nucleus is
altered, these effects are small and not easily extracted due to the large shift in the
observed resonance frequency of the nucleus. For the same reason has primary iso-
tope effects on the indirect spin–spin coupling constants not received much atten-
tion.

More interesting are the secondary isotope effects, that is, the change in a shield-
ing constant or indirect spin–spin coupling constant due to the change in the mass
of a different nucleus, since this effect is solely determined by the vibrational wave-
function of a molecular species. An example of a secondary isotope effect is the
change in the proton shielding of water when substituting 16O with 17O. Since the
effect is determined by the changes in the vibrational wavefunction only, no differ-
ences would be found for two isotopomers if only the contributions from the elec-
tronic wavefunction were considered.

It is worth noticing that if we, for instance, substitute one of the protons in water
with deuterium, the symmetry of the total electron-nuclear wavefunction is reduced
in comparison to the most common isotopomer of water H2

16O, even though the
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electronic part of the wavefunction retains its full C2v symmetry. This has the conse-
quence that elements of the shielding and/or spin–spin coupling tensors that would
otherwise vanish due to symmetry may now become accessible to investigation.

In the previous section the ZPVC to the properties was written in terms of deriva-
tives with respect to normal coordinates. This choice of internal coordinates is iso-
tope dependent, and thus not very efficient for studying all isotopomers of a mole-
cule. Since the normal coordinates differ for the different isotopomers, the deriva-
tives will also differ. Consequently, in order to calculate the secondary isotope effect,
the complete set of derivatives would have to be calculated for all isotopomers.

One way to avoid this problem in the calculation of property derivatives, which
usually are the most expensive derivatives, is to use a set of internal coordinates
using the full symmetry of the electronic wavefunction. The normal coordinates of a
given isotopomer are related to these internal coordinates through a non-linear
equation [30]

Si ¼
X

K

LK
i QK þ 1

2

X

KL

LKL
i QK QL ð10:26Þ

where
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i ¼
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�����
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�����
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From this we find that
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Inserting these two expressions into Eq. (10.21) we get at the equilibrium geometry
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as previously given in Ref. [12].
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The secondary isotope effect between two isotopomers, using the normal coordi-
nates QK and QK¢, can then be given by
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where all isotope dependences have been incorporated into the parameters govern-
ing the vibrational wavefunction. We therefore note that if the vibrational wavefunc-
tions of two isotopomers do not differ much, the secondary isotope effect will be
small.

Note that although these equations make the property derivatives isotope inde-
pendent, it will no longer suffice to calculate the diagonal elements of the second
derivative of the property, the entire second derivative matrix would have to be calcu-
lated. Thus, if only a few isotopomers are being studied, the recalculation of the
quantities in Eq. (10.21) for each isotopomer would still be the most efficient
approach. In order to reuse the property derivatives, we also need to choose an iso-
tope-independent expansion point, such as the equilibrium geometry. Isotope-de-
pendent geometries, such as the effective geometry, change for each isotopomer,
and the property derivatives will therefore differ for each isotopomer.

10.2.3
Temperature Effects

The discussion has so far focused on the effects of the zero-point vibrational motion
of the nuclear framework on the NMR parameters. Although dominant, these
effects cannot account for the observed variations of NMR parameters as the temper-
ature changes. The observed temperature changes are primarily due to two effects:
(1) the populations of higher vibrational states, and (2) centrifugal distortion. Of
these, the latter is most often dominant at normal temperatures.

Eqs. (10.15) and (10.17) for calculating ZPVCs to the NMR properties can very
easily be extended to the vibrational average of a molecular property in an arbitrary
vibrational state described by the vibrational quantum numbers mK [9]
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In order to estimate the temperature dependence of the property, we assume that
the populations of the excited states are determined by a Boltzmann distribution. By
averaging over all possible vibrational states using a Boltzmann weighting of the
population of the excited states, the vibrationally averaged molecular properties at
thermal equilibrium may be calculated as [9, 31]

W
ð0Þ

r2j jW
ð0Þ

D E
¼ 1

4

X

K

1
xK

d
2
r

dQ
2
K

coth
xK

2kB T

� �
ð10:35Þ

W
ð0Þ

r1j jW
ð1Þ

D E
¼

ffiffiffi
2
p X

K

dr
dQK

a
1
Kffiffiffiffiffiffiffi
xK
p ð10:36Þ

where

a
1
K ¼ � 1ffiffiffi

2
p

x
3=2
K

FK þ 1
4

X

L

FKLL

xL
coth

xL

2kB T

� � !
; ð10:37Þ

and kB is the Boltzmann constant.
It is worth noticing that similar modifications can be applied to define an effective

geometry at thermal equilibrium
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We note that there will be a unique effective geometry for each temperature [32]. This
is in accordance with the interpretation of the effective geometry as the rz geometry,
which is temperature dependent. Clearly, the approach based on determining the
effective geometry becomes computationally more expensive for the study of tem-
perature effects than that based on an expansion around the equilibrium geometry,
due to the need for calculating the properties and property derivatives at several ge-
ometries. The change in the property when changing the effective geometry is the
most important contribution to the temperature dependence of the NMR properties,
especially when centrifugal distortions are taken into account [32].

The population of higher rotational states does not in itself change the value of
the NMR properties since there is no dependence of the calculated properties on the
rotational state. However, the coupling of the rotational and vibrational motion in
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what is referred to as centrifugal distortions, that is, the elongation of bonds as the
rotational state of the molecule increases, give important contributions to the ro-
vibrational corrections.

In evaluating the centrifugal distortions, it is customary to assume that the spac-
ings of the rotational energy levels are much smaller than kBT, allowing for the use
of the law of equipartitioning of the energy, leading to the following contribution to
the ro-vibrational corrections due to centrifugal distortions [9]
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In this equation, Iaa is the moment-of-inertia tensor at the equilibrium geometry,
and aaa

K is the coefficient of expansion of Iaa in normal coordinate QK [9].
We note that centrifugal corrections will also affect the effective geometries [32]
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10.3
Other Approaches for Calculating Vibrationally Averaged NMR Properties

As previously mentioned, there are other approaches for calculating the vibrational
contributions to molecular properties. The list presented here is not meant to be
exhaustive, but intended to give the reader a flavor of other approaches in use for
calculating vibrationally averaged NMR properties. Although each of these methods
have more severe limitations on the size of molecular systems amenable for accu-
rate investigations than the perturbation approach, they also have certain advan-
tages.

In one approach the vibrational contributions to the properties are determined by
solving the vibrational differential equation numerically [5, 33–35]. This is usually
done either by the Numerov–Cooley method [4, 36] or the finite element method
[37]. By calculating the vibrational contributions in this way, the vibrational wave-
function can be determined practically exactly. The accuracy of the vibrationally aver-
aged property is thus determined by the quality of the electronic wavefunction
alone. In practice the method is however limited to diatomic molecules, where the
potential energy surface is one-dimensional, making the approach not applicable for
most molecular systems.

The main limitation in calculating the ro-vibrational contributions to properties
in polyatomic molecules using perturbation theory is the type of potential energy
surface that can be treated. Perturbation theory will only account for the ro-vibra-
tional motion on single-well potential energy surfaces, or a potential energy surface
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where tunneling between the different wells is insignificant. The approach does
therefore not account for tunneling effects in the vibrational wavefunction, such as
those giving rise to the large H–H scalar quantum exchange spin–spin coupling
constants found in some transition metal hydrides [38–43]. Although we will not go
into the details of this effect (the interested reader is instead referred to Ref. [44]), it
is worth noting that this coupling constant can be viewed as arising from the
exchange of protons in the metal hydride complex, and that they often display an
exponential increase with increasing temperature.

One way to calculate the ro-vibrational average of a molecular property on all
types of potential energy surfaces, is by quantum Monte-Carlo (QMC) simulations
on the nuclear framework (see for instance Ref. [6]). Given enough sampling points,
the QMC approach will solve the vibrational problem equally well within the limits
of accuracy imposed by the electronic structure method used. The disadvantage is
that property calculations are needed in a large number of nuclear configurations,
typically in the range of about 6000 for small- to medium-sized hydrocarbons [45,
46]. This puts serious constraints on the electronic structure method that can be
used in such simulations, thus reducing the overall quality of the results.

Another approach that can be utilized for all types of potential energy surfaces is
to use snapshots of molecular dynamics simulations (or the entire dynamics runs)
[47–51], so far most commonly used in order to model solvent effects, as such stud-
ies will implicitly include the motion of the nuclear framework. However, since
there is no representative “unperturbed” reference system, such an approach will, in
general, not allow the vibrational contribution to the calculated molecular property
to be isolated. The approach furthermore shares the same problem as the QMC
approach in that a large number of nuclear configurations may be needed. For more
details about molecular dynamics simulations, see Chapter 11 by Searles and
Huber.

Let us finally mention that a vibrationally averaged property can also be calculated
by deriving the vibrational wavefunction variationally [7] from some model Hamilto-
nian (see for instance Ref. [52]). These vibrational wavefunctions can in turn be
used to calculate the vibrational average of some property as an expectation value,
for instance for shielding or spin–spin coupling constants [53, 54].

10.4
Examples of Vibrational Contributions to NMR Properties

We finally give a few illustrative examples of the importance of including vibrational
corrections in the calculation of NMR properties. Our purpose is not to give an
exhaustive description of available investigations in the literature, but rather to give
illustrations of the importance of ro-vibrational corrections in accurate calculations
of nuclear shieldings and indirect spin–spin coupling constants. We also hope that
the reader will get an impression of the quality of the calculated results that can be
obtained for temperature effects and isotope shifts.
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10.4.1
Nuclear Magnetic Shielding Constants

The most comprehensive and accurate studies of ro-vibrational corrections to dia-
tomic molecules have been presented by Sundholm, Gauss and Sch�fer [33, 55].
They presented highly accurate CCSD(T) calculations for the nuclear shieldings of
five diatomic molecules, calculating the ro-vibrational corrections numerically. Al-
though the vibrational corrections to these molecules have been studied in several
other investigations, we consider the results of Sundholm et al. to be the most accu-
rate presented to date, and therefore focus our discussion on their results.

The results from their investigations are collected in Tab. 10.1. From this table we
see that the zero-point vibrational corrections vary from about –0.35 ppm for pro-
tons, to more than –30 ppm for the fluorine nucleus in F2. For F2, the ZPVC
accounts for almost 15% of the vibrationally averaged shielding. The changes in the
shieldings when increasing the temperature from 0 K to 300 K is approximately an
order of magnitude smaller than the zero-point vibrational corrections.

Table 10.1. Absolute shieldings, zero-point vibrational corrections, and temperature corrections
calculated at the CCSD(T) level for selected diatomic molecules. Results taken from Ref. [33].
All results reported in ppm.

Molecule Nucleus r0 rZPV rT=300 K–rZPV <r>300 K Experiment

1H2 H 26.667 –0.355 –0.014 26.298 26.363(4)
1H19F H 29.01 –0.323 –0.035 28.48 28.5(2)
1H19F F 419.68 –10.00 –0.42 409.2 410(6)
13C16O C 5.29 –2.24 –0.15 2.9 1.0(12)
12C17O O –53.5 –5.73 –0.35 –59.3(20) –42.3(172)
15N2 N –58.7 –4.03 –0.24 –62.7(10) –61.6
19F2 F –197.53 –30.87 –4.69 –225.5 –232.8(60)

Let us briefly discuss the results for C17O in Tab. 10.1 in some more detail. The
result for this molecule differs significantly from the experimental estimate, al-
though within the rather generous experimental error bar. Since C17O is the basis
for the absolute shielding scale of oxygen, Sundholm et al. proposed a new absolute
shielding scale for 17O of –59.34–2 ppm for the oxygen shielding in C17O based on
their accurate calculations.

This value was corroborated by RASSCF calculations by Vaara et al. on the water
molecule [56]. Since the electron correlation problem is much simpler in water than
in CO, the absolute shielding in water is an attractive alternative for establishing an
absolute shielding scale for oxygen. The ro-vibrational corrections were however cal-
culated using perturbation theory. By using the absolute shielding constant calcu-
lated for the oxygen nucleus in water and the experimental chemical shift between
water and carbon monoxide, they proposed an absolute shielding constant for C17O
of –62.3–1.4 ppm. This result was in turn corroborated by a recent reinvestigation of

10.4 Examples of Vibrational Contributions to NMR Properties 165



the spin–rotation constant of C17O [57], which leads to an absolute oxygen shielding
constant for C17O of –62.7–0.6 ppm [58].

In an investigation of more than 40 different organic molecules [18], it was found
that the ZPVCs to the proton shieldings were transferable between molecules,
depending only on the functional nature of the carbon to which the protons were
attached. We have collected the transferable ZPVCs reported in Ref. [18] in Tab. 10.2.
The reason for this transferability of the proton ZPVCs can be traced to the local
nature of the vibrational motion of the proton, which only affects other nuclei to a
very limited extent during their vibrational motions. Similar transferability of the
zero-point vibrational corrections was not observed for the shielding constants of
other nuclei such as carbon [2, 18, 59] or fluorine [2].

Table 10.2. Transferable zero-point vibrational corrections
to proton shieldings attached to different functional groups
as given in Refs. [3, 18]. All results reported in ppm.

Molecule Average ZPV to rH

Methane –0.59
–CR2H –0.70–0.11
=CRH –0.46–0.13
”CH –0.76–0.01
H-CRO –0.55–0.06
RO-H 0.48–0.13
RN-H2 –0.18–0.03
RCOO-H –0.49–0.06
Ar-H –0.39–0.06

Turning to isotope shifts we will discuss only briefly recent calculations on water
[56, 60] and the series of molecules CX2 (X=O,S,Se,Te). For water, several highly
accurate calculations of the isotope shifts have been presented, and a few of these
are collected and compared to experimental observations in Tab. 10.3. As can be
seen, good agreement is observed for most of these isotope shifts, which has to be
considered impressive considering the small magnitude of some of these isotope
shifts such as for instance the shifts due to oxygen isotopic substitution, changing
the proton shielding by only 1–2 ppb. There are, however, fairly large differences
between the different theoretical results despite the fact that both calculations used
MCSCF wavefunctions with only slightly different active spaces. The reasons for
these discrepancies remain unclear, though the fact that Ref. [56] used a computed
force field, whereas Ref. [60] used an experimentally derived force field may be one
important source of these observed differences.

In cases where relativistic effects become important, and in particular spin–orbit
effects (see Chapter 13 by Vaara, Manninen and Lantto and Chapter 14 by Autsch-
bach), the vibrational corrections may also be affected. The most striking example of
this is the proton shieldings in hydrogen bromide and hydrogen iodide [61, 62]. At
the non-relativistic level, the zero-point vibrational correction in hydrogen iodide is

10 Ro-Vibrational Corrections to NMR Parameters166



calculated to be –0.26 ppm, whereas the inclusion of the spin–orbit contribution
reverses the sign of the vibrational correction, leading to a ZPVC of +0.99 ppm. The
reason for this dramatic change in the ZPVC is the coupling of the magnetic
moment to the external magnetic field through the spin–orbit and Fermi contact
operators, and this contribution shows a very strong and oppositely directed geome-
try dependence compared to the non-relativistic contributions to the shielding. The
importance of spin–orbit contributions to the geometry dependence of nuclear
shieldings was also nicely illustrated for the series of molecules CX2 (X=O,S,Se,Te),
where it was possible to reproduce the experimentally observed secondary isotope
shifts on carbon only when spin–orbit contributions were included in the calcula-
tions [63, 64].

Table 10.3. Isotope shifts in water measured for the oxygen relative to H2
17O, and for the proton

shieldings relative to H2
16O. All results reported in ppb.

Method Ref. HD17O
rO

D2
17O

rO

HD16O
rH

H2O
rH

MCSCF [56] 1600 3180 43 2
MCSCF [60] 1360 2700 39 2

Exp. (cyclohexane) [86] 1550(50) 3090(50)
Exp. (gas phase) [87] 4040(350)
Exp. (nitromethane) [88] 1386(1) 2764(1)
Exp. (liquid) [89] 3080(200)
Exp. (acetone) [90] 30(3)
Exp. (liquid) [91] 2
Exp. (nitromethane) [92] 1.1(1)

The field of temperature effects on shieldings in polyatomic molecules in the gas
phase was pioneered, experimentally as well as theoretically, by Jameson and co-
workers in the early 90s [65–68]. Considering the crudeness of the theoretical meth-
ods used in these early works (both in terms of the basis sets that could be used as
well as the fact that most of the calculations were done at the Hartree–Fock level),
the agreement between the theoretical and experimental results is very good. We
would in particular like to point out the analysis of NH3 and PH3, where it was dem-
onstrated that the non-local inversion mode of the ammonia molecule had to be
modeled explicitly rather than by using a perturbation expansion in order to be able
to reproduce the experimentally observed temperature dependence of the isotope
shifts. In contrast, a perturbation analysis proved sufficient in the case of PH3 due
to the much higher barrier to inversion in this molecule. Unfortunately, little atten-
tion has been paid to the use of the temperature dependence of nuclear shieldings
as a means to understand intermolecular interactions and the details of the ro-vibra-
tional wavefunction since these early works.
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10.4.2
Indirect Spin–Spin Coupling Constants

Theoretical investigations of the ro-vibrational contributions to indirect spin–spin
coupling constants, including secondary isotope effects, have been investigated in a
number of studies. These effects have usually been calculated using either the sec-
ond-order polarization propagator approach (SOPPA) [19–22, 24, 69, 70] or MCSCF
linear response theory [71–73].

Lately, DFT has also been shown to give good estimates of the zero-point vibra-
tional contribution to spin–spin coupling constants [1]. Due to the low cost of DFT
calculations, it has been possible to extend the size of the molecules, making it pos-
sible to investigate vibrational contributions to indirect spin–spin coupling constants
for molecules consisting of 10–15 atoms.

Although investigations for larger molecules are beginning to appear [1, 74], most
studies of ro-vibrational contributions to indirect spin–spin coupling constants have
been carried out on somewhat smaller molecules. For these molecules, the differ-
ence between theory and experiment is often no larger than the ro-vibrational con-
tributions, and the inclusion of these effects reduces the discrepancy between theory
and experiment significantly [1, 75].

As an example of this we have listed the single point calculations, ro-vibrational
contributions and experimental results for three small molecules in Tab. 10.4. The
single-point calculations are all calculated using a RASSCF type wavefunction [75–
77], whereas the ZPVC DJZPV are calculated from Eq. (10.21) using DFT [1]. The
temperature effects for C2H2 [22] and CH4 [78] are calculated at the SOPPA(CCSD)
level of theory, using isotope-independent versions of Eq. (10.35), (10.36) and
(10.39). For HF, the temperature effect is calculated using a RASSCF type wavefunc-
tion from a somewhat different set of equations [72, 79].

Table 10.4. Different contributions to the ro-vibrational averaged indirect nuclear spin–spin cou-
pling constants (Hz); JT=300 = Jeq + DJZPV + DJT=300 K

Ref. 1H19F
1JH,F

Ref. 13C2
1H2

1JC,C
1JC,H

2JC,H
3JH,H

Ref. 13C1H4
1JC,H

2J*H,H

Jeq [76] 544.2 [75] 184.7 244.3 53.1 10.9 [77] 120.6 –13.2
DJZPV [1] –37.7 [1] –9.3 4.7 –2.8 –0.1 [1] 5.3 –0.7
DJT=300 K [72] –2.8 [22] 1.0 0.0 0.5 0.1 [78] 0.1 0.0
JT=300 503.7 176.4 249.0 50.8 10.9 126.0 –13.9
JExp. [80] 500 [93] 174.8 247.6 50.1 9.6 [24] 125.3 –12.8a

a Experimental 2 J*HH found from 2JHD using 2J*HH =
cH
cD

2JHD

Considering the values found for the ZPVCs in Tab. 10.4, it is clear that inclusion of
these effects may change the indirect spin–spin coupling constants significantly.
The results in this table suggest that the ZPVC may be as large as 7% of the equilib-
rium value, and it has in fact been shown that it may be larger than 10% for some
smaller coupling constants [1,74]. The importance of including vibrational effects is
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particularly evident for the 1JHF coupling constant in HF. Although estimates for
the ZPVC of this coupling constant vary, calculations and experimental results indi-
cate that this contribution is somewhere between 25 and 40 Hz [1, 72, 80].

Comparison of the ZPVCs with the temperature effects suggests that changing
the temperature from 0 to 300 K changes the ro-vibrational contribution by 10–15%
[19–22, 24, 69, 70], as illustrated in Tab. 10.4. The only exception is the 2JCH coupling
constant in C2H2 where the temperature effect is found to be as large as the ZPVC.
However, the ZPVC is almost negligible for this coupling constant. For the tempera-
ture effects, the largest change in the indirect spin–spin coupling constant is found
for the 1JHF coupling constant in HF, where the coupling constant changes by
2.8 Hz when the temperature is increased from 0 to 300 K.

Comparing the calculated total value of the spin–spin coupling constant,
JT=300 = Jeq + DJZPV + DJT =300 K, with experiment, we see that all numbers are within
a few Hz of the experimental values. The importance of including nuclear motion is
obvious when comparing this discrepancy with the magnitude of the ro-vibrational
corrections which may be as large as 30 Hz.

As an example of calculations of ZPVCs for larger molecules, the results for ben-
zene [1] are listed in Tab. 10.5. The best calculated results using both MCSCF [81]
and DFT [1] are also listed in this table, together with a set of experimental results
[81, 82]. As seen, the inclusion of ZPVC does not improve the agreement between
the single point calculations and experiment. Based on the quality of the DFT ZPVC
[1] to the indirect spin–spin coupling constants, better single point results for ben-
zene are clearly needed.

Table 10.5. Indirect nuclear spin-spin coupling constants of benzene (Hz).
DFT results are collected from Ref. [1], while the MCSCF results are found in
Ref. [81]. Experimental results are found in Ref. [81], except for the HH-cou-
plings which are collected from Ref. [82].

Jeq
B3LYP a Jeq

MCSCF b DJZPV
B3LYP a Jtot

c

1JC,C 60.0 70.9 –0.1 56.0
2JC,C –1.8 –5.0 –0.8 –2.5
3JC,C 11.2 19.1 0.7 10.1
1JC,H 166.3 176.7 4.8 158.6
2JC,H 2.0 –7.4 –0.4 1.0
3JC,H 8.0 11.7 0.5 7.5
4JC,H –1.2 –1.3 –0.3 –1.3
3JH,H 8.7 0.5 7.5
4JH,H 1.3 0.2 1.4
5JH,H 0.8 0.1 0.7

a Ref. [1].
b Ref. [81].
c Ref. [81], and Ref. [82] for the HH coupling constants.

There have recently been several theoretical studies published concerning secondary
isotope effects using the SOPPA(CCSD) approach [19–22, 24, 69, 70]. There have
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also been many experimental studies in this area, which have been reviewed several
times [83–85].

When discussing secondary isotope effects, it is useful to distinguish between iso-
topic substitution of hydrogen and of heavier elements. The effects of isotopic sub-
stitution in heavier elements is exemplified in Tab. 10.6, where both theoretical and
experimental changes in the ro-vibrational contributions are given for H13C13CH
relative to H12C13CH at 300 K [22]. We note that the secondary isotope effects involv-
ing the substitution of heavier elements are very small. The small magnitude of the
secondary isotope effects is due to the relatively small change in the nuclear mass,
which again implies that the nuclear wavefunction does not change much. Since the
error bars in the experimental results are of the same magnitude as the secondary
isotope effects [22], no conclusions as to the quality of the theoretical results can be
drawn based on a comparison for these isotopomers.

Table. 10.6. Secondary isotope effects, DJsec, in
H13C13CH relative to H12C13CH at 300 K. The total ro-
vibrational contributions, Jro-vib, are also listed (Hz) [22].

Jro-vib DJsec

Calc. Exp.

1J(C,H) 4.866 –0.001 –0.013
2J(C,H) –3.703 0.019 0.016
3J(H,H) –1.272 0.001 0.009

Isotopic substitution of hydrogen, however, changes the nuclear wavefunction sig-
nificantly. As illustrated for the 1JC,H coupling constant in methane, see Tab. 10.7,
substitution of hydrogen might change the ro-vibrational contribution to the indirect
spin–spin coupling constants by up to 25%. However this is not always the case, as
illustrated for 2JH,D in Tab. 10.7. For this coupling constant the secondary isotope
effect is almost negligible compared to the ro-vibrational contribution. A compari-
son of the SOPPA(CCSD) calculations and the experimental results for 1JC,H sug-
gests that this theoretical approach can calculate the secondary isotope effect quite
accurately. The theoretical and experimental results differ by about 10%.

Table 10.7. Secondary isotope effects at 300 K, DJsec , in 1J(C,H) and
2J(H,D) relative to 13CH4 and 13CH3D respectively. The total ro-vibrational
contributions, Jro-vib, are listed (Hz) [20].

1JC,H
ro-vib D1JC,H

sec

Calca Exp.b
2JH,D

ro-vib D2JH,D
sec

Calc. a

13CH3D 4.737 –0.397 –0.356 –0.688
13CH2D2 4.343 –0.791 –0.689 –0.001
13CHD3 3.956 –1.179 –1.046 –0.687 0.001

a Ref. [20]. b Ref. [31].
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It is worth noting that the calculations published so far suggest that secondary
isotope effects are almost unaffected by temperature changes [22], and almost all of
the secondary isotope effects can therefore be estimated by considering the ZPVC
only.

10.5
Summary

We have in this chapter briefly reviewed the perturbation theory approach for calcu-
lating ro-vibrational corrections to NMR parameters at an arbitrary expansion point.
Emphasis has been put on describing the computational considerations that have to
be made in the choice of expansion point and coordinate system for the perturbation
expansion. We have also given a few examples of theoretical calculations of zero-
point vibrational corrections, isotope shifts and temperature effects on the nuclear
magnetic shielding constants and indirect spin–spin coupling constants. We have
demonstrated that modern ab initio calculations of NMR parameters have reached
such a high level of accuracy that the effects of the motion of the nuclear framework
cannot be ignored when comparing with highly accurate experimental observations.
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11.1
Introduction

Although in some cases the gas phase NMR parameters may be close to those of a
molecule in its solvent, in cases where there are strong interactions between the
solvent and the molecule studied, this is not the case. This is particularly important
in solutions such as aqueous solutions where the solvent is polar, and hydrogen
bonding may occur. The calculation of NMR parameters for liquids has only become
possible in the last 15 years. Most accurate calculations of this type involve the use
of fluid simulations to provide typical fluid configurations, in conjunction with a
quantum chemical calculation to determine the NMR parameter of interest. Al-
though fluid simulations and reasonably accurate quantum mechanical calculations
of molecules were possible well before this time, the complication that delayed the
development of the calculation of these properties was the necessity for considering
intermolecular interactions in the quantum mechanical calculations when fluids are
treated. This generally requires much larger basis sets with polarisation functions
and diffuse functions and inclusion of electron correlation must be at a higher level.
(see Ref. [1]).

Today it is possible to calculate NMR properties of liquids which are of similar
accuracy to experiment for electric field gradients (EFGs) and chemical shifts for
liquids composed of small molecules. Apart from direct predictive capacities, the
advantage of determining these parameters using molecular dynamics simulations
in conjunction with quantum mechanical calculations is that the simulations give
us a clear picture of the microscopic structure of the fluid and may be able to lead to
models of the fluid and response of NMR properties to liquid state conditions.

In this chapter we will outline the current approaches in which simulations are
combined with quantum mechanical calculations to determine NMR properties,
and highlight some important investigations that have been carried out. An over-
view of work in this field until approximately the end of 2000 is included in our
chapter in Encyclopedia of Nuclear Magnetic Resonance: A Supplement [2], and we will
refer to that review for details of work discussed there. Another important review in
this field [3] discusses ab initio methods for the calculation of solvent effects on the
NMR shielding and spin–spin coupling. For more detailed discussions on the use of
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11 Molecular Dynamics and NMR Parameter Calculations

extended systems and continuum solvent models, the reader is referred to Chapter
16 by Mauri and Pickard and Chapter 12 by Ciofini.

Molecular dynamics (MD) simulation is a well established technique for the
study of liquids and provides a means of determining structural and dynamic prop-
erties and understanding the structure of the fluid and dynamics in fluids on a mo-
lecular level. It can be combined with ab initio quantum chemical calculations to
determine NMR parameters. Molecular dynamics simulations involve modeling a
liquid by treating each molecule or atom as a particle. An initial configuration of the
liquid is generated and the forces on each atom (or molecule) are calculated. In the
usual ’classical� MD simulations, a force field is determined from a potential energy
hypersurface (that is developed using empirical methods, quantum mechanical
methods, or a combination of these before the simulation is commenced). The
forces are then used in Newton�s equations of motion to update the configuration.
This process is repeated to generate a trajectory (a contiguous set of configurations)
for the fluid. Usually, the microcanonical ensemble is explored by the trajectory,
however other ensembles can be modeled by modification of the equations of
motion [4]. Two extensions of the classical MD simulations that incorporate the
quantum mechanics more thoroughly are the Born–Oppenheimer (BO) MD simula-
tions where the forces at each timestep are calculated quantum mechanically and
the classical Newtonian equations of motion are solved, and the ab initio Car–Parri-
nello (CP) MD simulations, where quantum mechanical calculations are performed
at each step of the simulation to solve the Car–Parrinello equations of motion [5].

In Section 11.2 we summarize the methods that are currently employed to deter-
mine NMR properties of liquids. In Section 11.3 we discuss the NMR parameters
that have been calculated using quantum mechanical methods in conjunction with
molecular dynamics simulations, highlighting important recent developments and
examples of systems that have been studied. The most thoroughly investigated sys-
tem is liquid water due to the importance of this system and the significant differ-
ence in the properties of the gas phase water monomer and the liquid water sys-
tems. A comparison of results obtained for liquid water using different methods will
therefore be presented in Section 11.3.

11.2
Methods

11.2.1
The Cluster Method [2, 3]

In the cluster method, quantum chemical calculations are carried out on an ensem-
ble of supermolecules, which are clusters of molecules representing the molecule of
interest surrounded by solvent. In order to ensure that the ensemble of supermole-
cules properly represents the liquid, the clusters are generated using Monte Carlo
(MC) simulations or from single configurations (�snapshots’) of a classical simula-
tion trajectory formed using molecular dynamics (MD) simulations [4]. In the clus-
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ter method, a molecule is randomly selected from the molecules in the MC or MD
liquid snapshot, and the configuration of molecules near the central molecule is
used to form the cluster. The cluster method is illustrated in Fig. 11.1.

Generally, in order to adequately model a bulk liquid, and thus to obtain clusters
of the correct structure, the MC or MD simulations involve hundreds or thousands
of molecules in periodic boundary conditions [4]. However, for calculations of NMR
parameters, it has been shown that the clusters extracted from this bulk liquid as
input for the quantum mechanical calculations can be considerably smaller [6]. The
size of the cluster will vary with the size of the molecule, the solvent, the parameter
to be calculated and the accuracy required. For determination of the deuterium QCC
in water, clusters of five molecules were found to be adequate [6], whereas for chem-
ical shifts in water more than 13 molecules may be necessary [7]. Naturally, the pre-
cision of the calculation is improved with the number of clusters considered, and
the number of clusters included must consider a reasonable balance between the
time required for the calculation and the thoroughness of sampling of the liquid
state ensemble.

In CPMD or BOMD simulations, at each step of a simulation an ab initio calcula-
tion is carried out using all the molecules in the unit cell. These potentially provide
a more realistic model of the system, however the time required for the calculations
is considerably longer and therefore smaller unit cells must be used and simulation
times are inevitably much shorter, limiting the sampling of the liquid state phase
space. Use of density functional theory (DFT) has made simulations of small sys-
tems feasible using these methods. Clusters of molecules can be generated using
these simulations in the same way that they are generated using classical simula-
tions, and the properties can be calculated.

177

Figure 11.1 In the cluster method one (as in
the figure) or more snapshots from a simula-
tion are used to extract clusters around atoms
of interest. Here clusters of size five are
selected around water protons of interest (dark

proton in the center of the clusters) to calculate
the proton chemical shielding. Each cluster is
treated as a supermolecule in a quantum chemi-
cal calculation and the average is obtained to
yield the chemical shielding in the liquid.
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The limitations of CPMD simulations are demonstrated by B�hl and co-workers
[8] where, for a highly charged system ([Fe(CN)6]4–), CPMD simulations were
unable to produce reliable results for the 57Fe chemical shift due to interactions be-
tween periodic images of the ion in the simulations, which produced unreasonable
structures. This problem is unavoidable using CPMD due to the restricted system
size that can currently be considered (in Ref. [8] a complex ion surrounded by 44
water molecules was simulated). To circumvent this problem, simulations of a drop-
let of 449 water molecules surrounding the complex ion were carried out. In order
to reduce the computational effort required, while allowing study of a sufficiently
large system that boundary effects would be negligible could be studied, the BOMD
simulations embedded a molecular mechanics calculation on the water molecules
in a quantum mechanical treatment of the complex ion. This method enabled accu-
rate determination of the 57Fe chemical shift [8, 9] in solution.

In some cases, the main effect of the solvent molecules on the molecular property
is due to electrostatic effects [10] and such a solvent in the cluster can be modeled as
a simple distribution of charges (an electrostatic model). However, in general, the
full electronic effects should be considered using a quantum chemical calculation.
In order to optimize the results obtained for NMR properties of fluids, the quantum
chemical calculations on the clusters can be designed explicitly for the problem to
be solved. In the calculation of local properties, such as an electric field gradient
EFG or a chemical shift, a very accurate basis set is required close to the location of
interest, smaller basis sets in the next region and only small basis sets far away. This
scheme was developed under the name “basis sets of high local quality“ in the early
eighties [2].

If clusters are selected randomly from MC or MD configurations the method can
only be used to obtain static properties like chemical shifts or nuclear quadrupole
coupling constants (NQCCs). However it is also possible to select clusters as a time
sequence from one molecular trajectory, so that time-dependent properties like the
relaxation time can be calculated, although with limited statistical accuracy (see e.g.
Ref. [11]).

The cluster method was developed in the early 1990s and since then has been
used to calculate various liquid state properties. Algorithms have been developed to
calculate properties including vibrations [12], NQCCs [6], chemical shifts [13], spin–
spin couplings [14], electronic spectra [15], and EPR hyperfine couplings [16]. These
algorithms have been applied extensively since these early papers and extended to
study a wide range of liquids. In this chapter we will discuss the calculation of
chemical shifts, NQCCs, EFGs and relaxation times and spin–spin coupling using
the cluster method.

11.2.2
Use of Property Surfaces

The cluster method described above requires a quantum mechanical calculation to
be carried out for each cluster that is generated. An alternative method involves the
use of quantum mechanical calculations to generate a function that represents the
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dependence of the property on the configuration of the cluster before the simulation
is carried out. This is analogous to the generation of a potential energy function or
hypersurface from a grid of potential energy data, that allows the potential energy of
a molecule or supermolecule with any configuration to be determined. The property
surface is then incorporated into the simulation program and is used to determine
the property as the simulation proceeds. Use of an a priori calculated property sur-
face is particularly important in the determination of properties that involve integra-
tion of time-correlation functions, for example the quadrupolar relaxation time [17,
18] , which requires the property to be determined at each step of a simulation and a
simulation period that is sufficient for the time-correlation function to decay to zero.
It would be prohibitive to carry out such a calculation if it was necessary to perform
quantum mechanical calculations at every step of the simulation (typically many
thousands) in order to accurately determine the time-correlation function. Use of
this method is most suitable for properties that are only dependent on a few struc-
tural parameters, which is usually the case if the property is pair-additive: that is, the
property of a molecule in the liquid is well represented by a sum of the effect of
each individual solvent molecule [19]. In these cases, construction of the surface is
not prohibitive. If the property is pair-additive, a dimer property surface is sufficient
to calculate the property of any liquid state configuration. Pair-additive property sur-
faces have been shown to be excellent for calculation of EFGs [20] and chemical
shifts [21] in water where pair-additivity is not a good approximation for the potential
energy surface. This means that accurate and precise calculation of relaxation times
can be carried out, which would be impossible using the cluster method (Section
11.2.1).

11.2.3
Periodic Treatments of NMR Properties (see Chapter 16)

If CP or BO MD methods are used it is reasonable to calculate properties, such as
NMR parameters, simultaneously incorporating the periodicity of the system into
the property calculations. Although it would also be possible to do this when conven-
tional, classical simulations are carried out, the property calculations would be very
time-consuming compared to the simulations and therefore impractical. The period-
icity can be implemented for the calculation of NMR properties in various ways, as
discussed below. The advantage of these methods is that cluster size is not limited
but, as discussed in Section 11.2.1, a disadvantage is that the time required for the
calculations is considerably longer. As well as smaller unit cells and shorter simula-
tion times, less rigorous methods can be used in the quantum mechanical calcula-
tion of both the force field and the property of interest.

A number of different methods have been used to deal with the periodic bound-
ary conditions in the determination of the NMR properties of liquids. The simplest
method is to explicitly include a finite number of periodic images of the cell [22].
This is clearly very computationally demanding and the number of images that can
be considered is restricted. In order to address this in Ref. [22] the water molecules
were treated as point charges. This is not always a good approximation [23].
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Perhaps the first proposal for calculation of NMR properties of condensed matter
using methods that fully account for the periodicity of the system was the Mauri–
Pfrommer–Louie (MPL) method [24–26]. This approach is discussed in Chapter 16.

Putrino, Sebastiani and Parrinello [27] suggested an alternative method where
variational density functional perturbation theory is used in conjunction with ad-
vanced gradient correction formulae to determine vibrational modes, Raman scatter-
ing and chemical shifts. This method has also been applied to calculate the chemical
shifts of a biomolecule [28]. More recently Parrinello and co-workers have developed
a method in which exponentially decaying Wannier orbitals [29, 30] are used, the
localised nature of which reduces the computation time. Rather than expanding the
magnetic field as a periodic function (as in the MPL method), a periodic position
operator is defined. These methods have been used to determine chemical shifts in
liquid water [30].

11.2.4
Continuum Methods (see Chapter 12)

In this approach, the solvent is treated using continuum models or a reaction field.
It is the method that is commonly incorporated in quantum chemical packages to
model solvent effects. Figure 11.2 illustrates how the system is modeled in this
scheme. The molecule of interest is assumed to reside in a “cavity”, with a conti-
nuum of fluid existing around the cavity which interacts with the molecular electric
field via a reaction field. The reaction field thus models the long-range electrostatic
and inductive interactions between the solvent and the solute. The method can be
improved by including solvent molecules in the cavity [2, 3, 31–33], and has been
modified to treat the intermolecular field using a perturbation theory [34, 35]. These
methods have been discussed in detail by Helgaker et al. [3], in Section XIII D.

Zhan and Chipman [36] showed that if a reaction field is employed, use of a sur-
face polarisation term to represent the electrostatic potential produced by the solvent
polarisation is not generally adequate, and that inclusion of volume polarization
effects is important.

11 Molecular Dynamics and NMR Parameter Calculations180

Figure 11.2 The continuum or reaction field
methods place the solute molecule in a cavity
and treat the solvent as a continuum, which
reacts on the molecular electric field by a reac-
tion field (RF). The cavity might be a sphere,
an ellipsoid as shown in the figure, or a more

complicated shape following the surface of the
molecule. One of the problems of these meth-
ods for the calculation of NMR properties
seems to be the extreme sensitivity of the latter
to the (empirical) size of the cavity.



A growing amount of evidence suggests that reaction-field type methods are
insufficient to examine the effects of solvents, and that the solvent molecules need
to be explicitly taken into account [37, 38]. The explicit inclusion of solvent mole-
cules has been shown to be particularly important when hydrogen-bridged systems
are considered [38]. As more solvent molecules are included, this method approach-
es the cluster method discussed above.

Nymand et al. [34] have determined the chemical shifts of water. The polarisable
continuum model (PCM) has been used to determine the chemical shifts of CH3CN
and CH3NO2 in water [39], diazines in various solvents [38] and the 17O shift of N-
methylformamide in aqueous solution [40].

11.2.5
Other Methods

Hirata and co-workers [41, 42] have developed a method known as the reference in-
teraction site model combined with a self-consistent field calculations approach
(RISM-SCF approach) where the solvent and solute are both treated at the atomic
level. This method only takes into account the effect of electrostatic interactions on
the electronic structure of the solute, and disregards the electron overlap. It is sug-
gested [42] that the neglect of the intermolecular overlap of the electrons may be
responsible for the lack of quantitative agreement and this is confirmed using a mo-
lecular cluster model. Hirata and co-workers intend including this effect in an
extended theory [42].

Two methods that do not involve liquid simulations, but can be used to predict
chemical shifts of liquids are the quantum cluster equilibrium (QCE) method [2, 43]
and the Boltzmann averaging method [44]. We discuss them briefly here, and pres-
ent some results obtained using these methods in Section 11.3

The QCE method uses quantum statistical thermodynamics to determine the
clusters that should be present, and the probability that they would be observed in
the liquid state canonical ensemble at the required temperature, pressure and com-
position [45]. The cluster populations obtained are then used to determine an expec-
tation value of the properties of interest, such as the chemical shifts and the NQCC
[43].

The Boltzmann averaging method is similar to the QCE method, but involves
determination of the energy and NMR property of interest as a function of the struc-
ture of the molecule, fitting an analytical function to the data. The expectation value
for the NMR property is obtained for the canonical ensemble by directly substituting
these functions and carrying out a numerical integration. Swalina et al. [44] discuss
the Boltzmann averaging method, and use it in a study of the temperature depen-
dence of chemical shifts of an isolated molecule. They compare the results with a
MD study. To simplify generation of the potential energy and chemical shift func-
tions, only the torsional variations are considered by Swalina et al. In their MD
study the energy was obtained from an empirical potential and the shifts were aver-
aged from 20,000 snapshots of the gas phase molecule, however they obtain poor
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results using this method due to the use of a poor torsional potential to generate the
force fields. The Boltzmann method is probably limited to a few degrees of freedom,
whereas the MD method is more general and easily extended to include solvent
effects (i.e. the cluster method). The Boltzmann method applied in a discrete way
(summing over clusters rather than generating a function and integrating) is equiva-
lent to the QCE method. The Boltzmann averaging method can also be readily
extended to study solvent effects [44].

11.2.6
Combinations of Methods

It seems natural that the best and most widely applicable approach may come from
combining a number of different methods. The combination of cluster methods
and continuum methods has been mentioned in Section 11.2.3 as a way of improv-
ing the continuum methods. However, combination of the methods may not always
be straightforward. Mennucci et al. [32] found that results obtained from a cluster
method calculation on acetonitrile in chloroform were more accurate than those
obtained when the same clusters were treated in combination with a continuum
calculation. It is unclear whether the pure cluster calculations were fortuitously
close to the experimental result, or if the way in which the approaches were com-
bined was inadequate. The convergence of results obtained by the cluster method
alone and then with a combination of the cluster method and a continuum method
has been tested by Barone et al. [40] who found that the number of clusters required
for convergence of the 17O shift of N-methylformamide in aqueous solution is con-
siderably reduced when the combined method is used. It is expected that the conver-
gence will be sensitive to the system studied.

11.3
Examples

11.3.1
Chemical Shifts

The first paper that we are aware of that described the determination of the change
in the chemical shift as clusters are formed using ab initio calculations was by Jack-
owski [46] who looked at 13C and 15N chemical shifts in acetonitrile and compared
them with the gas-to-liquid change in the chemical shift determined experimentally.
In 1993, Svishchev and Kusalik [47] carried out the first calculation of a liquid state
NMR parameter that used MD simulations in order to generate the configurations.
In that work liquid water was considered.

Most of the calculations of the chemical shift in the late 1990s were on water at
ambient conditions. A summary of the results of that work is given in Ref. [2] and
will not be repeated here. However, Tab. 11.1 shows the results that were presented
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there together with more recent results that are discussed below. Care should be
taken in consideration of the difference in the experimental chemical shift for liquid
water and gaseous water due to the difficulty of referencing the two values to the
same scale.

Table 11.1 Difference between the proton and 17O chemical shifts of water in the gas and liquid
phases.

Reference Difference between
gas and liquid phase
chemical shift

proton 17O

Method

Hirata et al. (2000) [41] –1.81 +23.0 RISM-SCF approach (see Section 2.8.2.5);
using empirical potential

Hirata et al. (2001) [42] –1.821 RISM-SCF approach (see Section 2.8.2.5);
using empirical potential

Mikkelsen et al.
(1996) [31]

–0.95 +9.4 Continuum Method

Mikkelsen et al.
(1996) [31]

–3.97 –16.4 Continuum Method; containing first solvation
shell in cavity

Nymand and �strand
(1997) [35]

–3.04 –7.39 Continuum Method including perturbation
theory

Chesnut and Rusiloski
(1994) [13]

–2.3–1.6 –20.3–9.6 Cluster Method; CFF-91 force field; HF-GIAO
method for shift calculations

Cui and Karplus
(2000) [48]

–2.5 –27.6 Cluster Method; 100 clusters; QM/MM meth-
od with rigid TIP3P potential; DFT calcula-
tions on the B3LYP/6-311G(d,p) level

Cui and Karplus
(2000) [48]

–2.9 –22.3 Cluster Method; 100 clusters; QM/MM meth-
od with flexible TIP3P potential; DFT calcula-
tions on the B3LYP/6-311G(d,p) level

Cui and Karplus
(2000) [48]

–2.8 –32.0 Cluster Method; 10 clusters; QM/MM with
rigid TIP3P potential; DFT calculations on the
B3LYP/6-311++G(d,p) level

Malkin et al. (1996) [7] –2.8–0.3 –44.8–2.3 Cluster Method; 10 clusters of 9 molecules;
flexible TIP3P potential; SOS-DFPT with an
IGLO-III basis set

Malkin et al. (1996) [7] –3.0–0.3 –46.6–4.4 Cluster Method; 10 clusters of 9 molecules;
Bopp et al. potential [49]; SOS-DFPT with an
IGLO-III basis set

Malkin et al. (1996) [7] –3.4–0.4 –36.8–2.7 Cluster Method; 10 clusters of 9 molecules;
MYCL potential [50]; SOS-DFPT with an
IGLO-III basis set

Pfrommer et al.
(2000) [26]

–5.8–0.1 –36.6–0.5 Periodic Boundary Method; CPMD; BLYP
functional; 32 molecules in PBCs

Sebastiani and Parrinello
(2001) [29]

–4.1 –30 Periodic Boundary Method; CPMD with
Wannier orbitals; 32 molecules in PBCs;
9 ps trajectory
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Reference Difference between
gas and liquid phase
chemical shift

proton 17O

Method

Sebastiani and Parrinello
(2002) [30]

–5.1 Periodic Boundary Method; CPMD with
Wannier orbitals; 32 molecules in PBCs; 9 ps
trajectory (different trajectory to that in [29])

Ludwig (2002) [43] –4.35 QCE method; up to 8 molecules per cluster
Experiment:
proton: [51, 52];
17O: [53, 54]

–4.3 –36.1 Experiment

The most recent results by Sebastiani and Parrinello use CPMD simulations, fully
accounting for the periodicity [29, 30] (see Tab. 11.1). The variational perturbation
that is employed was described in Ref. [27]. In their recent work Sebastiani and Par-
rinello applied the variation perturbation method with Wannier orbitals (localized)
to liquid water at standard conditions, with 32 molecules per cell, and employing
the BLYP density functional. They obtained good agreement with experiment for H
but poor agreement for O, which is attributed to use of a pseudopotential within the
frozen core approximation. However, the possibility of an error in the experimental
results should not be dismissed. In Ref. [30], H liquid-gas shifts in two supercritical
states are also considered (0.73 g cm–3, 653 K and 0.32 g cm–3, 647 K).

New results for liquid water have also been obtained using the QCE method [43].
Results for ammonia, hydrogen sulfide and phosphine were also obtained. Excellent
agreement with experiment is obtained for water (note that in their Fig. 7, the pro-
ton chemical shift in water is compared with a much older experimental value and
better agreement is obtained with the later experimental value of –4.3 ppm [51, 52]),
fair agreement is obtained for ammonia (–1.29 ppm cf. experimental: –1.05 ppm)
and poor agreement with experiment is obtained for hydrogen sulfide
(–0.25 ppm cf. experimental: –1.50 ppm) and phosphine (0.04 ppm cf. experimen-
tal: –0.78 ppm).

Chemical shift anisotropies have been determined by Cui and Karplus [48] who
find that the change in the oxygen chemical shift anisotropy in going from gas to
liquid is just 0.2 and –3.2 ppm, using the rigid and flexible water model, respec-
tively, and the change in the hydrogen chemical shift anisotropy is 6.0 and 7.7 ppm,
respectively.

In the past three years, the types of solutions for which chemical shift calculations
have been carried out has been extended.

B�hl and co-workers have carried out a number of calculations of chemical shifts
of transition metal ions and complex ions in solution [8, 9, 22, 23]. Transition metal
nuclei are known to exhibit large ranges of chemical shift, and therefore it is of inter-
est to study the changes in chemical shift due in solution. B�hl and Parrinello [22]
carried out CPMD simulations of three vanadium complexes with 28 to 30 mole-
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cules in a periodic cell, and calculated the chemical shifts for snapshots of a trajec-
tory of 1 ps duration. Periodic boundary conditions were not used in the chemical
shift calculations, however the water molecules in the unit cell and six adjacent
boxes were represented as point charges. Temperature and solvent shifts were calcu-
lated. Effects of the order of 30 ppm were observed due to solvation; these are small
relative to the absolute chemical shifts (~600 ppm) and the range of vanadium
chemical shifts. The calculated chemical shifts of the solutions differed from the
experimental values by up to ~150 ppm, and although the relative experimental
shift of [H2VO4] – and [VO2(OH2)4]+ in aqueous solution is well reproduced (15 ppm
(expt) and 18 ppm (calc)), the experimental and calculated chemical shifts of
[VO(O2)2(OH2)] – in solution relative to [H2VO4] – and [VO2(OH2)4]+ differ. The
experimental chemical shift of [VO(O2)2(OH2)] – in solution is larger than either
[H2VO4] – or [VO2(OH2)4]+, but the calculated value is smaller. No explanation was
found for this, however the authors suggest that better functionals are needed. Point
charges were used to represent the water molecules and were shown to be adequate.
Although the authors assume, or show qualitatively by the radial distribution func-
tion, that the equilibration was long enough to yield at least an equilibrium first
solvation shell, it could be possible that the typical equilibration time of 0.5 ps and
sampling over 1 to 2 ps is too short for equilibration between vibrational and other
degrees of freedom (typically 10 ps in water), and for organising and sampling of
the possible water-complex structures.

B�hl et al. [8, 9, 23] carried out a similar study on anionic Fe complexes in solu-
tion (see Section 11.2.1). However, in this case an explicit treatment of the water
molecules was found to be necessary (a point charge representation of the water was
inadequate). A recent study by B�hl of the 55Mn and 17O chemical shifts of MnO4

–

in water [23] followed a similar scheme. The periodic simulation cell included 30
water molecules, and clusters containing 10 water molecules were sampled and
used in the chemical shift calculations (periodicity was not treated in the chemical
shift calculations). As with Fe anions, it was found necessary to include the water
molecules explicitly. Negligible shifts in the chemical shift of 55Mn were observed,
but a shift of 31 ppm was observed for 17O.

In 2001, a biological problem was solved using a chemical shift calculation [55,
56]. The problem was treated using CPMD [55]. An experimental study has shown
that two different 13C peaks appear from the carboxylic groups of the two aspartyl
residues next to the central hydroxy group in the pepstatin A/HIV-1 protease com-
plex. The structure suggested by the experimentalists turns out to be unstable in a
CP simulation and the structure to which it evolves does not have two significantly
different 13C resonances. Hence a new diprotonated structure is suggested, which is
the most stable diprotonated form and gives reasonable agreement with the experi-
mental shifts as well as with the isotopic shifts.

Casanovas et al. [57] compared calculations and experimental determinations of
chemical shifts of the carbon atoms in p-menthane-3,9-diols. In this work, the two
most populated conformations of the molecules were determined using molecular
dynamics simulations and the arrangement of the solvent was obtained. Calcula-
tions of the chemical shifts were carried out on these clusters with 3 solvent mole-
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cules in most cases and up to 16 solvent molecules in some cases. A more rigorous
(and time-consuming) result could be obtained by considering an ensemble of con-
figurations rather than just the most stable conformations, however, as seen in this
work, the changes in the carbon chemical shifts are very small. Nevertheless, studies
of the chemical shifts of flexible molecules in solution would be of importance
when the chemical shifts vary greatly.

In the last few years, during development of better computational routes to solu-
tion phase properties, the N chemical shifts in acetonitrile and pyridine were deter-
mined by Mennucci et al. [32] and the 17O shift of N-methylformamide in aqueous
solution was determined by Barone et al. [40]

11.3.2
Electric Field Gradients and Relaxation

Early work on the calculation of the EFGs and quadrupole relaxation focused on the
study of monatomic ions and atoms where the EFG is produced solely by the solvent
(see Ref. [2]). The earliest calculations were on the EFG at the nucleus of configura-
tions of Li+, Na+ and Cl– in solution that were determined using Monte Carlo simu-
lations [58, 59] and in 1984 the work was extended to MD simulations, yielding
relaxation times from first principles for the first time [60].

The deuterium NQCC of liquid water is an interesting candidate for study since
both the molecular structure and intermolecular interactions have significant influ-
ence on the EFG. In addition, the strong intermolecular interactions in hydrogen
bonded liquid water mean that the influence of neighboring molecules in the cluster
will be important. Now, good agreement between the calculated and experimental
values of the D and 17O NQCC in liquid water is obtained. These results are dis-
cussed in detail in Ref. [2].

As well as liquid water, systems including liquid CO2 [61] (17O NQCC), liquid
ammonia [62] (14N and deuterium NQCC), methanol in carbon tetrachloride [63]
(hydroxy-deuterium NQCC of methanol), dimethyl sulfoxide in water [64, 65] (deu-
terium NQCC) have been determined using the cluster method (for further discus-
sion of these systems, see Ref. [2]).

Recently QCE calculations have been carried out [43] to determine the difference
between the liquid and gas-phase deuterium NQCC in water, ammonia (calculated:
–14 kHz; experimental: –15 kHz to –28 kHz) (Note: the gas values given in Ref. [43]
are incorrect (see Ref. [66]) and should be 260 kHz), hydrogen sulfide and phos-
phine. For hydrogen sulfide and phosphine the calculated shifts are only a few kHz
and can probably not be detected experimentally.

More recently work has been carried out in order to determine the quadrupolar
relaxation in liquid water and in a mixture of water and dimethyl sulfoxide [17, 18].
It was not obvious that the EFG at the deuterium nucleus in water would be well
represented by the pair-additive approximation, especially since pair-additivity is a
poor assumption for the potential, however it was recently shown that the EFGs at
deuterium nuclei in liquid water are highly pair additive [20]. Again, the use of pair-
additivity results in substantial computer time savings in the quantum chemical cal-
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culation of the EFGs, and hence their NQCCs, for nuclei in liquid systems using the
so-called cluster approach. It also permits the simulation of quadrupolar relaxation
times from EFG hypersurfaces obtained within the pair-additive approximation
[17, 18].

11.3.3
Spin–Spin Coupling and Magnetic Susceptibility

There has been relatively little work on spin–spin coupling and magnetic suscepti-
bility in liquid systems. (see Ref. [2]). We are aware of only two recent papers in this
field.

Autschbach and Ziegler [37] have recently carried out quantum mechanical calcu-
lations of 195Pt and 199Hg spin–spin couplings in a series of coordination com-
pounds with an increasing number of solvent molecules. Convergence towards the
liquid values is observed, as well as reasonable semi-quantitative agreement with
experiment. Charge donation of the solvent to the coordinated heavy atom and into
the heavy atom–ligand bonds suggests that explicit inclusion of solvent molecules is
important. It is anticipated that the coordination number of these heavy atoms in
solution is high since better agreement with experiment is obtained with clusters
containing a larger number of solvent molecules [37]. This work does not properly
sample the liquid solution configuration (only a single optimised geometry is con-
sidered for the clusters) however, due to the agreement with experiment that they
obtain, Autschbach and Ziegler suggest that this might not be required.

The magnetic susceptibility of normal and supercritical water has been calculated
by Sebastiani and Parrinello using CPMD simulations and incorporating the period-
icity of the system in the property calculations [30]. An approach to determine the
magnetic susceptibility of a periodic system was also presented by Mauri and Louie
[24], although solids were considered rather than liquids.

11.4
Summary and Conclusions

The methods described above have been applied to a wide range of systems. The
continuum methods are the most widely used schemes as they are readily imple-
mented and give results relatively quickly and automatically, however they are not
generally very accurate. In order to get good results, the microscopic features need
to be built into them, making them more and more like a cluster method and
removing the advantage of a seamless implementation.

The cluster method has been widely used with both classical simulations and
CPMD or BOMD simulations to generate the trajectories. The cluster method using
classical simulations gives good results for the systems studied, is straightforward to
implement, can be applied to a wide range of systems and the calculation of the
NMR property can be carried out using a high level of quantum mechanical theory.
CPMD simulations are necessary in some cases in order to properly model the solu-
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tion, however these simulations are still extremely time-consuming and therefore
only relatively small systems can be studied for short periods of time. Furthermore,
it is necessary to use DFT, which may not be sufficiently accurate for some systems.
Nevertheless, the number of systems treated using this method has increased con-
siderably over the past few years.
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12.1
Introduction

Several physicochemical molecular properties such as structure, vibrational frequen-
cies and UV–vis transitions, depend strongly on the chemical surroundings. In fact,
environmental effects can hardly be neglected in order to get a realistic model of
many chemical processes. Generally speaking, the surrounding medium influences
the system under investigation in two ways: (i) it induces structural modifications
(indirect effect); and (ii) for a given structure, it modifies the electron density distri-
bution (direct effect).

NMR and EPR measurements, especially at high fields, are extremely sensitive to
both indirect and direct effects. Therefore it is not surprising that they have been
used as a probe of the intra- and inter-molecular interactions of systems in different
chemical environments, especially in the case of biologically relevant species [1–4].
Since the NMR and EPR spectroscopic parameters depend explicitly on the accurate
description of the density/spin density, a full quantum chemical (QM) model of the
molecule itself (the solute, M) and of its interaction with the solvent (S) is manda-
tory.

Here, we will focus on simplified, yet reliable, methods based on the continuum
model of a solvent taking into account, when necessary, their coupling with other
computational approaches in order to simulate both bulk and short-range (specific)
solute–solvent interactions.

The first continuum models were elaborated at the beginning of the last century
[5–9] and their success relies on their simplicity and their straightforward link to
physical concepts. Nevertheless current continuum models have developed much
from the first simplified schemes. An extensive review of continuum models up to
the most recent developments and applications can be found in several papers
[10–15]. The basic idea of all continuum models is the partitioning of the solution
into two subunits: the solute (M) and the solvent (S). The solute (M) is described
fully at a microscopic (here quantum) level. The solvent, on the other hand, is incor-
porated as a continuum medium (a continuous electric field, the so-called reaction
field), representing a statistical average over all solvent degrees of freedom at thermal
equilibrium. The main solute–solvent interaction is electrostatic although recent
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12 Use of Continuum Solvent Models in Magnetic Resonance Parameter Calculations

developments of continuum models include also non-electrostatic terms [16]. Conti-
nuum models have been successfully applied to analyse the influence of the envi-
ronment on reaction rates/thermodynamics and/or to study its influence on
selected observables of local, macroscopic and time-dependent nature [12, 17–20].
Nevertheless, the development of formalisms for the ab initio calculation of mag-
netic field dependent properties in solution has only quite recently received atten-
tion [21–25]. As a consequence, relatively few ab initio (Hartree–Fock, post-Hartree–
Fock and density functional theory) calculations of magnetic resonance parameters
can be found in the literature [21–36], an exception being the prediction of hyperfine
coupling constants [37–39].

12.2
General Features of Continuum Models

Let us consider a solute molecule M (or a solute–solvent molecular aggregate, M–Sn)
surrounded by a solvent. The solute is adjusted inside a cavity of the solvent: the
first step in all continuum models (except for those without an explicit representa-
tion of the solvent [40], not considered here) is to define the size and shape of the
solute cavity. Inside the cavity the solvent dielectric constant is equal to one, while,
outside it, the dielectric constant is set to the solvent bulk value. The shape and size
of the cavity can influence significantly the computed observable and they remain
an adjustable degree of freedom for all the models. The cavity should include all (in
reality most) of the solute electronic distribution but, at the same time, should not
be too large in order to avoid damping of solvent effects. These facts are particularly
important for charged, zwitterionic and radical species [41] as well as for the simula-
tion of NMR parameters [24,34]. The fraction of solute charge density lying outside
the cavity is usually referred to as “escaped charge”. Recently, particular attention
has been devoted to the development of methods that minimise the escaped charge
[42]. The most commonly used cavity shapes are of three types: (i) regularly shaped
cavities (spheres, ellipsoids, cylinders); (ii) molecular cavities defined as the overlap
of regular shapes (spheres) centred on each atom [43] or group of atoms [44]; (iii)
molecular cavities defined as the region of space surrounded by an arbitrary isoden-
sity surface [45]. When using molecular shape cavities, additional spheres can be
added out of the nuclear position [44]. Originally the radius of each atom-centred
sphere was taken as Bondi�s Van der Waals radius [46] increased by 20% [43]. Molec-
ular cavities defined by an isodensity surface are advantageous since only one para-
meter, the isodensity value, is needed to define them. However, they seem to lead to
erratic behavior when dealing with charged systems [47].

The solute–solvent interaction can be considered as a pertubation (VM-S) of the
molecular Hamiltonian (H0) describing the isolated solute. The overall Hamiltonian
(H) is given by:

ĤH r;R; gsð Þ ¼ ĤH0 r;Rð Þ þ V̂VM�S r;R; gsð Þ (12.1)
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12.2 General Features of Continuum Models

where r are the electronic and R the nuclear coordinates of the solute and gs is a
thermally averaged distribution function of the solvent molecules. Solving the
Schr�dinger equation:

ĤH W ¼ ĤH0 þ V̂VM�S

h i
W ¼ E W (12.2)

one gets the description of the solute in the presence of the solvent reaction field.
Within a classical treatment, the work (free energy, DGele) necessary to bring the

solute M from the gas phase to solution, considering only electrostatic solute–sol-
vent interactions, V̂Vele

M�S, and the solute nuclear and electronic charge density, reþn
M ,

unchanged by the solvation process, is given by [48]:

DGele ¼
Wele

2
¼ Wh jV̂Vele

M�S Wj i
2

¼
R

inside cavr
eþn

M
ðrÞ Ur ðrÞdr3

2
(12.3)

where Ur is the electric potential generated by the polarised dielectric. Inclusion of
non-electrostatic solute–solvent interactions (such as repulsion, dispersion and cavi-
tation energies) can be found in Ref. [16].

Since Ur depends on reþn
M which in turn depends on Ur the problem to be solved

is non-linear. First one has to get reþn
M and then solve an electrostatic problem in

order to define Ur. The electrostatic problem is solved using the Poisson equation
that expresses the electrostatic potential as a function of the density distribution of
the solute and the dielectric constant of the medium. In a compact form we can
write [14]:

�r2
Ur

LUr

Ur½ �
@L Ur½ �

¼
¼
¼
¼

4pr
eþn
M

0
0
0

8
>><

>>:

inside the cavity
outside the cavity
on the cavity surface
on the cavity surface

(12.4)

where [Ur] and [¶LUr] are the boundary conditions for the potential and its gradient,
stating that the potential on the outside and inside of the surface and the electric
field perpendicular to the surface must be equaly. The LUr term has a different ana-
lytical form for different types of medium. In particular in the case of a linear infi-
nite isotropic dielectric using the Poisson equation, LUr is given by:

LUr ¼ �er2
Ur (12.5)

The Poisson equation is valid under the condition of zero ionic strength. In the case
of an ionic solution the Poisson–Boltzmann (PB) equation, in its linearised form,
valid at low ionic strength, is normally used. Formalisms for the treatment of ionic
and anisotropic dielectrics have been fully developed [49].

Several approaches have been used to model both the quantum chemical (get
reþn

M ) and the electrostatic problem (define Ur). Tomasi and Persico [10] grouped
them into 5 classes: (1) the multipole expansion (MEP), (2) the apparent surface
charge (ASC), (3) the image charge (IC), (4) the finite difference (FD), (5) the finite
elements (FE) methods. Additionally we mention the methods based on the general-

193
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ised Born approximation (GB) [50]. Here we will concentrate only on MEP and ASC
methods, the most commonly used to compute NMR and EPR parameters.

Multipole expansion methods (MEP) are used in connection with regular shape
cavities (spheres or ellipsoids). The total nuclear and electronic density of the solute
(reþn

M ) can be expanded into molecular multipole moments of order ‘ (Mm
‘ ). These

multipole moments will interact with the reaction field (that is the electrostatic
potential describing the solvent) which is also expanded in terms of multipoles
(Mm

‘ ). Following the notation of Rivail and Rinaldi [51] and using the Kirkwood–On-
sager model [7, 8] valid for a spherical cavity, the work necessary to bring the solute
from the gas phase to solution can be expressed as:

DGele ¼ 1
2

X1

‘¼0

X‘

m0¼�‘

X1

‘0¼0

X‘

m0�‘
M

m
‘ f

mm0

‘‘0 M
m0

‘0 (12.6)

where f are reaction field factors dependent on the solvent dielectric constant and
cavity radius. In actual calculations of magnetic properties, the expansion is trun-
cated to ‘ = 10 [22]. Generalisation of this model to the use of an ellipsoidal cavity
has been made by Rivail and coworkers [52].

Most of the continuum methods using molecular shape cavities solve the electro-
static problem using the apparent surface method. In this method, the electrostatic
potential (Ur) is described via an apparent charge distribution spread over the sur-
face of the cavity. This method, mainly developed by Tomasi and co-workers [43], is
usually referred to as the polarisable continuum model (PCM) or as the MST (Mier-
tuÐ –Scrocco–Tomasi) method. In this framework the irregular surface of the molec-
ular cavity is projected onto spherical polygons divided into tesserae, and the appar-
ent surface charge distribution is discretised as a sum of point charges placed at the
centre of each tessera [53]. The apparent surface charges are partitioned into two
sets depending on the source that generated them (electrons or nuclei) following
the procedure proposed by Sakurai [54]. The integral equation on a volume is there-
fore transformed to a finite summation on surface elements. Several implementations
of PCM are available nowadays depending on how the electrostatic problem is solved
(such as C-PCM [55], IEF-PCM [56], QINT-PCM [57], iterative PCM [58]). Beside PCM,
other ASC methods to be mentioned are Klamt�s COSMO (from which the C-PCM is
derived) [59], Chipman�s SS(V)PE [60] and Foresman�s ICPM/SCIPCM [45] methods.

The solution of the Schr�dinger equation in the presence of the solvent reaction
field (Eq. (12.1)) is equivalent to the minimisation of the free energy functional G:

G ¼ Wh jĤH � 1
2
V̂VM�S Wj i (12.7)

At the Hartree–Fock level, within the PCM framework, we have:

G ¼ Wh jĤH � 1
2
V̂VM�S Wj i ¼ trP~hhþ 1

2
trP~GGþ Vnn þ 1

2
Unn

~hh ¼ hþ 1
2

jþ yð Þ
~GG ¼ G Pð Þ þ X

ele
Pð Þ

(12.8)
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12.2 General Features of Continuum Models

In Eq. (12.8) only electrostatic (j, y, Xele, Unn) solute–solvent interactions have been
considered. P is the solute density matrix, h and G are the standard one and two
electron matrices for the isolated solute while Vnn and Unn are the solute–solute and
solute–solvent nuclear repulsion energy. The matrices j, y (monoelectronic) and Xele

(bielectronic) represent the contribution to the potential due to the electrostatic
solute–solvent interactions and they depend explicitly on the apparent charges
spread over the surface cavity. Since the apparent charges depend on solute charge
density distribution the solution is obtained by solving iteratively the modified Fock
equation:

~FFC ¼ SCe

~FF ¼ ~hhþ ~GG
(12.9)

12.2.1
NMR and EPR Parameters within the Framework of Continuum Models

Early attempts to compute magnetic properties using continuum models are due to
Rivail [61], Webb [62] and Bishop [63]. More recently Mikkelsen has developed a
multiconfigurational-self consistent field multipolar reaction field method (MC-SCF
MEP) to compute a wide range of magnetic properties including nuclear magnetic
shielding, electric field gradient and spin–spin coupling [22,29]. In these treatments
the solvent is included as a reaction field via the MEP approach and spherical cav-
ities are used. The solvent contribution to the total energy in the presence of a
homogeneous magnetic field (equilibrium solvent response) can be written as:

Esol ðBÞ ¼
X

‘m

g‘ T‘m
� �� �2 (12.10)

where T‘mh iare the solute electronic and nuclear charge moment and g‘ depends on
the dielectric constant of the solvent (e), on the cavity size (Rcav) and on the order of
the multipole-moment expansion parameter (‘) as [22]:

g‘ ¼ �
1
2

R
� 2‘þ1ð Þ
cav

‘þ1ð Þ eþ1ð Þ
‘þ ‘þ1ð Þe (12.11)

The solvent contribution to any second order properties (such as for instance nuclear
magnetic shielding) can then be expressed as:

@Esol ðBÞ
@a@b

¼ 2
X

‘m

g‘ T‘m
� � @2

T‘m
� �

@a@b
þ 2

X

‘m

g‘
@ T‘m
� �

@a

@ T‘m
� �

@b
(12.12)

The calculation of paramagnetic and diamagnetic spin–orbit contributions (PSO
and DSO) as well as the evaluation of spin dipole (SD) and Fermi contact (FC) con-
tributions to spin–spin coupling constants in the presence of the solvent reaction
field, using the linear response function of the solvated molecule, have been also
implemented [22]. Gauge invariant atomic orbitals (GIAO) [64] are used to avoid
gauge dependence. Following Cammi�s recent implementation of a MCSCF-PCM
scheme [19], the evaluation of indirect spin–spin coupling constants at the MCSCF-
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PCM level have become possible, although for the moment only HF/DFT results
have been published [66].

Concerning the use of ASC methods, Cammi developed [21] a formalism to evalu-
ate nuclear shieldings at Hartree–Fock (HF) and density functional theory (DFT)
level using molecular shape cavities within the framework of PCM. Using the gen-
eral expression for the second derivatives of G with respect to any arbitrary parame-
ters [65], we can write (here the superscript indicates the variable with respect to
which the derivation is performed):

@
2 G

@a@b
¼ trP~hh

a;b þ 1
2
trP~GG

a;b
Pð Þ � trS

a;b
W þ ~VV

ab
nn þ trP

b ~hh
a þ trP

b ~GG
a

Pð Þ � trS
a

W
b

(12.13)

where:

W ¼ P~FFP

~FF bð Þ ¼ ~hh
b þ ~GG

b
Pð Þ

(12.14)

Setting a ¼ Bi and b ¼ lX
j we get the nuclear magnetic shielding:

r
X
ij ¼

@
2 G

@Bi@lX

j

¼ tr P~hh
Bi ;l

X
j þ P

Bi ~hh
lX

j

" #
(12.15)

where ~hh
lX

j and ~hh
Bi;l

X
j are the first derivative of the one-electron Hamiltonian with

respect to the nuclear magnetic moment and its second derivative with respect to
the nuclear magnetic moment and magnetic field, respectively. Explicit solvent
effects are included only via the derivative of the density matrix with respect to the
magnetic field (PBi ) that is obtained by solving coupled-perturbed HF or Kohn–
Sham equations. In order to avoid gauge dependence, both GIAO [64] and continu-
ous set of gauge transformation (CSGT) [67] formalisms have been implemented
[21].

Both MEP and ASC implementations take into account only solute–solvent elec-
trostatic contributions to the magnetic properties.

With regard to the prediction of EPR parameters in solution, the calculation of
isotropic hyperfine coupling constants (Fermi contact term, aN) is straightforward as
the expectation value using the wavefunction computed in the presence of the sol-
vent reaction field.

Finally, the only attempt to compute electronic g-tensors in the presence of a sol-
vent reaction field is very recent [68]. In this case the wavefunctions obtained from
C-PCM [55,59] calculations were used within the framework of sum-over-states den-
sity functional perturbation theory (SOS-DFPT) [69] to compute g-shifts.
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12.3
Applications of Continuum Models to the Prediction of NMR Parameters

The most recent ab initio calculations of NMR parameters in the presence of a sol-
vent reaction field can be grouped into two classes corresponding to two different
implementations: (i) the DALTON [70] one using the multipole expansion method
(and more recently PCM [66]) in conjunction with a MC-SCF or HF procedure; (ii)
the GAUSSIAN [71] one using ASC approaches in conjunction with DFT or HF
methods. Additionally, calculations of 15N shieldings by Chipman based on the
SS(V)PE method [24] and the seminal work of Cremer on 11B and 15N shieldings
using IGLO/PCM [25] should also be mentioned.

Examples of calculations of solvent effects on spin–spin coupling constants can
be found in the literature due to the work of Mikkelsen [29,72], Pecul [28], Ruud [66]
and of Contreras [73] and coworkers, the latter evaluating solvent effects only on the
Fermi contact term.

Concerning nuclear magnetic shielding calculations, most of the studies focused
on the solvent effect on 15N shieldings since this nucleus appears to be extremely
sensitive to the nature of the solvent [74]. Nevertheless, papers concerning solvent
induced shifts on other nuclei (such as C [22,28], S [72], Se [29] or O [36]) can be
found. The effect of solvent cavity and escaped charge on the computed shielding
using ASC methods has been analysed carefully by Zhan and Chipman [24] and, to
a lesser extent, by Mennucci and coworkers [34]. In particular it turns out that,
using PCM, non-electrostatic solute–solvent interactions can be artificially simulated
using a larger molecular cavity, allowing better agreement with the experimental
data, especially in the case of a non-polar, non-protic solvent. A corresponding analy-
sis for MEP methods highlights small cavity size effects that follow the same trends
[22].

Here we will focus only on the prediction of solvent induced nuclear magnetic
resonance shifts (–Dd) rather than on the prediction of the absolute nuclear mag-
netic shielding in solution (r). If we consider Buckingham partitioning of solvent
contributions to shielding [75], most of the ab initio studies focus only on the elec-
trostatic solute–solvent interaction (–DdE).

An almost direct comparison between solvent effect on nuclear shielding com-
puted at a MEP and PCM level is possible in the case of tetrazole derivatives. 1-meth-
yl-1,2,3,4 tetrazole and 1-methyl-1,2,3,5-tetrazole (Fig. 12.1) were studied both at a
MCSCF-MEP (GIAO) [30] and at a DFT-PCM (CSGT/hybrid) level [32].

Both methods reproduce correctly the overall solvent effect, that is a shielding
effect on the pyridine type nitrogen atoms with increase in solvent polarity and an
opposite effect (de-shielding) for the pyrrole-type nitrogen atoms. The DFT-PCM
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Figure 12.1 Structure of 1-methyl-1,2,3,4 tetrazole (<1,2,3,4>)
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Figure 12.2 Computed [30,32] and experimen-
tal [76] solvent to cyclohexane 15N nuclear
magnetic shielding shifts (–Dd15N); in ppm)
as a function of solvent dielectric constant for
<1,2,3,4> (a) and <1,2,3,5> ( b). Computed
values: Square dr(N1); circle –Dd(N2); down-
triangle –Dd(N3); up-triangle –Dd(N4)
(a)/–Dd(N5) (b). Open marks=PCM-B3LYP/

CSGT/6-311++G(2d,2p) calculations [32]; full
marks=MEP-MCSCF/GIAO/H-II calculations
[30]. Experimental data from ref. [76]. MP2/6-
311G(2d,2p) in vacuum optimised structures
for MCSCF calculations and PCM/B3LYP/6-
311++G(2d,2p) PCM optimised structure for
DFT calculations were used.



method predicts larger solvent shifts, in better agreement with the experimental
data (see Fig. 12.2a and b).

Furthermore, while the N2 and N5 shieldings are predicted to be practically un-
affected by the solvent at the MCSCF-MEP level, they show a smooth dependence
on solvent at the DFT-PCM level, in better agreement with the experimental data. It
should be stressed in this context that the calculations have been performed using
different structures and basis sets. A comparison of the computed [30,32] and
experimental [76] solvent shifts highlights that the main discrepancy between both
DFT-PCM and MCSCF-MEP trends with respect to the experimental data are related
to the presence of specific solute–solvent interactions, such as for H-bonding sol-
vents. The importance of direct solute–solvent interactions in the prediction of
nuclear shielding, already stressed by Pecul and Sadlej [28], received particular atten-
tion due to the works of Mennucci and co-workers [34, 35]. Two possible computa-
tional procedures were investigated to simulate 15N solvent shifts in a low to medi-
um polar and protic solvent (chloroform, CHCl3) [34] and in a highly polar and pro-
tic solvent (water) [35]. Since hydrogen bonding in CHCl3 is rather weak, a realistic
simulation of the solute and solvent first solvation sphere is obtained by considering
a dynamic situation, that is an ensemble of different structures sampled via a classi-
cal molecular dynamics simulation (using both rigid and flexible solute and solvent
models). In particular, two sets of clusters including the solute (CH3CN or pyridine,
C5H5N) and the first solvation sphere (defined as all CHCl3 molecules having a
Nsolute–HCHCl3 distance smaller than a given cut-off value) were taken from snap-
shots of microcanonical classical MD simulations. These clusters were then used to
compute the shielding in vacuum or in a continuum. The calculations on clusters
were performed using a multilayer (ONIOM) approach. In particular the solute was
taken into account at a hybrid DFT level and the explicit solvent molecules at a HF
level.

The calculations showed (Table 12.1) that in the case of pyridine the addition of
the solvent reaction field both to the isolated solute and to the clusters drives the
computed 15N nuclear shielding solvent shift towards the experimental values. On
the other hand, for CH3CN the 15N solvent shift is well reproduced using a super-
molecular (cluster) approach while an overestimation (practically a doubling) of sol-
vent shifts is computed when adding the solvent reaction field to both the isolated
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Table 12.1 Experimental a and computed b nitrogen isotropic solvent shifts for CHCl3 (–Dd(N);
in ppm) of acetonitrile and pyridine.

PCMc Clusterd Cluster+PCMe Exp.a

Acetonitrile –17.72 –5.32 –16.78 –6.2
Pyridine –13.97 –8.42 –15.70 –14.1

a Ref. [74]. b Ref. [34]. c IEF-PCM result [56]. d Average values com-
puted from calculations on MD snapshot clusters using an ONIOM
approach (B3LYP/6-311+G(d, p) for the solute and HF/STO3G for sol-
vent explicit molecules). e Clusters (d) embedded in IEF-PCM [56].



solute and the clusters. The latter calculations show that the screening of the first
solvation sphere is, in this case, still insufficient. In the case of more polar and pro-
tic solvents, such as water, the hydrogen bonding network is stronger. Instead of a
dynamic picture such as the MD snapshots, the local structure of the solute is well
reproduced by the minima obtained by optimising the structure of a supermolecular
cluster that includes the first solvent coordination sphere of the nitrogen atoms.
Therefore in the analysis of the 15N solvent shift from cyclohexane to water for pyr-
idazine, pyrimidine and pyrazine (Fig. 12.3), Mennucci [35] took into account direct
water to diazine interactions by inclusion of up to two solvating water molecules,
and added the bulk solvent effects by PCM.

The results show that PCM alone cannot reproduce the effect of strong H bond-
ing (in particular the polarisation effect due to direct solute–solvent interaction
rather than the indirect, structural, effect) and that the inclusion of the first solva-
tion sphere of N is mandatory. The use of decomposition of the shielding in terms
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Figure 12.3 Structure of 1,2-diazine (pyridazine), 1,3-diazine (pyrimidine) and 1,4-diazine (pyrazine).

Table 12.2 Experimental a and computed b nitrogen isotropic NMR cyclohexane to water shifts
(–Ddcyc(N); in ppm) of M (M=pyridazine, pyrimidine and pyrazine).

PCM M-1w M-1w
+PCM

M-2w M-2w
+PCM

Exp.

Pyridazine
–DdM 12.71

(19.43)c

25.44 41.92 35.30/17.16d 49.43 /41.91d 41.55

Pyrimidine
–DdM 3.60

(6.35)c

13.62 19.36 12.70 15.93 16.84

Pyrazine
–Dd 2.33

(5.28)c

18.46 24.57 12.97 18.55 16.85

a Ref. [77]. b At B3LYP/GIAO/6-311+G(d,p)) level of theory from
Ref. [35]. c Cavity computed using atomic Van der Waals radii scaled
by 1.2; all other data refer to computations performed with Van der
Waals radii scaled by 1.4. d The two values correspond to the two
non-equivalent N atoms. PCM refers to computations performed
using the IEF-PCM implementation [56]. M-1w and M-2w refer to cal-
culations performed in vacuum clusters made of solute and 1 and 2
water molecules respectively; M-1w+ PCM and M-2w+PCM refer to
calculations performed for the solute + water clusters in the presence
of the solvent reaction field. The corresponding optimised structures
were used.



of diamagnetic and paramagnetic contributions, of Pople’s model for the local para-
magnetic contribution and of NBO analysis, highlights the removal of density from
the N lone pair (n) due to H-bonding interactions. This reduces the absolute (de-
shielding) paramagnetic contribution due to n–p* contributions, thus providing the
observed net increase in the total nuclear shielding when going from non-protic to
protic solvents, the diamagnetic contribution remaining constant. At the same time,
the computed increase in the n–p* transition energy [35] when going from vacuum
to solvated systems could play the same role in reducing the paramagnetic contribu-
tion. The inclusion of bulk effects using a continuum model amplifies H bonding
effects, makes the diazine–water interaction stronger and increases the agreement
between the computed and experimental solvent shifts (Table 12.2).

Similar procedures, a coupling of MD and continuum models, were used by Bar-
one and Cossi [36] to analyse the 17O nuclear magnetic resonance solvent shift with-
in the DFT/PCM framework.

12.4
Applications of Continuum Models to the Prediction of EPR Parameters

The continuum model, in particular PCM eventually combined with supermolecular
approaches, has been successfully applied to understand and predict the isotropic
hyperfine coupling constants (hcc, aN) of organic radicals in solution. Particular
attention has been devoted to biologically relevant radicals. Recent and extensive
reviews on this topic and, more generally, on the simulation of biological systems in
condensed phases, can be found in the literature [37, 39]. Since aN depends on the
spin density distribution at the nuclei, local structural deformation (such as direct
solute–solvent interactions but also large amplitude vibrations) can influence signif-
icantly the hcc values. A realistic simulation of hcc should include, when necessary,
not only the bulk effect but also direct solute–solvent interactions and thermal aver-
aging on large amplitude modes (LAM). To summarise the state of the art, we will
take as an example the work of Adamo and co-workers [78] concerning the calcula-
tion of the isotropic hyperfine coupling constants of the free radicals derived from
H addition to cytosine. These radicals, namely the 5yl, 6yl and N3H (Fig. 12.4),
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show a puckered optimised structure, their planar form being a first order saddle
point.

The computed hcc of the three species are reported in Table 12.3.
If we focus on the 6yl radical, experimentally the two Hb show equivalent hcc

(€40 G in frozen aqueous solution; €37.5 G in the crystal). Nevertheless, they are
predicted to be strongly non-equivalent when using the equilibrium, puckered, ge-
ometry (50.7 G and 16.1 G at the B3LYP/EPR-II/C-PCM level) and equivalent for a
planar (transition state) conformation (38.0 G). Considering the potential energy
curve along the large amplitude (LAM) normal mode responsible for C6 inversion,
that is the puckering mode, two minima separated by a 2 kJ mol–1 barrier are
found. Neglecting the coupling with the other modes, it is possible to evaluate the
vibrational states along this path. From Fig. 12.5, it is clear that the low-lying vibra-
tional states are delocalised between the two minima and, as a consequence, as a
function of the temperature the radical can have, on average, a practically planar
conformation.

Taking into account a vibrational averaging of the hcc following the LAM, led to
the evaluation of an equivalent vibrationally averaged hcc value for the two Hb of
37.7 G, in good agreement with experimental data. A more detailed discussion for
the other two adducts (5yl and N3H) can be found in the original paper [78]. Exam-
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Table 12.3 Isotropic hyperfine coupling constants (in G) [78].

Vacuum C-PCM C-PCM + <LAM>298 K Exp.

6yl
Ha –15.0 –15.6 –18.5 €18.6a (€18.6)b

–18.7c

Hb 14.6 16.1 37.7 €40.0 (€37.5)
Hb’ 48.0 50.7 37.7 €40.0 (€37.5)

5yl
Ha –17.4 –17.9 –18.5 €16.7 a(€17.2)b

–18.4c

Hb 51.3 54.7 52.1 €55 (€48.8)
Hb’ 50.0 47.5 52.1 €55 (€48.8)

N3H
H4 21.0 20.2 16.7 –1.6
H4’ –1.1 –1.2 –1.0 –1.6
H6 –15.5 –15.7 –15.7 –13.5
H3 –0.2 0.0 –0.7 –2.0

All values computed at UB3LYP level using optimised UB3LYP/6-
311G(d,p) geometries. Vacuum and C-PCM stand for calculations
perfomed in vacuum or solvent reaction field (C-PCM [55]) using a
EPR-II basis. C-PCM +<LAM>298 K/vacuum are results taking into
account both solvent and vibrational (<LAM>) contributions to hcc
obtained after vibrational averaging along the puckering normal
mode at 298 K in vacuum using a EPR-II basis. EPR-II basis set
from Ref. [79]. a Frozen aqueous solution measurements at 77 K
from Ref. [80]. b Crystal measurements at 298 K from Ref. [81].
c Crystal measurements at 10 K from Ref. [82].



ples of the importance of direct solute–solvent interaction in the evaluation of hcc
can be found in Ref. [37,39].

Regarding the calculation of g-tensors in conjunction with continuum solvent
models, only one example is available [68], and it makes use of SOS-DFPT [69] for
the calculation of g-shifts in semiquinones. Since it is well known that the largest
g-tensor component in semiquinones (Fig. 12.6), gx, is very sensitive to interactions
with the environment [3, 4], these systems were taken as test cases for several theo-
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Figure 12.5 Computed potential energy surface and lower lying
vibrational levels for ring puckering mode of 6-yl [78] (provided
by C. Adamo).
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retical studies aimed at understanding the role of both specific solute–solvent and
electrostatic interactions [83].

The results obtained when computing the g-tensor in vacuum, using a supermo-
lecular approach, using a continuum model, or coupling a supermolecular approach
with the continuum, are summarised in Table 12.4 for three selected molecules,
namely BQ, DMBQ and NQ (refer to Fig. 12.6).

Generally, the inclusion of solvent as a continuum correctly drives the gx towards
the experimental values for all semiquinone derivatives while substituent effects on
the g-tensors are computed to be of the same magnitude as in gas-phase calculations
[83]. In particular, a decrease in gx due to delocalisation of spin density into the con-
densed benzene ring or hyperconjugative effects of methyl groups is found, both in
the gas phase and in solution, when going from BQ to NQ and DMBQ respectively.
By comparison of computed g-values for the same semiquinone derivative in differ-
ent solvents, a non-linear dependence of g on solvent dielectric constant is found,
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Table 12.4 Computed g-shift components (in ppm) for semiquinone radical anions.a

Dgiso Dgx Dgy Dgz

BQ–. 3190 6530 3065 –20
BQ–.

PCM/THF 3091 6285 3012 –23
BQ–.

PCM/Acetonitrile 3076 6247 3004 –24
BQ–.

PCM/DMSO 3083 6265 3007 –24
BQ–.

PCM/H2O 2987 6024 2964 –27
[BQ(H2O)4] –. 2608 4889 2935 +2
[BQ(H2O)4] –.

PCM/H2O 2557 4787 2906 –23
Expb 2350 4130 2940 –30

DMBQ–. 3061 6131 3057 –3
DMBQ–.

PCM/THF 2997 5989 3008 –5
DMBQ–.

PCM/Acetonitrile 2987 5968 3000 –5
DMBQ–.

PCM/DMSO 2989 5973 3000 –5
DMBQ–.

PCM/H2O 2912 5784 2957 –8
[DMBQ(H2O)4] –. 2509 4716 2817 –30
[DMBQ(H2O)4] –.

PCM/H2O 2421 4545 2784 –67
Expb 2240 3870 2900 –60

NQ–. 2850 5627 2898 25
NQ–.

PCM/THF 2795 5428 2973 24
NQ–.

PCM/Acetonitrile 2750 5388 2840 24
NQ–.

PCM/DMSO 2750 5387 2840 24
NQ–.

PCM/H2O 2656 5161 2786 22
[NQ(H2O)4] –. 2259 4145 2630 1
[NQ(H2O)4] –.

PCM/H2O 2177 3959 2578 –6
Expb 2060 3500 2730 –40

a All values were computed at BP86/DZVP level using the corre-
sponding optimised; C-PCM [55] was used as continuum solvent
model [68]. b Ref. [3].



the larger the shifts the higher the solvent polarity. Nevertheless the continuum
alone is not able to reproduce the direct hydrogen-bonding semiquinone–water in-
teractions, and the absolute effect on gx is only ca. 200–300 ppm, roughly 10% of the
overall effect obtained upon adding explicitly four water molecules. The best perfor-
mance is found when adding the PCM model to the supermolecular cluster. This
further reduces Dgx by another few hundred ppm and brings it closer to experiment.

Within the framework of SOS-DFPT [69], the decomposition of the leading
DgSO/OZ contribution of BQ– in terms of single excitations allowed the HOMO–
SOMO gap excitation to be defined as the major contributor to the gx-shift (here we
refer to the highest doubly occupied molecular orbital as HOMO and to the singly
occupied molecular orbital as SOMO).

The analysis of the different contributions to Dgx (SO/OZ) for the HOMO–SOMO
excitation when going from vacuum, to PCM, to cluster approaches (Table 12.5)
highlights the main solvent effects.

In solution, the HOMO–SOMO gap increases and the spin density on oxygen
decreases with increase in solvent polarity. Addition of explicit water molecules
enhances both effects, thus leading to an overall reduction of gx.

12.5
Conclusions

With the recent developments of continuum solvent approaches, the modelling of a
wider class of chemical problems in solution becomes affordable at an ab initio
level, at a computational cost comparable to gas phase calculations. Concerning
magnetic properties, the delicate interplay between long-range (electrostatic) and
short-range (van der Waals or direct) solute–solvent interactions must be correctly
taken into account in order to get a realistic picture. In this respect the recent
advances in continuum models provide a cheap but rigorous tool, not only due to
their coupling with molecular dynamics, multi-layer or supermolecular approaches,
but also to the recent developments focused on the description of non-isotropic
media such as liquid crystals [84].
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Table 12.5 HOMO and SOMO b orbital energies (eHOMO, eSOMO ) of BQ–. in different environ-
ments and decomposition of the HOMO!SOMO contribution to gx in terms of SO and OZ matrix
elements. <OZ>H!S and <SO>H!S are in 10–4 eV T –1 and 104 eV respectively.

BQ–. BQ–.
THF BQ–.

DMSO BQ–.
ACETO BQ–.

H2O [BQ(H2O)4]–.

eHOMO (au) –0.027 –0.157 –0.174 –0.173 –0.192 –0.095
eSOMO (au) 0.038 –0.090 –0.107 –0.106 –0.123 –0.024
De (eV) 1.79 1.83 1.84 1.84 1.87 1.97
<SO>H!S 49.80 49.22 49.14 49.11 48.40 43.02
<OZ> H!S 0.61 0.61 0.61 0.61 0.60 0.49
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13.1
Introduction

The consequences of special relativity are important for the spectral parameters of
nuclear magnetic resonance (NMR) spectroscopy in systems containing heavy ele-
ments [1, 2]. Relativity has to be taken into account when electronic velocities are no
longer small compared to the speed of light, for example near heavy nuclei. The
NMR observables, the nuclear shielding tensor r and spin–spin coupling tensor J,
receive large contributions from the atomic core region and hence are subject to
pronounced relativistic effects. After pioneering papers featuring formalism and
semi-empirical calculations [3], Aucar and Oddershede [4], Ishikawa et al. [5], Qui-
ney et al. [6], and Visscher et al. [7] introduced ab initio methods in fully relativistic
four-component Dirac–Hartree–Fock (DHF) calculations of the NMR parameters.
Romero and Aucar incorporated quantum electrodynamical effects into the DHF
framework [8].

The high computational cost of the DHF-based methods motivates the develop-
ment of approximate relativistic methods. Both perturbational approaches based on
a non-relativistic (NR) reference state as well as the Breit–Pauli molecular Hamilto-
nian, HBP [9–11], and variationally stable one- and two-component methods have
been applied for r and J [2]. The zeroth-order regular approximation (ZORA) [12]
and the Douglas–Kroll–Hess (DKH) transformation [13] belong to the latter cate-
gory. These approaches are discussed in other chapters of this book (see for instance
Chapters 6–8). The fact that all methods based on the transformed Dirac Hamilto-
nian are subject to picture change effects [14], implies substantial programming
effort to obtain property integrals, particularly in the ZORA and DKH methods. In
contrast, the perturbational approach based on HBP is supported by numerous quan-
tum chemical implementations of the relevant integrals. Furthermore, relativistic
corrections based on HBP lend themselves easily to interpretations in terms of the
familiar NR concepts, and provide an interpolation step between the NR and Dirac
regimes. As HBP is not variationally stable [15], its singular operators should only be
used up to first order, or leading relativistic effects, with only one such operator at a
time in expressions featuring multiple perturbations [7, 16]. Direct perturbation the-
ory (DPT) [17] avoids the singularities of HBP, and has been outlined for magnetic
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properties [18, 19]. We are not aware of practical computational implementations of
DPT to NMR properties yet.

In this chapter, we give a systematic survey of all the leading-order relativistic
one-electron terms in r and J resulting from perturbation theory (PT) based on the
(Breit–)Pauli Hamiltonian. Additionally, we cover the two-electron spin–orbit (SO)
interactions. We start from a two-component positive-energy Hamiltonian [20] for a
molecule bearing two nuclear magnetic dipole moments placed in an external mag-
netic field, and show the resulting contributions to r and J at various orders of PT.
In doing so, the normal procedure of taking into account the electron spin symme-
try as well as time-reversal invariance of the resulting energy terms, is applied. We
mention briefly some of the important papers and results for the terms. We limit
ourselves to closed-shell, diamagnetic molecules.

13.2
Nuclear Shielding and Spin–Spin Coupling

rK couples a nuclear magnetic moment lK = cKIK to the external magnetic field B0,
whereas JKL couples the moments of two nuclei, via the electron system. Here, cK is
the gyromagnetic ratio of nucleus K. The Cartesian es components of the tensors
are

rK;es ¼ 1
cK

@
2
E IK ;B0ð Þ

@IK;e@B0;s

�����
IK¼0;B0¼0

; JKL;es ¼ 1
2p
@

2
E IK ; ILð Þ

@IK;e@IL;s

�����
IK¼0;IL¼0

ð13:1Þ

where E is the perturbed electronic energy of the molecule. E involves the field-de-
pendent momentum p= p + A, where A= A0 + AK + AL is the sum of the vector poten-
tials of B0 in the Coulomb gauge, � · A= 0, as well as the field caused by the point-
like magnetic dipole moments of nuclei K and L, with

A0ðriÞ ¼ 1
2

B0 � riO ; AK ðriÞ ¼ a
2
cK

IK � riK

r
3
iK

: ð13:2Þ

In Eqs. (13.2), riO = ri – RO where ri is the location of electron i and O refers to the
gauge origin, riK = ri – RK where RK is the location of K, and a is the fine structure
constant. The different contributions to rK follow from combining the obtained IK

and B0-dependent energy terms in different orders of PT. Correspondingly, energy
terms depending on both IK and IL contribute to JKL. In the present SI-based atomic
unit system, the NR expressions of r and J appear as O a2ð Þ and O a4ð Þ, respectively,
whereas the leading-order relativistic terms appear two powers of a higher.
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13.2 Nuclear Shielding and Spin–Spin Coupling

13.3
Electronic Hamiltonian

The two-component, positive-energy Hamiltonian that we consider can be written as
H ¼ Hne þHNR

kin þHR
kin þHDarð1Þ þHSO [20], where Hne is the NR nuclear attrac-

tion potential,

H
NR
kin ¼ 1

2

X

i

p
2
i þ i~rri � pi � pi

� �
ð13:3Þ

describes the NR kinematics and the spin-Zeeman interaction (~rr is a vector of the
Pauli spin matrices),

H
R
kin ¼ � 1

8
a

2X

i

p
2
i þ i~rri � pi � p

i

� �2
ð13:4Þ

provides a relativistic correction to the previous term, and

H
Darð1Þ ¼ 1

2
pa

2X

N

ZN

X

i

d riNð Þ ð13:5Þ

is the relativistic one-electron Darwin term, where ZN is the charge of nucleus N.
Finally, the relativistic SO term
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SOð2Þ ¼ � 1

4
a

2X

ij

´
~rri þ 2~rrj
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� rij � pi

r
3
ij

ð13:8Þ

consists of both one- and two-electron contributions. The latter is, besides the NR
Coulomb repulsion between the electrons, 1

2

P
ij´

1
rij

, which is included in the optimi-
sation of the reference state, the only two-electron term that we consider. For the
other two-electron operators in HBP, we refer to Refs. [9–11].
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13.4
Non-Relativistic Contributions

The operators appearing in the NR theory of r and J arise from Eq. (13.3), the NR
kinematic term

1
2

X

i

p
2
i � H

KE þH
OZ
B0
þH

PSO
K þH

PSO
L þH

DS
KB0
þH

DS
LB0
þH

DSO
KL ð13:9Þ

and the NR spin–Zeeman term

1
2

i
X

i

~rri � pi � pið Þ ¼ 1
2

X

i

~rri � Bi ¼ H
SZ
B0
þH

FC
K þH

FC
L þH

SD
K þH

SD
L : ð13:10Þ

H
KE ¼ � 1

2

X

i

r2
i is the NR kinetic energy; and

H
OZ
B0
¼ 1

2

X

e

B0;e

X

i

‘iO;e ; H
PSO
K ¼ a

2
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X

e
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X

i

‘iK;e

r
3
iK
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X
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des riO � riK

� �
� riO;eriK;s

r
3
iK
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KL ¼ 1
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cK cL
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IK;e IL;s
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r
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3
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: ð13:13Þ

In these formulae, <iO = – iriO � �i and <iK = – iriK � �i are the orbital angular
momenta with respect to O and K, respectively. The abbreviations denote the orbital
Zeeman (OZ) interaction, paramagnetic nuclear spin–electron orbit (PSO) interac-
tion, and diamagnetic nuclear spin–electron orbit interactions, DS and DSO. We
have omitted from Eq. (13.9) the terms quadratic in either B0 or IK.

In Eq. (13.10), the total magnetic field Bi contains the external field as well as the
contact and dipolar fields from K and L [21] and

H
SZ
B0
¼ 1

2
ge

X

e

B0;e

X
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si;e ð13:14Þ
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ð13:16Þ
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13.4 Non-Relativistic Contributions

are the spin–Zeeman (SZ), Fermi contact (FC), and spin-dipole (SD) operators, in
this order. We have used si ¼ 1

2~rri for the electron spin operator. The experimental
free-electron g-value, ge = 2.002319 has been introduced semi-empirically in Eqs.
(13.14–13.16) and in the following, instead of ge = 2 as in the Dirac theory.

The NR contributions to r and J resulting from these operators are listed in
Tab. 13.1. Ref. [23] and the chapters of this book provide comprehensive reviews on
the quantum chemical calculation of the NR terms.

Table 13.1 Non-relativistic contributions to nuclear magnetic shielding and spin-spin coupling
tensors, r and J, respectively.

First-order terms, <A>
Property Symbol A Tensorb

Second-order terms, <<A;B>>0
a

Symbol A and B
Interm.
statesc

Tensorb

rK d HKB0

DS 0,2,1 p HK
PSO and HB0

OZ singlet 0,2,1

JKL DSO HKL
DSO 0,2,1 PSO HK

PSO and HL
PSO singlet 0,2,1

FC HK
FC and HL

FC triplet 0

SD HK
SD and HL

SD triplet 0,2,1

SD/FC HK
SD and HL

FC (K«L)d triplet 2

a) Linear response notation corresponding to a standard second-order
PT expression involving the time-independent operators A and B
[22].

b) Contributions to tensorial ranks: 0 corresponds to the isotropic
shielding or spin–spin coupling constant, T = 1/3 (Txx + Tyy + Tzz),
where T is either rK or JKL, 2 to the anisotropic but symmetric con-
tributions Tes

S =1/2 (Tes + Tse)–Tdes and 1 to the anisotropic and anti-
symmetric contributions Tes

A =1/2 (Tes – Tse).
c) Spin symmetry of the intermediate states when the ground state is

a singlet.
d) Contributions from both perturbations of nuclear indices K and L.

13.5
Relativistic Kinematics and the Spin–Zeeman Effect

Relativistic terms in r and J arise when considering the terms (13.4), (13.5), (13.7)
and (13.8) in the Hamiltonian. In Eq. (13.4), p2

i and i~rri � pi � pi do not commute for
spatially non-uniform magnetic fields (such as those due to the nuclei), and thus

H
R
kin ¼ � 1

8
a

2X

i

p
4
i � 1

8
a

2
i
X

i

p
2
i ; ~rri � pi � pi

h i

þ

þ 1
8

a
2X

i

~rri � pi � pið Þ2 ; ð13:17Þ
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where the anticommutator of the operators A and B is denoted A;B½ �þ¼ ABþ BA.
Expanding the first term gives rise to
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are the mass-velocity (mv) Hamiltonian, kinetic energy corrections to the NR Zee-
man and orbital hyperfine operators (OZ-KE, PSO-KE, DS-KE and DSO-KE), and
two new cross-terms between the NR terms, PSO-OZ and PSO-PSO. We have
omitted terms higher than quadratic in the vector potential, and also those where
B0, IK or IL appear to second power.
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The electron-spin dependent second term in Eq. (13.17) becomes
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are the kinetic energy corrections to the spin–Zeeman (SZ-KE) and the Fermi-con-
tact and spin-dipole hyperfine operators, FC-KE and SD-KE, respectively. We have
omitted terms as before, and additionally the terms of the a4IK B0 or a6IK IL forms,
but which contain an electron spin dependence. The latter do not contribute to the
leading-order relativistic terms in r or J in closed-shell systems.

The last term arising from HR
kin is

1
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i
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where the dependence on electron spin vanishes, i.e. ~rri � Bið Þ2 ¼ B2
i , as seen from

applying ~rr � Að Þ ~rr � Bð Þ ¼ A � Bþ i~rr � A� B. The remaining, electron spin-indepen-
dent hyperfine operators arise from cross-terms between the homogeneous external
field and the contact and dipolar fields from K and L:
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The corresponding “con-con” cross term, proportional to the product of the contact
fields of two nuclei that do not coincide, vanishes everywhere in space.

13.6
Spin–Orbit Coupling

The one- and two-electron SO Hamiltonians become

H
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where the field-independent and -dependent SO interactions are
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13.7
Relativistic Corrections to Shielding and Coupling

We have summarised in Tab. 13.2 and 13.3 the leading-order relativistic contribu-
tions to r and J, resulting from the previous perturbation operators acting upon a
NR spin- and field-free reference state. Numerical results for some of the terms are
listed in Tab. 13.4 for r in the HI molecule and in Tab. 13.5 for J in H2Te. Most of
the leading-order corrections are included for r in Tab. 13.4, and even the missing
ones are not expected to pose problems in the perturbation calculation. In contrast,
the coupling contributions featuring the FC and mv or Dar(1) operators simulta-
neously, diverge upon increasing the size of the basis set. Hence, the present
approach has much more limited potential for couplings than for shieldings. In the
latter case, no such divergent terms occur.

The development of the perturbational method for including relativistic effects
into calculations of NMR parameters, based on HBP, began when the SO coupling
effects (the SO-I terms) were noted to be an important factor for r [30–33] of light
nuclei in systems containing heavy atoms. A transparent interpretation of this effect
was given in Ref. [34]. Cheremisin and Schastnev [33] as well as Fukui et al. [20]
introduced the SO-II effect due to the magnetic field dependence of the SO Hamilto-
nian. It should be noted that the FC-I and FC-II as well as the SD-I and SD-II terms
are not individually gauge invariant, but the sums of the corresponding third- and
second-order effects are [20]. With the gauge origin sensibly placed close to the cen-
ter of charge of the molecule, the SO-I term dominates the relativistic effects on the
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shieldings of light nuclei (Tab. 13.4). The SO-II term appears with a sign opposite to
that of the SO-I [20,35] and is numerically larger for the heavy nuclei themselves.

Table 13.2 Leading-order,O(a4), relativistic contributions to the nuclear magnetic shielding tensor r.a

First-order terms, ÆAæ

Symbol A Tensor Typeb

con. HKB0

con 0 Act.

dip HKB0

dip 2 Act.

d-ke HKB0

DS–KE 0,2,1 Act., HAHA?c

p-OZ HKB0

PSO–OZ 0,2,1 Act., HAHA?c

Second-order terms, ÆÆA; Bææ0

Symbol A and B Interm. states Tensor Type

p-ke/OZ HK
PSO–KE and HB0

OZ singlet 0,2,1 Act.

p/OZ-KE HK
PSO and HB0

OZ–KE singlet 0,2,1 Act.

d/mv HKB0

DS and Hmv singlet 0,2,1 Pass.

d/Dar HKB0

DS and HDar(1) singlet 0,2,1 Pass.

FC/SZ-KE HK
FC and HB0

SZ–KE triplet 0 Act., HAHA

SD/SZ-KE HK
SD and HB0

SZ–KE triplet 2 Act.

FC-II HK
FC and HB0

SO(1&2) triplet 0,2,1 Act., HAHA

SD-II HK
SD and HB0

SO(1&2) triplet 0,2,1 Act.

Third-order terms, ÆÆA; B, Cææ0,0
d

Symbol A, B and C Interm. states Tensor Type

p/mv HK
PSO, HB0

OZ and Hmv singlet 0,2,1 Pass.

p/Dar HK
PSO, HB0

OZ and HDar(1) singlet 0,2,1 Pass.

FC-I HK
FC, HB0

OZ and hSO(1&2) triplet and singlete 0,2,1 Pass., HALA

SD-I HK
SD, HB0

OZ and hSO(1&2) triplet and singlete 0,2,1 Pass., HALA

a) See footnotes in Tab. 13.1
b) Classification into passive/active as well as into HAHA/HALA

(if known) categories.
c) The results of Ref. [24] point to the HAHA character.
d) Quadratic response notation corresponding to standard third-order PT

expression involving the time-independent operators A,B and C [22].
e) Both triplet and singlet intermediate states contribute.
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Table 13.3 Leading order, O(a6), relativistic contributions to the spin-spin coupling tensor J.a

First-order terms, ÆAæ

Symbol A Tensor Type

con-dip HKL
con–dip 2 Act.

dip-dip HKL
dip–dip 0,2,1 Act.

DSO-KE HKL
DSO–KE 0,2,1 Act.

PSO-PSO HKL
PSO–PSO 0,2,1 Act.

Second-order terms, ÆÆA; Bææ0

Symbol A and B Interm. states Tensor Type

DSO/mv HKL
DSO and Hmv singlet 0,2,1 Pass.

DSO/Dar HKL
DSO and HDar(1) singlet 0,2,1 Pass.

PSO/PSO-KE HK
PSO and HL

PSO–KE (K«L) singlet 0,2,1 Act.

FC/FC-KE HK
FC and HL

FC–KE (K«L) triplet 0 Act.

FC/SD-KE HK
FC and HL

SD–KE (K«L) triplet 2 Act.

SD/FC-KE HK
SD and HL

FC–KE (K«L) triplet 2 Act.

SD/SD-KE HK
SD and HL

SD–KE (K«L) triplet 0,2,1 Act.

FC/SO HK
FC and HL

SO(1&2) (K«L) triplet 0,2,1 Act.

SD/SO HK
SD and HL

SO(1&2) (K«L) triplet 0,2,1 Act.

Third-order terms, ÆÆA; B, Cææ0,0

Symbol A, B and C Interm. states Tensor Type

PSO/mv HK
PSO, HL

PSO and Hmv singlet 0,2,1 Pass.

PSO/Dar HK
PSO, HL

PSO and HDar(1) singlet 0,2,1 Pass.

FC/mv HK
FC, HL

FC and Hmv triplet and singlet 0 Pass.

SD/mv HK
SD, HL

SD and Hmv triplet and singlet 0,2,1 Pass.

FC/Dar HK
FC, HL

FC and HDar(1) triplet and singlet 0 Pass.

SD/Dar HK
SD, HL

SD and HDar(1) triplet and singlet 0,2,1 Pass.

SD/FC/mv HK
SD, HL

FC and Hmv (K«L) triplet and singlet 2 Pass.

FC/PSO HK
FC, HL

PSO and hSO(1&2) (K«L) triplet and singlet 0,2,1 Pass.

SD/PSO HK
SD, HL

PSO and hSO(1&2) (K«L) triplet and singlet 0, 2, 1 Pass.

a) See footnotes in Tab. 13.1 and 13.2.
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Table 13.4 Numerical results for the non-relativistic as well as the leading-order relativistic nuclear
magnetic shielding constants of 1H and 127I in the HI molecule.a

Nucleus Theory
NRb

d p GIAO
Passive SR effects
d/mv d/Dar p/mv p/Dar

I SCF 5507.76 –951.65 4556.04 889.86 –474.46 –386.51 126.54
CASSCF 5507.85 –845.85 4661.91 889.85 –474.45 –317.48 85.41

H SCF 19.84 12.40 31.45 0.336 –0.570 0.293 –0.241
CASSCF 20.52 11.85 31.57 0.233 –0.463 0.159 –0.128

Active non-SO Passive SO effects
con FC/SZ-KE p/OZ-KE FC-I(1) SD-I(1) FC-I(2) SD-I(2)

I SCF –623.14 1931.08 143.00 107.90 46.13 –10.35 –5.11
CASSCF –623.14 1931.01 142.97 86.85 13.75 –8.45 –3.03

H SCF –0.002 –0.019 –0.002 18.601 0.585 –1.245 0.548
CASSCF –0.002 –0.013 –0.002 11.876 0.343 –0.836 –0.029

Active SO
FC-II(1) SD-II(1) Total DHFc Exp.

I SCF –330.40 43.38 6013.96 6768.4
CASSCF –330.35 43.33 6098.17

H SCF 0.020 0.000 49.754 47.98
CASSCF 0.014 0.000 42.719 43.86d

a) In ppm. Uncontracted basis sets: I [22s18p17d2f ] and H [8s3p1d],
SCF and complete active space SCF calculations with 8 electrons
correlated in 13 orbitals. The DALTON program [25] has been used.
For further details, refer to Ref. [26].

b) Dia- and paramagnetic terms from a common gauge origin (at I)
calculation. The GIAO NR results (used also in the “Total” column)
include both dia- and paramagnetic contributions.

c) Ref. [7]. The result for HI is probably overestimated due to the sc.
diamagnetic approximation. See the discussion in Ref. [26].

d) Ref. [27].

The contribution of the full (one- and two-electron) field-free SO operator differs
only by a few percent from the results obtained with the one-electron SO operator
only, for heavy nuclei [36, 37]. The computationally very efficient, one-electron/one-
center mean-field approximation to the one- and two-electron SO operator [38] using
the AMFI software [39], has been adopted for these calculations [37]. The SO-I con-
tributions were found to be strongly dependent on internuclear distances [40, 41],
and to cause dramatic effects on the experimentally observable secondary isotope
effects on r [42].

The first applications of SO-I corrections to J were discussed in Refs. [16, 43, 44].
While these studies demonstrated the need to consider also the electron spin-free,
scalar relativistic (SR) effects when at least one of the coupled nuclei is a heavy one,
the SO terms may be sufficient for couplings between light nuclei in heavy atom
systems [43]. The FC/SO and SD/SO terms, introduced in [43], are even formally
not available for couplings to heavy centres as the SO hyperfine integral in HSOð1Þ

K

diverges in these cases [43].
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Table 13.5 Numerical results for the non-relativistic as well as leading order relativistic 1JHTe and
2JHH spin-spin coupling constants in the H2Te molecule.a

NR
Coupling Theory DSO PSO SD FC

HTe SCF 0.02 –26.79 7.46 –272.94
CASSCF 0.01 –28.77 1.80 –254.13

HH SCF –1.22 1.00 0.00 –21.85
CASSCF –1.20 1.00 0.02 –18.71

Passive SR effects
Coupling Theory DSO/mv DSO/Dar PSO/mv PSO/Dar SD/mv SD/Dar

HTe SCF 0.0042 –0.0082 –15.5277 –0.1142 7.1704 –1.7753
CASSCF 0.0036 –0.0071 –16.4871 0.1888 2.1495 –0.5477

HH SCF 0.0123 –0.0009 0.0787 –0.0513 –0.0087 0.0092
CASSCF 0.0122 –0.0087 0.0917 –0.0596 –0.0137 0.0112

Passive SO effects Active SO effects
Coupling Theory FC-I(1) SD-I(1) FC-I(2) SD-I(2) FC-II(1) SD-II(1)

HTe SCF 73.7599 –1.7334 –0.3133 0.1352
CASSCF 54.3049 –2.1624 –0.3623 0.1191

HH SCF 1.9836 0.0304 –0.1245 –0.0023 0.00142 –0.00016
CASSCF 1.4090 0.0171 –0.0895 –0.0014 0.00050 –0.00015

Total
Coupling Theory NR SR SO SR+SO Total DHF[28] Exp. [29]

HTe SCF –292.25 –10.25 71.85 61.60 –230.65 92.21
CASSCF –281.09 –14.70 51.90 37.20 –243.89 –59–2

HH SCF –22.07 0.03 1.89 1.92 –20.15 –23.45
CASSCF –18.89 0.03 1.34 1.37 –17.53

a) In Hz. See footnote a in Tab. 13.4.

The contributions to r arising from the cross-coupling of the relativistic correction
to the electronic spin–Zeeman interaction (SZ-KE) and the spin-dependent FC and
SD hyperfine interactions, were found in Ref. [20]. These contributions, of which
the FC/SZ-KE term was later numerically found by Visscher et al. [7] to be the domi-
nant one for heavy nuclei (see also Tab. 13.4), cannot straightforwardly be charac-
terised either as SO or SR effects. The FC/SZ-KE contribution is also very insensitive
both to the chemical environment and electron correlation effects, as pointed out in
Refs. [26, 45, 46]. Melo et al. [45] presented a comprehensive formal survey of the
leading-order corrections to r arising from HBP, and the relation of this level of the-
ory to the four-component framework including vacuum polarization effects.

Numerically probably the most complete study of r so far was carried out in Ref.
[26], where reproduction of the DHF data of similar quality to that with the ZORA
and DKH methods, was achieved for hydrogen chalcogenides, hydrogen halides and
noble gas atoms. Relativistic effects were classified into two categories in Ref. [26].
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The “active” terms feature relativistic perturbations referring explicitly to the degrees
of freedom in the effective NMR spin Hamiltonian, the nuclear spins I and/or the
external magnetic field B0. The “passive” perturbations do not contain I or B0, and
affect the NMR parameters through relativistic modification of the wave function
only. Bouten et al. [24] earlier referred to exactly the same classification with their
“direct” and “indirect” effects, respectively. The SO-I effect on either r or J is an
example of a passive effect, where the I- and B0-independent part of the SO interac-
tion induces spin polarisation to the closed-shell reference state, and the magnetic
perturbations take the NR form. The FC/SZ-KE contribution to r exemplifies an active
effect, as reference to B0 is carried by the relativistic SZ-KE operator itself. The class
of active, I-dependent SR effects was not included in the calculations of Ref. [26].

A further useful categorisation of shielding effects is into heavy-atom influence
on the heavy atom (HAHA) and heavy-atom effects on the light atoms (HALA) [47].
Mechanisms belonging to the HAHA type mainly affect the NMR observables of the
same nucleus in which the relativistic effect originates. The HALA effects are, in
turn, mediated to the light nuclei from the heavy atoms. While the FC/SZ-KE term
in r is responsible for the majority of the HAHA effect [26, 46], the SO-I mechanism
has both HAHA and HALA character. Obviously this classification is not as well-
defined as the one into active and passive effects.

In its most rigorous form, perturbational relativity means inclusion of both the
relativistic as well as magnetic perturbations on equal footing, with the reference
state optimised using ab initio or density-functional theory (DFT) methods and a
NR spin- and external field-free Hamiltonian. Such “fully perturbational” studies
have been carried out in Refs. [7, 26, 35, 36, 40, 42, 45, 46] for r and in Refs. [16, 43,
44] for J, at various ab initio levels. Nakatsuji et al. [48] used finite perturbation the-
ory (FPT) for the SO-I contributions to r. Malkin et al. [49] applied FPT by including
the FC interaction as a finite perturbation, in their DFT calculations of the SO-I
shielding term.

DFT studies based on SR effective core potentials (ECPs) were pioneered by
Kaupp et al. [50, 51] as well as Bacskay et al. [52]. There, the relativistic effects are
included in formally NR self-consistent valence-only calculations, through the ECP
parameters that are optimised in relativistic atomic calculations. The ECP technique
indirectly allows inclusion of relativistic effects beyond leading order, but it has been
limited to only the NMR parameters of the light centres of the system, those for
which no ECPs are used (see, however, Ref. [53]). Nakatsuji et al. [54] (at the SCF
level) and Vaara et al. [55] supplemented the ECP method with perturbational SO
effects on r. It is in the ECP framework where the present SO corrections to J are
expected to have their main application potential. ECPs intrinsically allow only for
the passive relativistic effects to be included. A comparison of ab initio all-electron
and DFT ECP calculations for 1H shielding in HI is given in Tab. 13.6.

The limitation to passive relativistic effects applies also to the optimisation of the
reference state including the SR mv and Dar(1) operators together with a relativistic
frozen core [62, 63], later including perturbational SO-I terms [64]. Ref. [24] extended
the method with the active SR effects on r. HAHA effects and, hence, r in the abso-
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lute sense are incompletely recovered by the frozen core method, whereas the situa-
tion is better for the relative chemical shifts.

13.8
Conclusions

We have presented the approach of perturbational calculation of the leading-order
relativistic effects on the spectral parameters of NMR spectroscopy, the nuclear
shielding tensor r and indirect spin–spin coupling tensor J, based on a non-relativis-
tic (NR) spin- and external field-free, ab initio or density-functional reference state.
In this method, relativistic effects are incorporated by using the relativistic as well as
magnetic interaction operators, based on the (Breit–)Pauli Hamiltonian, as perturba-

13.8 Conclusions 223

Table 13.6 Comparison of ab initio all-electron and DFT effective core potential results for the 1H
nuclear magnetic shielding constant in the HI molecule.a

Theory NR Pass. SR Act. non-SO

SCF 31.57 –0.156 –0.021
CASSCF 31.64 –0.164 –0.017
DFT/LDA 30.12b

DFT/PW91 30.47b

DFT/BP86 30.69b

DFT/P86 30.73b

Passive SO Active SO
Total FCc Total SDc FC-II(1) SD-II(1) Total

SCF 16.332 0.284 0.019 0.000 48.03
CASSCF 11.115 0.220 0.014 0.000 42.91
DFT/LDA 9.602 – 0.008 – 39.73
DFT/PW91 10.314 – 0.008 – 40.79
DFT/BP86 11.643 – 0.009 – 42.34
DFT/P86 12.062 – 0.010 – 42.80

a) In ppm. See text for definitions of acronyms. All calculations with
a common gauge origin at the I nucleus. All-electron SCF and
CASSCF calculations as in footnote a of Tab. 13.4, apart from
the following contracted basis: I [20s16p14d/14s13p12d] and H
[6s2p/4s2p]. DFT ECP calculations with the method of Ref. [55]
using the de Mon-NMR-EPR program [56] with the SR and SO
ECPs and [6s6p2d/4s4p2d] valence basis sets [57] for iodine, and the
[6s2p/4s2p] set for H. SO contributions from H obtained using the
AMFI program [39]. The different functionals used are local density
approximation (LDA) and three generalised gradient approxima-
tions: Perdew–Wang91 (PW91) [58], Becke–Perdew (BP86) [59, 60],
and Perdew86 (P86) [61]. The de Mon-NMR-EPR implementation
does not include the SD terms in the SO contributions.

b) The ECP calculation includes the passive SR effects.
c) Total FC = FC-I(1) + FC-I(2), Total SD = SD-I(1) + SD-I(2).



tions on equal footing. A classification into passive and active relativistic effects has
been presented, where the former feature modification of the NR expressions by
relativistic field- and nuclear spin-free operators, taken up to first order. In the active
effects, the relativistic perturbation operators are also considered up to first order
only, but contain an explicit functional dependence on the external magnetic field
and/or the nuclear magnetic moment. We mainly discussed the one-electron pertur-
bation operators, but also considered the two-electron spin–orbit (SO) operator. It
turns out that the complete set of leading one-electron corrections to r can be
obtained perturbationally, whereas the leading corrections to J feature divergent
terms due to the simultaneous occurrence of multiple singular operators in some of
the perturbation-theoretical expressions. An approach based on effective core poten-
tials (ECPs) can be used for the NMR parameters of the light atomic centers only,
for which no ECPs are used. The ECP technique allows a variationally stable inclu-
sion of the spin-free passive relativistic effects from the cores of the ECP centres, in
the formally NR valence calculation, but the SO effects can be added perturbation-
ally. We gave a brief survey of the literature concerning the different relativistic
terms.
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14.1
Introduction

Among those magnetic molecular properties that are currently accessible to compu-
tations the nuclear magnetic shielding is of outstanding importance in virtually all
fields of chemical research as well as related disciplines. Thus, since the time that
the quantum mechanical treatment of molecules became computationally feasible
on a larger scale, methodology has been developed and applied in order to calculate
nuclear shieldings and NMR chemical shifts in an attempt to rationalize the mecha-
nisms that determine the observed signs, magnitudes, and trends among different
nuclei and/or molecules. The last decades have also seen an increasing interest in
the relativistic computation of nuclear shieldings in molecules containing heavy
atoms (see Sections 14.2 and 14.3 for references). “Heavy” is not always well defined
in the context of computational chemistry, but trivially some of the heaviest stable
NMR nuclei such as 195Pt, 199Hg, 205Tl, or 207Pb must be considered as such. It is
now textbook knowledge that for molecules containing these and other heavy ele-
ments a relativistic theoretical formalism is necessary. Of course it depends on the
intended accuracy of the computational results, and in this respect on the very prop-
erty that is computed, whether a nonrelativistic formalism is sufficient or not for its
theoretical description. One might agree that the use of a relativistic theory is
imperative when the nonrelativistic formalism is not able to reproduce the observa-
bles at least semi-quantitatively. To this end, there appears to be a general consent
about “relativistic effects” becoming highly important for the structure and bonding
of molecules containing at least one atom with a nuclear charge Z larger than about
54 (Xe). This rule-of-thumb refers to the currently achievable accuracy of standard
quantum chemical methodology. By “standard” is meant here currently popular and
well established ab initio or density functional methods such as Hartree–Fock, MPn,
or DFT with hybrid or non-hybrid functionals that are applicable to not just the
smallest molecules. Molecular properties such as heavy-nucleus shieldings that
depend on the electronic structure in the very vicinity of the nuclei often require a
relativistic treatment even at much smaller nuclear charges, but certainly for the
heavy nuclei of the 6th row of the periodic table. Also, when a much higher accuracy
of the computations is required than that currently offered by standard quantum
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chemical methods a relativistic formalism is necessary even for lighter elements,
along with an accurate treatment of the electron correlation.

This chapter is concerned with the inclusion of relativistic effects into NMR com-
putations in a direct manner, i.e. as part of the Hamiltonian that describes the kine-
matics of the electrons. Typically in such calculations all electrons are treated at a
specific relativistic level, though sometimes core orbitals are not variationally treated
but are transferred from atomic computations (frozen-core). Such an approach is
opposite to a pseudopotential formalism by which relativistic effects in the outer
core and valence shells can be accounted for in an indirect manner through the
potential of the inner (i.e. core) electrons. In the literature a distinction between
HALA effects on NMR parameters [1], i.e. the effect of the presence of a heavy atom
(HA) on the nuclear shielding of a light neighbor atom (LA), and HAHA effects [2],
which are the relativistic effects on the heavy atom’s own shielding, is frequently
made. The use of effective core potentials (ECPs) is usually computationally very
efficient, they can be very accurate [3], and they are readily employed for a study of
HALA effects. However, the computational codes currently in use in conjunction
with ECPs would need to be modified in order to account for the presence of the
pseudopotential for the computation of the heavy atom shielding. The wavefunction/
orbitals obtained from a direct all-electron relativistic computation can be directly
employed for the purpose of NMR calculations, including heavy atom shieldings,
provided the NMR operators have been implemented in the NMR code in a consis-
tent manner (see Section 14.2 for further comments on this issue). In the following,
emphasis will be put on HAHA effects, for which a variety of all-electron relativistic
formalisms have been developed and applied. Some interesting HALA effects will
also be discussed. Chapter 15 by Autschbach and Ziegler also focuses on coupling
constants involving at least one heavy nucleus. For the description of HALA effects,
both a relativistic ECP on the heavy atom and an all-electron method should be
equally successful. The former approach in the framework of NMR computations is
described in Chapter 13 by Vaara et al. A somewhat intermediate status have
perturbational computations of order c–2 of only the spin–orbit coupling induced
effects on nuclear shieldings, which are briefly discussed here, and in more detail in
Chapter 13. They are generally very successful for the treatment of HALA but not
for that of HAHA effects. See also Chapter 18 by Kaupp. Previously, relativistic NMR
calculations have been reviewed in Ref. [4], together with all-electron methods, covering
the literature up to early 2001.

This chapter is organized as follows: In Section 14.2 some of the underlying
methodology by which relativistic computations of NMR parameters are currently
carried out is outlined. Emphasis will be put on the similarities between the differ-
ent methods rather than presenting individual explicit expressions or technical
details. In Section 14.3 applications of the theory to nuclear shieldings in diamag-
netic heavy element compounds are described, with an emphasis on heavy nucleus
chemical shifts for which experimental data are available for comparison. Ab initio
and DFT computations are reviewed here; for an overview of semi-empirical calcula-
tions see Chapter 9 by Heine et al. A few examples of shielding anisotropies are also
presented, though for a more detailed account the reader is referred to Chapter 27
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by Wasylishen. Section 14.4 contains some concluding remarks. Throughout this
chapter and Chapter 15 Hartree atomic units with e= 1, me = 1, h= 2p, 4pe0 = 1,
c= 137.03599976(50) are employed. Thus prefactors containing e;me; 4pe0 and
�h ¼ h=ð2pÞ are generally omitted, whereas the speed of light, c, is explicitly
included. Equations referring to magnetic properties have been converted from SI
to atomic units. The fine structure constant a is in atomic units equal to c–1. The
latter occurs in the equations indicating the relative magnitude of the hyperfine
terms in the Hamiltonian as compared to relativistic corrections of O (c–2) and the
nonrelativistic termsO (c0). No details regarding gauge corrections and the GIAO [5, 6]
or IGLO [7] methods will be presented since they are discussed in detail in Chapter 6 by
van W�llen and recent review articles [8, 9]. Further, shielding surfaces, ro-vibrational
corrections, and isotope effects, are discussed in Chapter 10 by Ruud. Open-shell sys-
tems are the subject of Chapter 20 by Patchkovskii and are not considered here.

14.2
Methodological Aspects

For a general introduction on the shielding tensor and the chemical shift the reader
is referred to Chapter 6 by van W�llen. See also Chapter 5 by Kutzelnigg for further
details on the relativistic NMR formalism.

As in the nonrelativistic theory, within the framework of quantum mechanical double
perturbation theory [10], the shielding nuclear magnetic tensor is given as [11, 12]

rA ¼ @
2
E

@B@lA

�����
B¼0;l

A
¼0

ð14:1Þ

Here, lA is the magnetic moment due to the nuclear spin, and B is the external
magnetic field. E is the total relativistic molecular energy not including the nuclear
Zeeman term lA·B. In Eq. (14.1) a possible (supposedly negligible [13]) B-field
dependence of rA is not included. Taking the derivative of E in Eq. (14.1) analytically
involves the analytic derivatives of the wavefunction W (or Kohn–Sham orbitals ji

in density functional theory DFT [14]) with respect to either B or lA, i.e. W(1,0) =
(¶W/ ¶B)|lA=0,B=0 or W(0,1) = (¶W/ ¶lA)|lA=0,B=0. Alternatively, finite-field approaches
are not uncommon in which the calculation of W is carried out twice, with and with-
out the presence of Ĥ(1,0) or Ĥ(0,1) times a small number, and W(1,0) or W(0,1) is then
approximated by a finite difference instead of the true derivative. Further one needs
to know the magnetic perturbation operators Ĥ(1,0) = (¶Ĥ/ ¶B)|lA=0,B=0, Ĥ(0,1) =
(¶Ĥ/¶lA)|lA=0,B=0 and Ĥ(1,1) = (¶2Ĥ/¶B¶lA)|lA=0,B=0. Contributions to rA from Ĥ(1,1)

are commonly referred to as the diamagnetic contribution, whereas those from
Ĥ(1,0) and Ĥ(0,1) are the paramagnetic ones.

It is decided when deriving the NMR perturbation operators and computing the
unperturbed wavefunction (orbitals) and energy from a specific expression for Ĥ
whether either a nonrelativistic formalism or a relativistic one (and which particular
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form) is specified. Alternatively, one can also formulate relativistic corrections to rA

in the form of a third (and higher) derivatives of E in the form

DrelrA ¼ c�2 � @
3
E

@B@lA@c�2

�����
c!1;lA¼0;B¼0

þOðc�4Þ: ð14:2Þ

The powers of c–2 serve as convenient small perturbation parameters within the rela-
tivistic theory. Though perturbational approaches can be advantageous for interpre-
tational purposes (clear separation of leading (c–2) and higher order (c–4, c–6 . . .)
relativistic corrections) it should be kept in mind that for the heaviest NMR nuclei
the relativistic effects on r can be huge and will not be fully covered by the terms
linear in c–2. This gives variational relativistic methods an advantage of relative con-
ceptual simplicity over higher order relativistic perturbational approaches when
computing rA for a heavy nucleus or its neighbor atoms.

It is of importance that the perturbation operators Ĥ(1,0), Ĥ(0,1), and Ĥ(1,1) are de-
rived within the same relativistic formalism that is used to determine the unper-
turbed quantities Eð0;0Þ and Wð0;0Þ (or jð0;0Þi ) in order to avoid inconsistencies and
concomitant errors. Due to the complexity of relativistic computations of nuclear
shieldings, simplified “mixed” approaches have occasionally been devised and are
still in use. However, the results need to be viewed with some care and have been
criticized, e.g., in Ref. [15]. The errors being introduced by using “alien” operators
within relativistic formalisms are sometimes referred to as picture change effects
[16]. To illustrate the problem, it is known that relativistic atomic s and p1/2 wave-
functions / orbitals logarithmically diverge at point-like nuclei (see literature cited in
Ref. [17]). In the nonrelativistic theory the Fermi-contact (FC) operator samples the
value of the orbitals at the point-nuclei. This nonrelativistic operator should thus
yield infinity in conjunction with relativistic wavefunctions/orbitals that diverge at
the nucleus in the limit of a complete basis. Because, typically in molecular compu-
tations, basis functions are employed that stay finite at the nuclei, by choice of the
basis set any value for the matrix elements of the nonrelativistic FC operator can be
obtained in a relativistic calculation. The quasi-relativistic generalizations of the FC
operator, as well as the four-component formalism, avoid these divergences at point-
nuclei but usually sample the vicinity of the nuclei together with the spatial K-shell
instead [18–21] (see also Chapter 31 by Chipman et al.). In a more realistic calcula-
tion with a finite nucleus no such divergences should occur; nevertheless the pertur-
bation operators must be chosen consistently with the unperturbed solution. In
order to account for a non-point like nuclear dipole, the Gaussian nuclear model
[22] is frequently employed in NMR computations.1)
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1) It is worthwhile to mention that the combina-
tion of a point-like magnetic dipole with a
point-nuclear charge within an approximate
(i.e. quasi-) relativistic calculation is, due to the
combination of the generalized FC operators
the diverging wavefunctions / orbitals, perhaps

not applicable to systems in which a nucleus
has a charge greater than approximately 118.
This has been shown, e.g., for the elimination
of the small component (ESC) scheme [23] and
the ZORA [24].



14.2 Methodological Aspects

Concerns regarding infinite matrix elements also hold for certain singular opera-
tors if they are used in variational calculations. This can be problematic for the
already mentioned finite-field approaches or variational relativistic computations
employing variationally unstable operators. This is not to be confused with the afore-
mentioned picture change errors, though variational collapse can indeed result from
the inconsistent use of operators within relativistic formalisms.

In the early 1980s several articles were published dealing with the four-compo-
nent relativistic formalism for nuclear shieldings in molecules [25–27], which was
subsequently reviewed in Ref. [28]. By that time it had already been recognized that
spin–orbit coupling due to a heavy halogen atom must be responsible for the well-
known large proton and 13C upfield shifts in their neighborhood [29–32]. However,
scalar relativistic effects and/or a consistent four-component formalism for molecu-
lar applications had not been widely discussed. The perturbation operators in the
four-component Dirac picture are

Ĥ
ð1;0Þ
u ¼ � c

2
½a� r�u (14.3a)

Ĥ
ð0;1Þ
u ¼ � 1

c
a� r

A

r3
A

� �

u

(14.3b)

for the u 2 fx; y; zg component of the perturbing nuclear spin vector. Here, a is the
3-vector of the 4 � 4 Dirac matrices. These two operators have to be seen as the four-
component generalizations of the orbital-Zeeman (OZ) and the paramagnetic orbital
(OP) terms of Ramsey’s nonrelativistic theory [33] for nuclear shieldings. They also
implicitly include, due to their action on a four–component wavefunction / orbitals,
the contributions from the spin-dependent Fermi-contact (FC) and spin-dipole (SD)
terms of the nonrelativistic theory as well as the spin–Zeeman term. There is no
explicit analog for the diamagnetic shielding (DS) operator in the four-component
picture. This apparent discrepancy has been numerically analyzed in Ref. [34] (for
the case of the diamagnetic spin–spin coupling), and the diamagnetic part has been
traced back to contributions from “negative energy” eigenfunctions of the Dirac
operator that usually enter the equation for the shielding tensor via the magnetically
perturbed wavefunction. This has previously been pointed out in Ref. [35] and also
in Refs. [26, 27] (see also Chapter 2 by Pyykk�). The topic has been recently dis-
cussed in detail by Kutzelnigg [36], where the reader can also find remarks about
kinetic balance in the presence of a magnetic field, an issue prevalent in four-com-
ponent relativistic computations using basis sets. Schemes have been devised in
order to decompose the shielding tensor of a four-component method in terms of
more familiar paramagnetic and diamagnetic contributions (the so-called Gordon-
decomposition [25, 36, 37]) in order to facilitate interpretations. Table 14.1 lists a
comparison of the operators that enter the expression for the shielding tensor in
different relativistic theories. Recently, the formalism for the inclusion of QED self-
energy corrections for the relativistic computation of NMR observables has been
investigated [38]. QED effects on atomic hyperfine integrals have been discussed in
Ref. [39] through their inclusion via model potentials.
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Table 14.1 Comparison of one-electron operators that contribute to the nuclear shielding in
Eq. (14.1) in different relativistic formulations and in the nonrelativistic limit, and a selection of
literatur references that list explicit expressions

Nonrelativistic Two-component
(Quasirelativistic)
DKH2, ZORA, ...

Relativistic Perturba-
tional Schemes

Four-component
“Fully Relativistic”

diamagnetic
shielding (DS)

diamagnetic
shielding (DSa)

nonrelativistic
terms DS, OZ, OP

Eqs. (14.3a, 14.3b)

corresponding
orbital Zeeman
(OZ)

orbital Zeeman
(OZa)

if spin–orbit
coupling included:
FC and SD yield

to OZ, OP, FC, SD

paramagnetic
orbital (OP)

paramagnetic
orbital (OPa)

shielding
contributions

DS implicity
included in
shielding

Fermi-contact
(FC) (zero contrib.b)

Fermi contact (FCa) plus many additional
operators O(c–2), O(c–4)

tensor

spin-dipole (SDa)
spin-dipole
(SD) (zero contrib.b)
Refs. [8, 9, 11, 12]
& many others

Refs. [18, 19, 23],
[15, 51–55]

Refs. [29–32, 40–45],
[36, 56]

Refs. [25–27],
[46–50]

a) Two-component relativistic generalization of the respective operator.
b) Contributions due to FC and SD term from spin-up and spin-down

orbitals in nonrelativistic or scalar relativistic scheme cancel exactly.

Fully relativistic four-component computations on molecules are even today not rou-
tinely carried out. Indeed, it has taken until the late 1990s for the first four-compo-
nent Hartree–Fock computations of nuclear shielding in molecules to be reported in
the literature [37, 47, 57]. In contrast, atomic four-component NMR computations
have been discussed and carried out much earlier [58–61]. However the accurate
determination of atomic nuclear shieldings with large basis sets is still a computa-
tional challenge (see, e.g., a recent publication by Vaara and Pyykk� [62]). From early
on, attempts have been made to compute nuclear shieldings by means of approxi-
mate two-component relativistic Hamiltonians instead. Most familiar to most read-
ers is perhaps the (Breit–) Pauli Hamiltonian [18, 63, 64] which is obtained from the
two-component relativistic Hamiltonian as a perturbation of order c–2. Its use in mo-
lecular computations is generally restricted to a perturbational approach in order c–2

because of its highly singular behavior [65, 66] and its variational instability. None-
theless, variational computations have been carried out with the Pauli operator
because by using large frozen cores and very restricted basis sets in the core region
of the heavy nuclei one can keep the variational instability somewhat “under control”
(meaning the instability does not show up because of basis set restrictions). The
field-free one-electron Pauli Hamiltonian has the form
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ĥh
Pauli
¼ � p̂p4

8c2 �
ðp̂p2VN Þ

8c2 þ i
2c2 ŜS ðp̂pVN Þ � p̂p

�
;

�
ð14:4Þ

where Ŝ = rs/2 is the one-electron spin-operator, VN the nuclear potential. The last
term in Eq. (14.4) is the one-electron Pauli spin–orbit (SO) operator. There are also
two-electron SO operators arising in two-component relativistic theories, the use of
which in NMR calculations has been discussed, for example, in Refs. [41, 48, 67].
Upon considering the presence of the external magnetic field and the nuclear spins,
a rather large number of relativistic magnetic perturbation operators in addition to
the nonrelativistic ones are obtained from Eq. (14.4) that are explicitly listed for
instance in Refs. [40, 43, 45, 56, 68]. These, and a number of additional, operators
are obtained when the minimal substitution is correctly applied in the Dirac Hamil-
tonian before the transformation to two-component form [45, 56].

An alternative, nonsingular, perturbational relativistic approach is facilitated by
the “direct” four-component relativistic perturbation theory (DPT) [17, 69–72]. The
inclusion of magnetic interactions in the DPT formalism has been discussed in
detail by Kutzelnigg [44]. The implementation of the resulting hyperfine integrals
has recently been outlined [73]. Applications to nuclear shieldings for heavy atomic
systems are not known to the author at the time of writing this chapter.

Besides the four-component theory and perturbational Hamiltonians there are
currently two rather popular variationally stable two-component methods in use that
have both been successfully applied to nuclear shieldings in molecules. One is
Hess’ version [74, 75] of the second-order Douglas–Kroll [76] transformation
(DKH2), the other is the zeroth-order regular approximation (ZORA) [77]. Both
methods contain relativistic effects to higher order than c–2, but are still approxima-
tions to the exact two-component relativistic Hamiltonian which is not explicitly
known. It has been demonstrated that for a variety of molecular properties (ener-
gies, geometries, and vibrational frequencies) which are determined by the valence
shell orbitals and their relativistic corrections, the DKH2 and the ZORA method
yield very similar results [78]. This is not necessarily to be expected for nuclear
shieldings as well because they depend on the electronic structure very close to the
nuclei. For core-orbital energies, DKH2 yields better approximations to the four-
component results than (unscaled) ZORA, though regarding the orbital shapes this
is not necessarily the case [17, 77, 79]. For chemical shifts, the two methods seem to
perform comparably well, which is likely due to the fact that most contributions
from the core orbitals cancel when the chemical shift is evaluated.2) The perturba-

tion operators
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2) It is important in this context to distinguish
between the core orbitals vs. valence orbitals
and their contributions to the shielding tensor,
and the spatial contributions to the integrals
that determine the shielding tensor. Generally
speaking, the diamagnetic shielding stems
mainly from the core orbitals and the spatial
core regions, whereas at least large parts of the

paramagnetic shielding and the SO contribu-
tions are determined by the core tails of the
valence orbitals. For this reason, most of the
diamagnetic shielding cancels regarding the
chemical shift whereas the paramagnetic and
SO terms are heavily dependent on the chemi-
cal environment.



that arise from the two methodologies can be found in the references listed in Tab.
14.1. They can be viewed as regularized analogs of the nonrelativistic operators addi-
tionally including kinematic factors that become important in the vicinity of the
nuclei and/or for large momenta of the electrons. Therefore the nonrelativistic ter-
minology will also be used here for these operators (see Tab. 14.1). Because of the
computational efficiency of DKH2, ZORA, and other possible variational two-com-
ponent methods, it can be expected that they will strongly contribute to the body of
computational data on heavy-nucleus shielding tensors in molecules in the near
future. However, there is also an increasing number of recent four-component
results, as will be seen in the next section.

Apart from acronyms already specified, use of the following abbreviations is
made from now on: SO = spin–orbit coupling (one and/or two-electron terms),
vPSO, vPSC, vPauli for variational Pauli SO only, scalar only, and scalar + SO,
respectively. Similarly, pPSO, pPSC, pPauli denote perturbational relativistic calcula-
tions O(c–2). DKH2-vPSO is an example for a “mixed approach”. HF = Hartree–
Fock. HF-Dirac = four-component Hartree–Fock. MCSCF = multiconfigurational
self-consistent field.

14.3
Computational Results

14.3.1
Proton Chemical Shifts in Hydrogen Halides

Perhaps the most prominent examples for relativistic effects on NMR properties are
the proton and 13C shielding constants in the neighborhood of heavy halogens.
Among these, the series HX, X = F, Cl, Br, I is the best studied example. Table 14.2
lists some of the computational data for HX that have been published over the last
three decades. Because of the ideal benchmark character of the HX series (small
molecules, large relativistic effects, experimental data available), new relativistic
methodologies are frequently tested with these molecules. As can be seen, some of
the data have been published very recently, testifying to the continuing, even
increasing, interest in new efficient and accurate methodology by which to treat
NMR properties of heavy atomic systems. The discrepancy between the two different
1999 four-component HF results is probably due to the use of an insufficiently flex-
ible basis set in the case of Ref. [37]. For comments on the similarity between HF-
ZORA and DFT-ZORA in Tab. 14.2 see below where the shifts of the heavy atom X
are discussed.
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Table 14.2. Proton chemical shifts in HX, X=Cl, Br, I

–d1H
a X=

Method/Year
Cl

nrelc rel
Br

nrel rel
I

nrel rel

semiemp. pPSO/1973 [30] 8.02 8.24 11.24 13.85 13.08 20.92
semiemp.pPSO/1978 [31] 2.1 2.7 5.75 10.0 3.22 16.8
REX/1987 [1] 0.45 3.35 11.01
HF vPSO/1995 [80] 2.43 3.17 2.57 7.72 3.07 18.93
HF DKH2-vPSO/1996 [81] 1.92 2.69 2.36 7.87 0.04 19.93
DFT pPSO/1996d [82] 1.68 2.31 1.23 5.34 1.61 13.24
DFT vPSC/1997 [83] 1.4 1.5 1.7 1.8 2.1 2.3
MCSCF pPSO/1998 [41] 1.98 2.57 2.19 6.04 2.74 14.68
DFT vPauli/1998 [84] 1.43 5.34 11.79
HF scalar DKH2/1999 [85] 2.08 2.17 2.39 3.06 2.62 4.95
HF Dirac / 1999 [47] 2.39 3.13 2.82 8.21 3.32 20.11
HF Dirac / 1999 [37] 2.68 4.91 10.71
DFT SO-ECP / 2001 [86] 1.68 2.39 1.21 6.42 1.61 14.87
DFT ZORA / 2002 [4] 1.57 2.45 1.84 5.31 2.19 13.6
HF ZORA / 2002 [52] 2.28 2.57 2.64 4.86 2.83 13.49
HF DKH2 / 2002 [52, 53] 2.28 3.20 2.64 8.23 2.83 20.26
HF DKH2 / 2003 [55] 2.45 3.22 2.65 8.81 3.06 21.38
HF pPauli / 2003 [56] 2.25 3.18 2.42 8.33 3.06 21.85
MCSCF pPauli / 2003 [56] 1.98 2.66 2.19 6.14 2.73 14.61
exp (–0.02)b 2.58 6.43 15.34

a) In ppm, with respect to HF, all values �(–1).
b) Experimental values as quoted in Ref. [84]. Uncertainty due to the

experimental value for HF (measured w.r.t. CH4).
c) Nonrelativistic values listed if reported in reference.
d) Preliminary results were published in 1995 in Ref. [87].

14.3.2
HALA Effects Due to Spin–Orbit Coupling

Computational studies of the proton shieldings in HX date back to the 1970s, when
a perturbation approach employing the SO part of the Pauli operator together with
LCAO wavefunctions was used [30]. It had been realized already in the late 1960s
[29] that spin–orbit coupling must be responsible for the increasing shielding of the
proton along the series; an assertion that could not be proven by computational
results at that time, but is evident from Tab. 14.2. This is the prime example for a
HALA effect induced by spin–orbit coupling at the heavy atom. Because scalar rela-
tivistic effects play virtually no role for the proton shielding in HX (and also the 13C
shielding in CH4–nXn, the SO effects of which were first computationally studied in
Ref. [32] by the semiempirical INDO method) much of the effort of implementing
first-principles relativistic nuclear shielding calculations has for a long time focused
on the inclusion of spin–orbit coupling at a perturbational level. The results
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obtained for HX and other systems have provided justification for this approach. It
has been, among other results, established beyond doubt that the so-called “normal
halogen dependence” (NHD), i.e. an increased shielding for light neighbor nuclei of
X along the series X = F, Cl, Br, I, is a SO-induced relativistic effect. An interpreta-
tion of this trend has been made in almost all publications dealing with such com-
putations. See, for example, the references in Tab. 14.2, and also Chapter 18 by
Kaupp and Ref. [88]. Ref. [84] gives an explanation of the somewhat unintuitive
trend for 13C shifts in 5d transition metal carbonyl complexes. Extremely large SO
effects have been reported for rP in the PXþ4 series, which has been attributed to the
strong s-character of the P-X bonds (Ref. [89], DFT-pPSO). If the SO contributions
are quenched, as appears typical for early transition metal halides, the so-called
“inverse halogen dependence” (IHD) is observed in experiments and reproduced by
computations (for instance for Nb hexahalides and Ti tetrahalides, Ref. [90], HF-
vPSO). Because the SO contributions to the nuclear shielding are mainly caused by
SO-induced cross terms between the OZ and the FC term (Tab. 14.1), there is an
analogy to the FC term of nuclear spin–spin coupling. This analogy had also already
been proposed in 1969 [29]. Recently, numerical evidence on the Karplus-curve-like
dependence of SO–induced shielding on dihedral angles, closely following the one
for the 3J(H–I) spin–spin coupling constants, could be provided for iodoethane [91]
(DFT-pPSO). Many other studies [8, 32, 41, 80, 82, 84, 86, 89, 92–97] of SO contribu-
tions to light nucleus shieldings have been carried out and interpretations have
been made. Interesting cases are the series CCl4–nIn, CBr4–nIn, CH4–nIn, and
CH4–nBrn, that were recently studied with respect to their “nonlinear NHD” [95].
The reader is referred to Ref. [4] and Chapter 13 by Vaara et al. for more complete
overviews on the methodology, as well as Chapter 18 by Kaupp.

14.3.3
Halide Shielding Constants in Hydrogen Halides as an Example of HAHA Effects

Because of the historical development, scalar relativistic effects on nuclear shielding
were only studied much later, in particular when it became essential to include
them in order to study shielding constants of the heavy nuclei themselves. As pre-
viously mentioned, scalar relativistic HALA effects can easily be studied with a non-
relativistic NMR code by employing relativistic ECPs. Spin–orbit ECPs can also be
employed for this purpose [86, 92, 95, 98] which gives additional access to the often
dominant spin–orbit–induced HALA effects. An example is listed in Tab. 14.2 for
comparison. In the following, we will focus on heavy atom shieldings and the
HAHA effects.

Table 14.3 lists the shielding constants for the heavy nucleus X in the HX series.
Note the publication dates ‡ 1996 as compared to Tab. 14.2. Scalar relativistic contri-
butions are seen to be of high importance for the shielding of the heavy nucleus in
HX, with an increase of roughly Z3.5 according to Fukui et al. [15]. This result
appears to be typical since a similar trend has been obtained from Dirac–Fock com-
putations on group 15 and 16 hydrides, for which a dependence of the relativistic
contributions on the heavy-nucleus shielding ~Z3.2 was reported [50]. Manninen et
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al. found a Z3–dependence for a pPauli treatment [56]. There are some recent Har-
tree–Fock reference data available for rX in HX for a comparison of various relativis-
tic methods. The results are also listed in Tab. 14.3. Unfortunately, due to the
approximations and the different basis sets that have been applied no definite con-
clusions can be drawn at this time about the performance of the various methods.
The comparison of the 1998 data [41] as well as the 2003 data [56] between Hartree–
Fock and the correlated MCSCF methods suggests that rX is moderately affected by
electron correlation. In Ref. [45] it was found by a perturbational relativistic
approach employing both Hartree–Fock and a correlated wavefunction (SOPPA =
second-order polarization propagator approach) that some of the relativistic correc-
tions on rX in HX and CH3X are virtually unaffected by electron correlation. This
would lead to the conclusion that indeed rather similar rX (within ~100 ppm) can be
expected for HX from relativistic correlated ab initio and Hartree–Fock computa-
tions including both scalar and spin–orbit coupling effects. If this is true then the
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Table 14.3 Halide nuclear shielding constants rX in HX, X = F, Cl, Br, I.

rX X=
Method/Year Ref.

F
nrel rel

Cl
nrel rel

Br
nrel rel

I
nrel rel

HF pPSO / 1996 [40, 68] 413.6 412.0 952.0 941.7 2652.6 2562.3 4562.8 4272.4
HF pPSO / 1998 [41]a 413.6 414.0 946.8 949.5 2633.9 2666.7 4551.7 4686.8
MCSCF pPSO / 1998 [41]a 422.5 422.8 968.6 970.5 2682.0 2704.5 4654.5 4743.0
MCSCF pPSO / 1999 [42]b 422.5 421.3 968.6 960.0 2682.0 2624.6 4654.5 4469.6
HF Dirac / 1998 [48] 418.1 409.5 961.2 1027.7
HF Dirac / 1999 [47] 414.3 423.3 957.0 1020.1 2634.2 3224.6 4541.4 6768.4
HF scalar DKH2 / 1999 [85] 413.5 415.8 950.1 969.1 2643.2 2863.8 4538.2 5714.2
HF DKH2 / 2002c [52, 53] 413.5 422.3 949.9 1014.7 2641.3 3401.2 4539.8 8843.8
HF ZORA / 2002 [52] 413.5 416.4 949.9 970.1 2641.3 2851.0 4539.8 5487.3
DFT ZORA / 2003d 412.8 414.9 940.3 957.3 2574.2 2801.5 4431.7 5478.6
HF DKH2 / 2003 [55] 416.8 423.4 957.5 1018.9 2634.9 3164.9 4540.4 6508.5
HF pPauli / 2003 [56] 413.6 422.7 946.8 1009.5 2633.9 3222.8 4556.0 6652.5
MCSCF pPauli / 2003 [56] 422.5 431.5 968.6 1030.9 2682.1 3265.5 4661.9 6732.8
expt.e 410–6 952 2617 4510

a) Neglecting contributions due to the minimal substitution p̂p! p̂p in
the Pauli-SO operator (4).

b) Including contributions due to the minimal substitution p̂p! p̂p in
the Pauli-SO operator (4).

c) Employing nonrelativistic operators regrading the lA and B pertur-
bations.

d) ZORA-DFT data computed for this work, BP86 functional, same
basis set used as for computation of DFT-ZORA proton shifts in
Tab. 14. 2 (QZ4P, [99]), Ref. [4].

e) Experimental data as compiled in Ref. [41]. Estimates based on a
combination of computed diamagnetic shielding constants and
experimentally determined spin–rotation constants, employing the
nonrelativistic relation between spin–rotation constant and the
paramagnetic shielding tensor [100].



Hartree–Fock and the DFT values should also be comparable, which suggests that
the rather good agreement between Fukui’s HF-ZORA results and the DFT-ZORA
values is to some extent meaningful. On the other hand, some approximations
(such as neglecting the electronic Coulomb potential in the ZORA one-electron
operator, and others) have been made in Ref. [52] but not in the DFT-ZORA imple-
mentation, therefore differences should be expected. There is also a similarity be-
tween the HF-ZORA and the DFT-ZORA results for the proton shifts in Tab. 14.2
which is difficult to understand because HF-ZORA can be expected to yield results
similar to the other relativistic Hartree–Fock data (about 20 ppm for HI), whereas
DFT-ZORA should, and does, give similar results to the DFT-SO-ECP method.
These are significantly smaller due to the inclusion of electron correlation.

A direct comparison of the DKH2 data of Ref. [52] (Fukui and Baba, 2002) with
those from Ref. [55] (Fukuda et al., 2003) cannot be made since in Ref. [52] the use
of the nonrelativistic magnetic perturbation operators [53] represents a severe
approximation. Surprisingly, the “QR-0” approximation to the DKH2 approach that
has also been implemented by Fukuda et al. in Ref. [55], and which was described as
corresponding to the very same approximation of using the nonrelativistic operators,
yields consistently smaller shielding constants than the full DKH2 results [54, 55].
The authors refer to their method for technical and methodological reasons as
GIAO-FP-QR-GUHF (which perhaps represents a new landmark for the length of
quantum chemical acronyms) indicating that the perturbed wavefunction
ð@W=@BÞjlA¼0;B¼0 is obtained by a finite perturbation technique. It is not clear
whether the discrepancy is due to such technical issues or related to different basis
sets. Very good agreement is obtained between the HF-DKH2 results by Fukuda et
al. [55] and the four-component HF results by Visscher et al. [47] in Tab. 14.3.
Further, very good agreement between DKH2 and four-component Hartree–Fock for
nuclear shielding constants of rare gas atoms has been reported in Ref. [54]. The
DKH2 shieldings for the rare gas atoms are also very similar to the near basis-set
limit Dirac-HF results of Ref. [62]. At the same time, in an earlier study of H2Y,
Y = O, S, Se, Te, large differences between DKH2 and Dirac-HF were reported for
rTe [57]. From the data of Tab. 14.3 one can conclude that (1) for the heavy nucleus
shielding in HX the scalar relativistic effects are much larger and positive as com-
pared to the negative, i.e. deshielding, sum of the SO contributions, and, (2) that it
is at present not completely clear how different relativistic approaches perform in
comparison, though, tentatively, it seems as if the ZORA approach tends to yield
smaller absolute shieldings (but not necessarily chemical shifts, see below) than
four-component HF or the existing DKH2 implementations.

14.3.4
H2Y and YH3

Further recent four-component HF benchmark results for light and heavy-nucleus
shielding constants in small molecules can be found, for instance, in Refs. [57]
(H2Y, Y = O, S, Se, Te; also HF-DKH2), or [50] (H2Y, Y = O, S, Se, Te, Po, and YH3, Y
= N, P, As, Sb, Bi; no comparison with experimental data). The H2Y series was also
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studied by a pPSO approach in Ref. [42] where a comparison with experimental data
has been made. The experimental estimate of 4954 ppm for rTe in H2

125Te was
underestimated by more than 1000 ppm in the computations (HF and MCSCF),
likely due to the missing scalar relativistic effects. The SO contributions were
–233 ppm. In comparison, in Ref. [50], the total relativistic change for rTe was
reported as +1963 ppm (Dirac-HF). Again, the correlation effects on the heavy-
nucleus shielding in Ref. [42] were found to be only modest.

14.3.5
Mercury Shielding Constants: Scalar, Spin–Orbit, Correlation, and Solvent Effects

Apart from the HX and H2Y series and the rare gas atoms there are not very many
computations with different methodology available that have been applied to the
same heavy nucleus shieldings. An exception is the case of mercury. A comparison
between ZORA-DFT and DKH2-HF is made for dHg in the series HgX2 and MeHgX
(X = Cl, Br, I, Me = CH3) in Tab. 14.4. Due to a possible strong influence of electron
correlation on the shielding tensor in general, it is difficult to rate the quality of the
results in terms of relativistic and correlation contributions. The findings of Refs.
[45, 56] and the data of Tab. 14.3 do not yet permit general conclusions about the
importance of correlation for heavy-nucleus shieldings in general, though there is
an increasing body of data for heavy-nucleus shieldings for which the correlation
effects are on the one hand not negligible, on the other hand comparatively small
when taking the magnitude of the relativistic corrections as well as the accuracy of
the computations in comparison with experimental data into consideration. In con-
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Table 14.4 199Hg chemical shifts for HgX2 and MeHgX, X = Cl, Br, I, Me = CH3, without and
including the spin–orbit–induced terms in the shielding tensor. Chemical shifts with respect to
HgMe2. All values multiplied by (–1).

Molecule DFT ZORAa,b

no SO incl. SO
HF DKH2a,c

nrel no SO incl. SO
Expt.b

HgMeCl 922.1 942.6 561.8 1002.1 485.2 861
HgMeBr 840.3 1068.2 538.9 863.8 953.3 915
HgMeI 500.8 1024.9 354.4 555.1 1411.1 1097
HgCl2 1368.7 1555.9 859.0 1408.2 1168.7 1519
HgBr2 1484.3 2684.4 1063.3 1561.0 3462.1 2213
HgI2 1029.2 3506.0 567.0 863.3 4779.4 3447

a) calculated from the reported data in the respective publication. “no
SO” refers to relativistic shielding constants calculated from a two-
component spin-orbit coupled wavefunction / Kohn–Sham orbitals
from which the FC and SD spin–orbit contributions to rHg have
been subtracted. These values are similar, but not identical, to those
that would be obtained from scalar relativistic computations (see
Ref. [101] for some scalar ZORA data for HgMeX).

b) Ref. [19].
c) Ref. [55].



trast, besides the usual pathological [102] cases N2, CO, O3, CH2N2, etc., “relativistic”
examples have been investigated (CXþ3 , Ref. [94], DFT-pPSO and nonrel. MP2)
where large correlation effects on the shielding tensor of a light nucleus were found.
The basis sets that were applied for the different computations in Tab. 14.4 are not
directly comparable, which also makes an assessment somewhat difficult. It has
been previously noted that “cross terms” between scalar and SO contributions to
rHg are very important [103], which means that the SO-induced change of rHg

strongly depends on the well-known scalar relativistic change of the Hg–ligand
bonds [104] (i.e. the amount of Hg s/d hybridization). The results in Tab. 14.4 (and
Tab. 14.3) indicate that for a proper evaluation of shieldings of heavy nuclei in a mol-
ecule both scalar and spin–orbit relativistic effects are of high importance, since the
experimental trends for rHg are only reproduced when the SO contributions are
included.

In Ref. [103], the HgX2 systems had previously been studied by a mixed HF-
DKH2/vPSO approach, and a systematical overestimation of the Hg chemical shifts
with respect to experiment when using a flexible basis set had been attributed to a
missing treatment of two-electron spin–orbit terms. HgMe2 data were not reported
in this work, but assuming an exact result for HgCl2, chemical shifts of –3191 and
–4130 would have been obtained for HgBr2 and HgI2 with respect to HgMe2. From
Tab. 14.4, however, it can be seen that the HF-DKH2 approach by the same authors
which includes two-electron SO terms at the Breit–Pauli level, yields even larger
shifts for these compounds. Previous experience with the two-electron SO contribu-
tions indicates that their relative importance decreases in comparison to the one-
electron SO contributions when the nuclear charges become larger [41, 48, 67, 105].
Interestingly, the computational results from the ZORA-DFT and the HF-DKH2
methods in Tab. 14.4 excluding the SO contributions agree much better with each
other, whereas the SO contributions are much larger for HF-DKH2. It is important
to note that the absolute shielding values reported in Refs. [19, 55] for the reference
compound HgMe2 differ by almost 5000 ppm (8020 and 12772 ppm, respectively),
also due to the SO contributions. However this difference is cancelled to a large
extent when the chemical shifts are evaluated. Previously, the authors of Ref. [55]
had reported an even larger HF-DKH2 mercury shielding of 15128 ppm for the
HgMe2 reference, but still obtained (very small) chemical shifts for Hg(SiH3)2 and
Hg(GeH3)2, in good agreement with experimental data. It is therefore likely that the
differences are due to core-contributions that hardly affect the chemical shifts.

When comparing to experimental data it is important to consider solvent effects,
as was explicitly demonstrated by Wolff et al. [19]. Solvent–induced changes of up to
103 ppm for dHg were found experimentally for HgI2, and values of similar magni-
tude in the computations in Ref. [19]. These are cases where the solvent strongly
coordinates to the heavy atom. Unfortunately, the inclusion of solvent molecules
causes the systems to be rather big for relativistic computations, therefore no broad
study regarding solvent effects on heavy-atom shieldings is currently available.
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14.3.6
Tellurium Absolute Shielding Constants and Chemical Shifts

Another comparison between HF and DFT has recently been made for 125Te shield-
ings. In Ref. [51], a HF-DKH2 approach has been applied by Hada et al. to a subset
of Te compounds that were previously studied by Ruiz-Morales et al. [106,107] with
the vPSC method of Ref. [83]. In Ref. [106], because of the rather good agreement
with experimental data the authors concluded that spin–orbit corrections are not
vital for the evaluation of Te chemical shifts, and thus reasonable predictions can be
made by a scalar approach alone. Indeed, the HF-DKH2 results of Ref. [51] confirm
that the SO contributions to the chemical shifts are only modest, though not negligi-
ble. However, this seems to be due to a cancellation between different compounds
when evaluating the chemical shift, as large SO contributions to the shielding were
reported ~2·103 ppm). A similar quality of agreement with experimental chemical
shifts was obtained in both studies. However, the absolute experimental Te shielding
scale correction of –945 ppm proposed by Ruiz-Morales et al. has been questioned
by Hada et al. because their calculated absolute shieldings agree better with the orig-
inal shielding scale of Ref. [108]. Taking into consideration the large possible differ-
ences between computed shielding constants that were mentioned above, it is
obvious that further studies are necessary in order to settle this question. Moreover,
it is at present not clear whether the usual procedure to generate experimental abso-
lute shielding scales from measurements of spin–rotation constants along with
computations of the diamagnetic shielding tensor can also be applied in the relati-
vistic case.

Chemical shifts for Te and Se have also been studied very recently by a scalar
relativistic ZORA pseudopotential plane-wave DFT code [109, 110]. In contrast to
other methodology cited in this paper, the nonrelativistic approach adopted in
Ref. [109] is able to treat extended periodic systems. It deals explicitly with the pres-
ence of the pseudopotential by a method devised by Van de Walle and Bl�chl [111].
See also Chapter 16 by Pickard and Mauri. In Ref. [110] the authors have adapted
the procedure to the scalar ZORA operator. The results for 125Te absolute shieldings
are in agreement with the vPSC frozen-core DFT results of Ruiz-Morales et al. [106],
taking into account that different density functionals have been employed (PBE
[112] in Ref. [110] vs. BP [113, 114] in Ref. [106]) and that the basis sets and many
technical aspects of the codes are very different. The largest disagreement of
276 ppm between the two approaches was found for (TeCF2)2, with the ZORA
results being closer to the “experimental” shielding value of 1066 ppm proposed in
Ref. [106]. The scalar relativistic increase of rTe was of the order of 300 ppm for all
six samples. For the 77Se shieldings calculated in Ref. [110] a mean absolute error of
63 ppm (5 samples) with respect to (revised) experimental shieldings has been
obtained with the scalar ZORA DFT method. Relativistic effects on rSe were less
than 100 ppm and positive in all cases.
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14.3.7
W, Pt, Pb, and U Shielding Constants, and Computations on Larger Systems

Some data for comparison are further available ror 183W chemical shifts. With
respect to the reference WO2�

4 , the tungsten shifts in W(CO)6, WF6, and WCl6 were
calculated with DFT-vPauli and DFT-ZORA as –3306, –107, 1773 and –3876, –630,
1932 ppm, respectively [115]. The experimental values are –3446, –1121, 2181 ppm
for the series, as compiled in Ref. [115]. The scalar variational Pauli (vPSC) DFT
approach had previously predicted a chemical shift of –3703 ppm for W(CO)6, with
modest relativistic corrections of +372 ppm. Tungsten shieldings have also been
computed by a mixed HF-DKH2/vPSO approach in Ref. [116] for WO2�

4 , WF6, and
WCl6, using a number of different basis sets. The “basis set C” data yielded tungsten
chemical shifts of –1135 and 2686 ppm for WF6 and WCl6, respectively (nonrelativis-
tic: –1795 and 2266 ppm). Overall, in Ref. [115] the DFT-ZORA method was found
to yield a mean error of approximately 3% of the chemical shift range of 7000 ppm
for a larger number of tungsten complexes. The DFT-vPauli resulted in a mean
error of about 6% for these systems. In the same paper, DFT-ZORA was found to
produce a similar accuracy for a number of 207Pb shifts (4% of the shift range),
whereas DFT-vPauli resulted in a mean error of 16%. A very large spin–orbit–in-
duced chemical shift change of –8000 ppm has been predicted for PbI4 in this work.

Because of the efficiency of the Kohn–Sham DFT approach to take electron corre-
lation, at least approximately, into consideration, most of the relativistic NMR inves-
tigations of heavy-nucleus shieldings in larger systems have so far been carried out
with DFT codes either based on the Pauli operator (Eq. (14.4)) or the ZORA operator.
The methodologies have been developed by Ziegler and coworkers [19, 43, 83, 84]. A
comparison of the ZORA-DFT and the variational Pauli-DFT methods for the metal
shieldings in group 6 to 8 tetraoxo-metallates has been made by Bouten et al. [43]. It
has been concluded that the ZORA method yields superior results over the varia-
tional Pauli approach, which corroborates the previous findings in Ref. [115] for
tungsten and lead complexes. The tetraoxo-metallates have previously been used as
a benchmark set for the DFT computation of 17O shielding constants in transition
metal systems [83, 117]. Unfortunately, in Ref. [43] the oxygen shieldings have not
been reported for comparison.

A density functional study by Schreckenbach et al. for 235U as well as ligand
shieldings in uranium compounds [19, 118, 119], has not consistently come to the
conclusion that the ZORA approach always performs better for these compounds
than vPauli. ECPs were also applied in Ref. [118]. Regarding the chemical shifts of
light ligands, it was found that while the nonhybrid density functionals could not
reproduce the trends for the 19F-shift in the UF6–nCln series [118] they were success-
ful in reproducing those for UF5–n(OCH3)n, n= 1–4 [119]. Also, the trends for the
17O-shifts in uranyl complexes could be reproduced, with ZORA performing best
though still underestimating the oxygen shifts by about 10%. For the UF6–nCln se-
ries, an ECP approach with the B3LYP hybrid functional could reproduce the trends
for the 19F shifts, however the magnitudes of the shifts were systematically overesti-
mated. A chemical shift range of at least 21,000 ppm for 235U has been predicted,
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however so far no experimental data are available. Regarding the U-shieldings, it
could be demonstrated that the trends for the 235U shielding constants among the
set of 23 complexes that were studied are determined by the average energy gap be-
tween the HOMO U-5fxyz and the seven lowest lying virtual MOs (U-5f with anti-
bonding ligand contributions), whereas the HOMO–LUMO gap itself does not
explain the trends [119]. The latter is often used in interpretations of NMR parame-
ters, since in an orbital-based formalism (HF, DFT) the inverses of occupied-virtual
orbital energy differences directly enter the expressions for the shielding tensor via
finding the perturbed orbitals in the presence of the external field. See also Ref. [4]
for further details.

That the orbital energy differences are not always the only guide for an interpreta-
tion of NMR chemical shifts has also been pointed out in a DFT-ZORA study of
195Pt shifts in 23 Pt complexes [120]. The matrix elements entering the shielding
tensor expression need to be considered as well. For the latter, sometimes a qualita-
tive estimate can already be sufficient to rationalize the trends, which has been
backed up by a detailed numerical analysis in Ref. [120]. Many of the complexes
studied in this paper exhibit a pronounced NHD for dPt. However, unlike the cases
of HX, CH3X etc. the platinum NHD was demontrated to be caused by trends both
for the paramagnetic shielding as well as for the usually dominant SO contributions.
An explanation relying on the HSAB concept was worked out in order to rationalize
the unexpected trend for the paramagnetic contribution.

14.3.8
Shielding Anisotropies

Besides the isotropic shielding rA, the anisotropy DrA also carries a lot of vital infor-
mation about the geometric and electronic structure around nucleus A. In many of
the already cited publications, theoretical values for DrA have been reported, and
frequently very large relativistic effects have been found. A heavy atom example for
which experimental data are available is presented in Tab. 14.5 for Dr of 199Hg in
methyl-mercury halides and HgMe2. As in the case of the already discussed isotropic
shieldings, the experimentally observed trends along the series X = Cl, Br, I are only
reproduced in the computations if spin-orbit coupling is considered. Interestingly,
as in the case of the chemical shifts, the shielding anisotropies for the two different
computational approaches DFT-ZORA vs. HF-DKH2 without the SO contributions
are rather similar, but change drastically when SO contributions are included, due
to their different signs. With both methods, the experimental trends are correctly
reproduced, however the DFT-ZORA results significantly overestimate Dr, whereas
it is strongly underestimated in the HF-DKH2 calculations. Whether the reason lies
in the relativistic approach, or is due to electron correlation, is yet unclear. It is also
likely that environmental effects due to the liquid crystal solvents that were
employed in order to determine the experimental data would need to be explicitly
considered in the computations. This is strongly indicated by the previously men-
tioned computational study of Hg chemical shifts by Wolff et al. [19].
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Other examples for which relativistic corrections to shielding anisotropies, often
also for a heavy nucleus, have been reported are HX (X = F, Cl, Br, I) [15, 40–42, 47,
52, 53, 85], H2Y (Y = O, S, Se, Te [, Po]) [42, 50], YH3 (Y = N, P, As, Sb, Bi) [50],
CH3X (X = F, Cl, Br, I) [41, 42]

14.4
Summary

It is now possible by various computational methods to compute nuclear shieldings
and NMR chemical shifts for molecules containing heavy elements from first-princi-
ples theory, even for heavy nuclei. Some of the developments are quite recent and
have not yet been extended for a correlated relativistic ab initio treatment. For the
inclusion of electron correlation DFT can already be employed. For the investigation
of heavy-nucleus shieldings, both scalar and SO relativistic effects need to be consid-
ered. The available body of computational data indicates, in comparison with experi-
mental results, that in many cases the trends that are obtained for heavy atomic sys-
tems are dominated by spin–orbit coupling, whereas scalar relativistic effects are of
high importance in order to obtain the correct magnitudes of heavy-atom chemical
shifts. Developments are still ongoing in several laboratories worldwide in order to
improve and extend the present methodologies, and to provide further case studies.
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Table 14.5 199Hg chemical shifts anisotropies Dr for MeHgX, X = Cl, Br, I, Me = CH3, without and
including the spin-orbit-induced terms in the shielding tensor.

Molecule DFT ZORAb,c

no SO incl. SO
HF DKH2a,d

nrel no SO incl. SOd
expt.e expt.c

HgMe 6462 7857 4473.3 5877.0 4843.6 7325–55 7355–55
HgMeCl 5179 6319 3677.5 4913.1 4258.0 5535–80 5430–40
HgMeBr 5322 6168 3718.6 5121.3 3570.0 5455–100 5140–90
HgMeI 5763 6071 4000.0 5574.4 2731.1 5480–300 4840–70

a) See footnote a of Tab. 14.4. For this reason, the values here differ
somewhat from the scalar relativistic results reported in Ref. [101].

b) Method „C“ of Ref. [101] referring to DFT-ZORA computations
with the same basis set employed as in Ref. [19] (Tab. 14.4) for com-
parison. Shielding anisotropies with an extended basis (Method „B“
in Ref. [101]) were consistently larger by 600 to 1000 ppm.

c) Ref. [101].
d) Ref. [55].
e) Ref. [121].
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15.1
Introduction

In theoretical and computational chemistry, two important observables of the NMR
experiment are subject both to routine applications and ongoing methodological
developments: nuclear shielding and indirect spin–spin coupling constants. The for-
mer are the subject of the preceding chapter in this book by one of us (Chapter 14
by Autschbach). There, the reader will also find an introduction to relativistic com-
putations of NMR observables that apply to nuclear shieldings and nuclear spin–
spin coupling constants alike. The latter, and in particular the recent research activ-
ities devoted to the relativistic computation of spin–spin coupling constants involv-
ing heavy nuclei in molecules, are the subject of the present chapter. A combined
review on relativistic NMR computations, with references up to early 2001, has been
previously published by us in Ref. [1]. See also a recent review article on spin–spin
coupling tensors by Vaara et al. [2].
While the number of publications devoted to nonrelativistic nuclear shielding

computations for molecules range in the thousands, computations of heavy atom
shieldings or spin–spin coupling constants are still comparatively rare. The compu-
tation of nuclear spin–spin coupling constants has generally received far less atten-
tion than nuclear shieldings [3–6], and this is even more so for couplings involving a
heavy nucleus because of the necessary relativistic theoretical approach [1]. At the
same time, a wealth of information can be extracted from the coupling constants
that often requires an investigation and analysis both by experimental and theoreti-
cal tools. For instance coupling constants between heavy metals in di- or oligonuc-
lear transition metal complexes have long been of interest to experimentalists and
theoreticians alike. Partially, this might be due to the very large coupling constants
that are frequently observed. The “world record” is currently held by a crown-ether
complex of Hg2þ2 with 284 kHz for 1J(Hg–Hg) [7].
The past decade has seen a strong increase in scientific work devoted to spin–spin

coupling constants computations. However, at the time of writing (Spring 2003)
there are still not many computational implementations available that can treat
nuclear spin–spin coupling constants relativistically. Furthermore, some of the avail-
able relativistic methodology is so far restricted to semiempirical theories, or is not
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15 Relativistic Calculations of Spin–Spin Coupling Constants of Heavy Nuclei

capable of treating with scalar relativistic effects. Following the historical develop-
ment in computational NMR, attempts have been made to recover the relativistic
effects on spin–spin coupling constants by a perturbational treatment of spin-orbit
coupling alone. However, when a coupling constant involving a heavy nucleus is of
interest, this approach is not accurate enough because of the often dominant, some-
times huge, scalar relativistic effects (see Section 15.3). At the same time spin–spin
coupling constants are quite sensitive to the electronic structure, perhaps even more
than nuclear shieldings. It is one of the reasons why they are such universal chemi-
cal probes, however it also requires an inclusion of electron correlation in the com-
putations. This is perhaps why why currently a two-component relativistic method
based on density functional theory (DFT) developed in 2000 by the present authors
has recently been described as “for practical problems the most applicable of the
presently available methods [. . ., for heavy atomic systems] with potential for large
systems as well” (Vaara et al., Ref. [2]). It must be noted, though, that the DFT
approach, as facilitated by currently well established functionals, is not without
shortcomings and the previous quotation thus emphasizes the general applicability
of the available computer code, not necessarily its performance regarding specific
“problematic”, in particular small light atomic, systems. It can be expected that in
the near future efficient codes based on different relativistic methods will become
available which will allow for a more diverse comparison of computational results.
In Section 15.2 we will briefly outline some of the theoretical details underlying

the computation of nuclear spin–spin coupling constants. Because of the large over-
lap with the methodology for the calculation of nuclear magnetic shielding tensors,
we refer the reader to Chapter 14 regarding common features and the general scope
of the article, the usage of units, etc. In Section 15.3 we present computational
results from calculations of coupling constants involving at least one heavy atom.
Regarding the treatment of the heavy-atom (HA) effects on couplings between light
atoms (LA) in a molecule (a so-called HALA effect) the same considerations apply as
for nuclear shieldings, namely that they can be treated equally well by effective core
potentials (ECPs) or direct relativistic methods. For the former, and light-nucleus
coupling constants, an otherwise nonrelativistic NMR code is sufficient. ECP ap-
proaches are discussed in the Chapter 13 by Vaara et al. We have thus decided not to
elaborate on such applications here since the sometimes spectacular effects of rela-
tivity on heavy-nucleus coupling constants (HAHA effects) appear more appropriate
for the scope of this paper. For recent reviews on the computation of spin–spin cou-
pling constants including nonrelativistic methods see, e.g. Refs. [2, 6]. We restrict
ourselves here to a discussion of the indirect coupling between nuclear spins which
is mediated by the electronic systems in a molecule, and refer the reader to Ref. [8]
as well as to Chapter 27 by Wasylishen for details about the direct dipolar “through
space” coupling. The dipolar coupling vanishes for quickly rotating molecules, as is
the case for measurements in solution or in the gas phase.
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15.1 Introduction

15.2
Methodological Aspects

The spin Hamiltonian that describes the interaction between the spin magnetic
moments lA and lB of two nuclei A, B in a molecule is

H ¼ lAKABlB : (15.1)

In formal agreement with Eq. (15.1) the indirect nuclear spin–spin coupling tensor
KAB is quantum-chemically calculated from the molecular energy E by double per-
turbation theory as

KAB ¼
@
2E

@l
A
@l

B

����
lA¼0;lB¼0

: (15.2)

The rotational average of K, the isotropic coupling constant, will be denoted by K. K
is given in SI units of T2 J–1 or kgm–2A–2 s–2, with typical magnitudes of 1019 to
1023. The relation to the J coupling constants (in Hz) of the NMR experiment is

JAB ¼
�h
2p

cAcBKAB (15.3)

where the ca and cB are the magneto-gyric ratios of the nuclei.
Eq. (15.2) refers to a general relativistic energy expression, from which the desired

couplings can then also be evaluated for heavy nuclei. The magnetic perturbation
operators that enter the expressions for the nuclear spin–spin coupling tensor are
collected in Tab. 15.1. The nonrelativistic formalism for indirect spin–spin coupling
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Table. 15.1 Comparison of one-electron operators that contribute to the indirect nuclear spin–spin
coupling constant in Eq. (15.2), in different relativistic formulations and in the nonrelativistic limit,
and a selection of literature references that lists explicit expressions.

Nonrelativistic Two-component
(Quasirelativistic)
DKH2, ZORA,...

Relativistic
Perturbational
Schemes

Four-component

(“Fully Relativistic”)

diamagnetic diamagnetic nonrelativistic Eq (15.4)
orbital (OD) orbital (OD)a terms OD, OP, FC, SD

corresponding
paramagnetic paramagnetic if spin–orbit to OP, FC, SD
orbital (OP) orbital (OP)a coupling included: FC/SD

and OP yield additional
Fermi-contact (FC)

spin-dipole (SD)

Fermi-contact (FC)a

spin-dipole (SD)a

cross contributions
plus many additional
operators O(c–2), O(c–4)

OD implicitly
included in coupling
tensor

Refs. [1–5, 9]
and many others

Refs. [10–13] Refs. [14–19] Refs. [20–28]

a) Two-component relativistic generalization of the respective operator.
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constants is described in Chapter 7 by Helgaker et al. In contrast to the nuclear
shielding, already at the nonrelativistic or scalar quasi-relativistic level the electron–
spin dependent FC and SD terms yield nonzero contributions to the spin–spin cou-
pling constant. In fact, the FC mechanism is often the most important one, though
counter examples are known in which the OP mechanism is dominant or where the
usually negligible SD–term yields sizeable contributions [4, 13, 29, 30]. In the pres-
ence of spin–orbit coupling, i.e. in two-component relativistic methods, additional
cross terms between FC and OP, and between SD and OP, respectively, occur that
are zero otherwise. The explanation and interpretation closely follows the one for
the spin–orbit induced cross terms between FC/SD and the orbital–Zeeman (OZ)
operators for the nuclear shielding. It is based upon the fact that a magnetic field
(here due to the paramagnetic orbital current density induced by one of the nuclear
spins, instead of an external field) causes a spin-density in the molecule which is
detected by the FC term at the other nucleus.
In the four-component Dirac formalism, only the perturbation operator

ĤH
ð0;1Þ
u ¼ � 1

c
a� rA

r3A

� �

u

(15.4)

(for the u ˛ {x, y, z} component of the spin-vector of each nucleus A) is responsible
for the nuclear spin–spin coupling constants. The electron-spin dependent contribu-
tions as well as the relativistic spin–orbit cross terms are implicitly included due to
the operators’ action on the four-component wavefunction/orbitals. The FC, SD,
OP, and OD, operators are obtained from Eq. (15.4) upon transformation to a two-
component form in the nonrelativistic limit [1]. There is no explicit diamagnetic
term present in the four-component formalism. The respective contributions to the
coupling tensor were in a numerical study explicitly traced back to positronic states
that were, in addition to the electronic states, used as a basis set for the perturbed
wavefunctions [25]. This topic has also been discussed earlier in Ref. [31–33] regard-
ing the diamagnetic shielding term, and recently in detail by Kutzelnigg [34].
Generally, only orbitals that have sufficiently large values close to both nuclei A, B

contribute to KAB. These are the valence orbitals, in particular those that contribute
to chemical bonds between A and B. In this sense1), just as chemical shifts, the
spin–spin coupling constant are “valence shell properties”, and for their accurate
computation only the valence (sometimes also the outer core-)orbitals have to be
correctly described. The perturbation operators are large in spatial regions close to
the nuclei (see also Chapter 31 by Rassolov and Chipman). For instance the FC-
operator acts nonrelativistically at the (point) nucleus, in two-component formal-
isms within the K-shell of an atom. The latter is also true for the four-component
hyperfine integrals. This means that the tails of the valence orbitals must be very
accurately modeled, which usually demands atom-centered basis functions with
high exponents, in particular for a Gaussian basis. In a relativistic calculation, the
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1) We refer to the somewhat ambiguous partition-
ing of the electron density into core and
valence contributions from orthogonal orbitals.



15.2 Methodological Aspects

demands on the basis set in the near-nuclear region are even higher because of the
large relativistic increase of the orbital densities and the concomitant effects on the
hyperfine integrals. In particular the FC-mechanism is very strongly influenced, as
most of the examples in Section 15.3 will demonstrate.
For further details on relativistic methodology for spin–spin coupling constant

computations we refer to Ref. [1]. Generally, there is a variety of different approaches
available which allow for relativistic calculations of heavy-atomic molecules, and a
subsequent calculation of nuclear spin–spin coupling constants by double-perturba-
tion theory by Eq. (15.2). Currently, spin–spin coupling calculations based on the
four-component formalism are restricted to Hartree–Fock (HF) or H>ckel theory
which imposes severe limitations on the accuracy, and in the Hartree–Fock–Dirac
(HF–Dirac) case on the size of the systems that can be treated efficiently. Four-com-
ponent DFT methodology of spin–spin coupling constants will probably become
available in the near future and greatly enhance the predictive power of four-compo-
nent methods with respect to experimental data. However, the expense of such
methods is still likely to limit the molecules that can be studied to small models or
benchmark systems. Approximate (quasirelativistic) two-component relativistic
methods have been developed to overcome these limitations, based on the Pauli-
operator or parts of it, or the so-called zeroth-order regular approximation. Literature
references for these methodologies will be cited in the next section.
The following acronyms and abbreviations will be used in the next section in

order to designate various methodological approaches for spin–spin coupling com-
putations. SO = spin–orbit, or spin–orbit coupling. vPSO, vPSC, vPauli for varia-
tional Pauli SO only, scalar only, and scalar + SO, respectively. Similarly, pPSO,
pPSC, pPauli denote perturbational relativistic calculations O(c–2). ZORA = zeroth-
order regular approximation. HF = Hartree–Fock. HF-Dirac = four-component
Hartree–Fock. MCSCF = multiconfigurational self-consistent field. REX = relativis-
tic (four-component) extended H>ckel theory.

15.3
Computational Results

15.3.1
Relativistic Scaling Factors

Relativistic effects on hyperfine splittings were considered already in 1930 in theo-
retical work. It has been noted in Ref. [35] that an approximate treatment earlier
worked out by Fermi (which implicitly leads to the FC operator, Tab. 15.1) must be
modified. Inspired by Ref. [35], relativistic scaling factors (RSFs) to atomic hyperfine
integrals that are obtained from a comparison of the respective relativistic and non-
relativistic values from atomic calculations have subsequently been used for the the-
oretical prediction of nuclear spin–spin coupling constants in heavy-atomic mole-
cules. This semiempirical approach was in particular put forward by PyykkQ and
coworkers in 1973 [36] (see also Ref. [37]). Such RSFs, or hyperfine integrals
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obtained from relativistic atomic computations, are still in use, mainly in semiempi-
rical codes in order to determine spin–spin coupling constants [38–42]. They were
also applied by Malkina et al. [43] on top of a nonrelativistic DFT-calculation of
J(Sn–H) in SnH4. Good agreement with the experimental value was obtained after
inclusion of the scaling factor of 1.348. A somewhat related procedure has been pro-
posed in Ref. [44] where scalar relativistic values for the orbitals at the nuclei
obtained from vPSC atomic calculations (employing frozen cores) have been used to
scale the matrix elements of the FC operator in nonrelativistic molecular computa-
tions.
The use of RSFs has turned out not to be extremely successful in the prediction of

chemical trends that occur for series of related molecules. Also, they do not cover
HALA effects, i.e. relativistic effects on coupling constants between light atoms L¢
and L† in the neighborhood of a heavy nucleus. Nonetheless, they can be very useful
in order to estimate the magnitude of the relativistic effects that can be expected for
coupling constants involving heavy nuclei that are dominated by the FC contribu-
tion. For instance, for the Hg 6s orbital, a RSF of about 2.44 has been proposed [36].
When the bonding between Hg and a ligand atom L is mostly determined by the Hg
6s, a relativistic change of K(Hg–L) by roughly a factor of 3 must be expected. For
K(Hg–Hg), a change by an order of magnitude might occur. For molecules in which
strong relativistic effects on bonding are present, where the FC term is not the only
important contribution to the coupling constant and/or where electronic spin–orbit
coupling is large, or if HALA effects are of interest, a more consistent treatment of
relativistic effects on nuclear spin–spin coupling constants in first-principles calcula-
tions is necessary.

15.3.2
Semiempirical Methods

In Ref. [41] a large number of heavy nucleus coupling constants were studied semi-
empirically (AM1, PM3, MNDO), based on the use of RSFs (see also Ref. [23]).
Among others, the systems YH4, YMe4, YCl4, R3Y–YR3, and YH�3 (Y = C, Si, Sn,
Pb), were investigated. In some cases good agreement with experimental results
was obtained, but the PM3 model in particular appeared to be rather problematic.
This situation has subsequently been analyzed [42] and could be partially attributed
to so-called triplet instabilities [3]. We refer to Chapter 9 by Heine et al. for further
information on semiempirical methodologies.
While discussing semiempirical approaches, the large body of results obtained by

the “relativistic extended H>ckel” (REX) method should not go unnoticed. See, for
instance, Refs. [21, 22, 45] just to name a few key publications, and Tab. 15.2 for an
example. Due to the inherent inaccuracies related to the H>ckel approximation we
do not discuss the results here in detail. However, we point out that many qualitative
trends are reproduced by such calculations which can greatly facilitate a deeper
understanding of the outcome of more accurate, but also more complicated, meth-
ods.
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15.3.3
Four-Component Methods

The four-component formalism was worked out already in 1977 by PyykkQ [20], and
a “proof of concept” was provided in the form of a LCAO calculation of K(Hg–C) in
dimethyl-mercury. The results are very typical for Hg–ligand coupling constants,
with a relativistic increase in the isotropic coupling by a factor of 2.7, mainly due to
scalar relativistic effects. Contributions caused by SO coupling were almost negligi-
ble. The coupling anisotropy DK was found to increase by a factor of 3.3, with a
larger contribution due to SO coupling. The final results did somewhat depend on
the choice of the hyperfine integrals and were reported as 1524 to 1327 · 1019 T2 J–1

(nrel: 571.7, expt.: 1264) for K(Hg–C) and 535.4 to 456.7 · 1019 T2 J–1 (nrel: 164.5,
expt.: 599) for DK, in reasonable agreement with the experimental values. These
relativistic effects should be compared to the celebrated large relativistic bond-length
contraction of AuH which is 10% in magnitude. The comparison clearly demon-
strates the high importance of treating relativistic effects when calculating nuclear
spin–spin coupling constants. Even for rather light elements such as Ge, the relati-
vistic change of K(Ge–L) is of the order of 10% [26] whereas, at present computational
accuracies, relativistic geometry effects are usually neglibible for such compounds.
More recently, four-component formalisms for the computation of spin–spin cou-

pling constants have been discussed in detail in the framework of molecular elec-
tronic structure theory [23], and HF–Dirac applications to small molecules have
been reported [24–26, 28]. These data provide valuable benchmarks for the magni-
tude of relativistic effects on spin–spin coupling constants, and for alternative imple-
mentations or more accurate ab initio computations which can be expected in the
future. They also demonstrate that electron correlation is of high importance for a
reliable determination of these properties, since the HF–Dirac level of theory is, in
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Table 15.2 Some calculated reduced indirect coupling constants in the H2Yseries, Y=O, S, Se,
Te, in T2 J–1

Coupling expt.a MCSCF+pPSOc

nr. HFb nrel rel
Dirac–HFd

rel
Dirac–HFe

nrel rel
REXf

nrel rel

O-H 48.3 62.9 51.4 51.3 57.8 63.7 63.1 36.6
S-H 42.9 40.2 39.8 41.6 45.5 45.1 28.5
Se-H 27.6 48.9 48.9 44.8 25.1 46.1 25.2 14.1 2.6
Te-H –15 77.2 74.2 60.4 –24.2 86.0 –21.9 –16 –98
Po-H 73.7 –1481

a) A subset of experimental data compiled in Ref. [18]. The conversion
factors for J!K from Ref. [18] have been used to convert experi-
mental values to reduced coupling constants K.

b) Hartree–Fock data additionally reported in Ref. [18].
c) Ref. [18].
d) Ref. [25].
e) Ref. [28].
f) Ref. [21].



many cases, inadequate when a comparison with experimental data is attempted.
This has been shown, for example, by Visscher et al. in Ref. [26] for K(Y–H) in YH4

(Y = C, Si, Ge, Sn, Pb), where reasonable agreement with experiment could only be
achieved after the HF–Dirac results were scaled by respective ratios of the nonrelati-
vistic correlated SOPPA (second-order polarization propagator approach) and HF
values. For PbH4, this ratio amounts to 0.76. At the same time, the Pb–H coupling
constant increased at the HF level by a factor of approximately 2.56.
Besides the YH4 series, another frequently studied benchmark case is the series

H2Y (Y = O, S, Se, Te (, Po)). A selection of computed coupling constants is listed in
Tab. 15.2. It can be seen that the Y–H coupling is strongly influenced by relativistic
effects when the chalcogen atom becomes heavier. Obviously for Te (and Po) very
large scalar relativistic effects dominate, whereas the SO contributions to K(Y–H) in
the series are also important but much smaller. The authors of Ref. [25] have also
pointed out that the HF–Dirac level of theory does not allow for a direct comparison
with experimental data. Apart from missing contributions due to electron correla-
tion, this has been attributed to triplet instabilities which typically plague the calcu-
lations of spin–spin coupling constants within the HF approach already at the non-
relativistic level of theory [3].
In addition to the H2Y series, in Ref. [28] the group-15 hydrides were also studied

by four-component HF theory, and similar trends were obtained. The nuclear shield-
ing tensors were also calculated. Further four-component HF data were reported for
K(H–X) in the HX diatomics (X = F, Cl, Br, I) [24], and very large relativistic effects
were found for instance for HI: nrel = –13.0, rel = –113 · 1019 T2 J–1. The SO correc-
tions to the HX coupling constants were also individually calculated by the MCSCF-
pPSO approach in Ref. [18], and as in the H2Y case found to be rather small as com-
pared to the large scalar relativistic contributions.

15.3.4
Electron Correlation

Electron correlation contributions to K(Y–H) in H2Y at the nonrelativistic level were
demonstrated to be sizeable in Ref. [18] (compare Tab. 15.2), but more pronounced
for the lighter molecules. An estimate of the correlation contribution of about –24%
to K(Pb–H) in PbH4 has already been mentioned above. Very strong correlation
effects have been found for the H–H coupling constants in the H2Y series, and in
particular for H2O. It should be noted that the K(H–H) are determined here by large
contributions from the OD, the OP, and the FC/SD terms with different signs and
are thus very sensitive to subtle changes in the electronic structure. Upon inclusion
of SO relativistic contributions to K(H–H) in the H2Y systems good agreement with
experiment could be achievedwith the correlatedMCSCF+pPSOapproach. The authors
of Ref. [18] have thus concluded that the SO terms are the dominating relativistic
contributions to such coupling constants. That is: for a description of HALA effects
the perturbational inclusion of spin–orbit coupling was considered as sufficient.
The K(H–H) for the heavier systems in the YH4 series were found to be very

strongly affected by relativistic effects, for example 0.1 (nrel.) vs. 0.8 (rel.) · 1019 T2 J–1

15 Relativistic Calculations of Spin–Spin Coupling Constants of Heavy Nuclei256



for SnH4 and 0.18 vs. 3.62 · 10
19 T2 J–1 for PbH4. Whether these are also dominated

just by the SO effects is unclear. An important question here is that of possible cross
terms between relativity and electron correlation in the coupling constants. To our
knowledge, this problem has not yet been addressed explicitly in a computational
study.

15.3.5
Perturbational Methods

Perturbational approaches that follow the development of relativistic chemical shifts
calculations have also been applied to spin–spin coupling constants. By this we
mean a perturbational inclusion of the Pauli SO operator in the coupling constant
calculation which has been proven to cover most of the HALA effects on chemical
shifts in many cases (see Ref. [1], Chapter 14 and Chapter 13). One example has
already been mentioned: the MSCSF-pPSO method listed in Tab. 15.2. In Ref. [16]
(see also Ref. [15]) Kirpekar et al. have applied a similar approach to K(Pb–H) and
K(H–H) in PbH4, with unsatisfactory results regarding a comparison with experi-
mental data for the former. An estimate for the experimental K(Pb–H) in PbH4, ex-
trapolated from PbMe3H and PbMe2H2 (Me = CH3) is 112 · 10

20 T2 J–1. At the corre-
lated MCSCF level, a nonrelativistic result of 56.2, and a relativistic one of
48.3 · 1020 T2 J–1 have been obtained for K(Pb–H) in Ref. [16]. In comparison, the
scaled HF-Dirac result of Ref. [26] is 138.3 · 1020 T2 J–1 (unscaled: 181.9) . The nega-
tive relativistic correction obtained by Kirpekar et al. represents the SO induced con-
tributions (mostly FC-OP cross-terms) similar to those obtained in Ref. [18] for H2Y,
whereas the obviously most important scalar relativistic corrections could not be
obtained from this approach. At the same time, a reduction of the FC term by about
20% due to electron correlation has been reported, along with very large correlation
effects on the FC term of the H–H coupling constant. The situation for the YH4

systems is thus very similar to the H2Y series listed in Tab. 15.2. The body of avail-
able data up to early 2000 has indicated that spin–orbit corrections to heavy-atom
coupling constants are likely to be of minor importance, which was explicitly
pointed out in Ref. [26] for the PbH4 example.
Unfortunately, the pPauli approach (i.e. including scalar relativistic terms) has

been found not to be applicable to nuclear spin–spin coupling constants, because of
the combination of highly singular perturbation operators [46]. Applications of a
nonsingular four-component relativistic perturbation theory (“Direct perturbation
theory” DPT [47–51]) to the calculation of spin–spin coupling constants in molecules
have not yet been carried out, though a route for the calculation of the respective
matrix elements of the magnetic perturbations that show up in the formalism [17]
has recently been discussed [19].
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15.3.6
Two-Component ZORA–DFT Calculations

Currently, the work-horse of computational chemistry is density functional theory
(DFT). The present authors have in 2000 implemented a two-component relativistic
DFT approach for the computation of nuclear spin–spin coupling constants, based
on the variationally stable ZORA one-electron Hamiltonian [12, 13]. Because DFT
includes, to some extent (limited by the approximations that were applied to derive
the functional) the important electron correlation effects, it allows for a semi-quanti-
tative, sometimes quantitative, comparison with experimental data in many cases.
The coupled perturbed Kohn–Sham approach is apparently also much more robust
towards the triplet instability problem. Regarding the influence of the ZORA
approximation to relativity, we are not aware of any published results obtained from
a four-component DFT treatment which would allow for a systematic comparison. A
recent study has shown, however, that the FC-type hyperfine integrals obtained
from ZORA calculations on heavy atoms are within a few per mil of the Dirac values
for valence s–orbitals [52]. For the innermost core-orbitals in heavy atoms large
errors are obtained due to the deviations between ZORA and Dirac, but since these
orbitals do not contribute to the coupling tensor the ZORA approach to the calcula-
tion of spin–spin coupling constants can be regarded as very accurate. Van Lenthe et
al. have previously come to similar conclusions regarding EPR hyperfine splittings
[53].
The well studied case of PbH4 and its methyl derivates has been used [13] to verify

the sign and magnitude of the SO corrections to K(Pb–H) reported by Kirpekar et al.
in Ref. [16] as well as the magnitude of the correlation contributions (about –20 to
–25% by comparison to the HF–Dirac results of Ref. [26]). Good agreement with
experiment could be achieved, with calculated DFT-ZORA values for the one-bond
K(Pb–H) in PbH4, PbMe2H2, and PbMe3H of 122, 98.3, and 89.1 · 1020 T2 J–1,
respectively (expt.: 112, 98.7, and 92.3). Figure 15.1 displays an overview of the accu-
racy that has been obtained for a number of heavy-metal-ligand one-bond coupling
constants.
The DFT-ZORA approach has during the last three years been applied to a num-

ber of heavy atom spin–spin coupling constants (i) in order to provide benchmark
results and demonstrate the reproducibility of experimentally observed trends by
computations, and to investigate (ii) the magnitude of scalar and spin–orbit relativis-
tic corrections, (iii) environmental effects, and (iv) periodic trends.
Starting with point (ii), in the light of the previously mentioned results regarding

the magnitude of spin–orbit coupling effects on nuclear spin–spin coupling con-
stants, it has been somewhat surprising that in the case of Tl–X (X = F, Cl, Br, I)
coupling constants SO effects constitute the most important contributions when the
halogen atom becomes heavier [13, 55]. The FC-OP cross-term is the largest individ-
ual contribution, for example, to K(Tl–I). For the series TlF, TlCl, TlBr, and TlI, the
computed results in Ref. [13] were (ZORA, BP functional) –138.8, –128.8, –131.6,
and –114.9 · 1020 T2 J–1 in scalar relativistic calculations, but –203.4, –218.5, –315.3,
and –381.8 · 1020 T2 J–1 including the SO effects. The experimental values are –202,
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–224, –361, and –474 · 1020 T2 J–1, respectively (as compiled in Ref. [29]). The devia-
tions between theory and experiment for TlBr and TlI have tentatively been attribut-
ed to deficiencies in the applied functionals. For many coupling constants that were
investigated so far, SO effects were indeed small to negligible, but if heavy p-block
elements are involved and both the FC and the OP term are large (as is the case for
TlX) this might not be the case.
The periodic trends of K and DK of TlX and other diatomics have been analyzed

in detail by Bryce and Wasylishen [29] based on experimental data and nonrelativis-
tic MCSCF computations for light atomic systems. A subsequent DFT-ZORA study
[30] has been devoted to the periodic trends of K(X–Y) in interhalogen diatomics. A
linear increase of the magnitude of K(X–Y) and DK with ZX ·ZY has been found,
along with satisfactory agreement between theory and experiment. For these sys-
tems again the FC term is not the dominating contribution, but rather the OP term,
and for the heavier systems SO effects on K become very important. A general ten-
dency in the p-block of the periodic table appears to be an increase in the relative
anisotropy, DK /K, for increasing nuclear charges, along with an increasing magni-
tude of K. The increase in the relative anisotropy has qualitatively been analyzed by
PyykkQ and Wiesenfeld [21] based upon REX theory.
Regarding environmental effects, the influence of coordination of solvent mole-

cules to a heavy metal center has been studied in Refs. [55, 56]. Sometimes very
large positive shifts of the FC term to one-bond metal–ligand coupling constants
were reported in Ref. [55]. For instance, K(Hg–C) in Hg(CN)2 increased from 425.5
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to 560.7 · 1019 T2 J–1 (nrel.: 237.9, expt.: 577.8) upon coordination by four methanol
molecules, which has been analyzed and explained by a small donation of charge
from the solvent into the metal–ligand r bonds. Similar effects were found for
square planar Pt complexes. A general trend is that the solvent shift is more pro-
nounced for stronger nucleophilic solvents and increases with the number of coordi-
nating solvent molecules.
An interesting example is [(NC)5Pt-Tl(CN)]

–, for which in scalar relativistic DFT-
ZORA computations the Pt–Tl coupling constant of J= 19 kHz increased to 43 kHz
upon coordination of the Tl center by four water molecules [56] (nrel.: 5.4 kHz, expt.
value in aqueous solution is 57 kHz). At the same time, water complexation creates
a rather unintuitive pattern of the Tl–C one- and two-bond coupling constants. The
enormous relativistic increase of the coupling between the two heavy metals could
be expected based on the magnitude of the RSFs for the 6s shells. This and related
systems have also been theoretically studied in Refs. [57, 58]. In the latter work
(model systems with CN– replaced by H–), the unusually short Pt–Tl distance of
approx. 2.6 U and certain experimental conclusions about the Pt and Tl oxidation
states [59] could be explained, and in agreement with the theoretical NMR analysis
[56] it was found that the bonds along the C–Pt–Tl–C axis are highly delocalized.
The DFT-ZORA method has been applied to coupling tensors in various halogen

and xenon fluorides by Bryce and Wasylishen [60]. Spin–spin coupling constants
and also chemical shifts in a number of covalent Xe compounds and van der Waals
complexes have further been studied by Bagno and Saielli [61] who reported good
agreement between theoretical and experimental values. Excellent agreement of the
computational results with experimental data has been reported in Ref. [60], pro-
vided both scalar and SO effects were considered and reliable geometries were
employed in the computations. An interpretation of the results was given in terms
of the dependence of the OP term on the number of valence shell lone pairs, and
the dependence of the FC/SD terms on bond distances. For some apparently closely
related systems (such as XFþ6 and XF

�
6 ) the X–F coupling constants were found to be

of opposite sign (with their magnitudes in very good agreement with experimental
values). This indicates a serious potential trap when interpreting trends in experi-
mental results for which the sign is unknown.
Recent work has been devoted to heavy metal–metal coupling constants in dinuc-

lear metal complexes [62, 63]. The case of Pt–Pt couplings, investigated in Ref. [63],
is discussed by B>hl in Chapter 26. In Ref. [62] the extremely large coupling con-
stants between Hg and Hg in complexes containing Hg2þ2 and Hg2þ3 have been
investigated. Similar to the somewhat unintuitive case of K(Pt–Pt), it was found that
coordination and polarization of a metal–metal fragment explain the magnitude of
the metal–metal coupling constants. The coordination can thereby be due to ligands
or solvent molecules. Unlike the previously studied systems in which only one
metal center could be coordinated by the solvent [55, 56], here solvent or ligand coor-
dination of both metals of a metal–metal fragment reduces its coupling constant in
the systems investigated so far. This can be rationalized by a simple argument based
on H>ckel theory [62]. For the complex of Hg2þ2 with the crown ethers 18-crown-6
and 15-crown-5, very good agreement with the experimental 1J(Hg–Hg) of 284 kHz
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(199Hg) [7] could be achieved. This is currently the largest experimentally deter-
mined coupling constant. The calculated scalar DFT-ZORA result is 278 kHz, miss-
ing SO corrections were estimated to be of the order of –10% or smaller (see Fig.
15.2 for an illustration). At the same time, the coupling constant in the (hypotheti-
cal) free Hg2þ2 is likely to be around 0.9MHz, indicating that the upper limit for
Hg–Hg coupling constants has not yet been reached in experiments. However, a
system such as the Hg2(18-crown-6)2 complex in Fig. 15.2 for which we have calcu-
lated a coupling constant of 0.6MHz does not allow an easy NMR detection of
J(Hg–Hg) due to its symmetry. A polarization of the Hg2þ2 fragment due to an
unsymmetric environment would, however, reduce the coupling. In the same work
the one-bond and the two-bond Hg–Hg coupling constant in Hg2þ3 have been calcu-
lated. 2J(Hg–Hg) has been estimated to be much larger than the one-bond coupling,
in agreement with a qualitative argument based on H>ckel theory as well as REX
calculations [5, 64]. Again, environmental effects, here from the solvent SO2, were
found to be very pronounced. In such, and probably many other metal–metal
bonded systems, relativistic effects on spin–spin coupling constants serve as a
strong “magnifying glass” for the study of the influence of coordination on the
metal–metal bond.

15.3.7
Coupling Anisotropies

Anisotropies DK have not yet been extensively discussed in the literature for spin–
spin coupling involving heavy nuclei. A number of examples in the references that
were cited so far are Me3XY (X = C, Si, Sn, Pb; Y = F, Cl; semi-empirical study Ref.
[40]), TlX and XF (X = F, Cl, Br, I; DFT-ZORA, Ref. [13]), XY (DFT-ZORA, Ref. [30]),
HX (HF-Dirac, Ref. [24]); MCSCF-pPSO, Ref. [18]), H2Y (Y = O, S, Se, Te; HF–Dirac,
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Ref. [28]; MCSCF-pPSO Ref. [18]), Xe and halogen fluorides (DFT-ZORA, Ref. [60]).
We refer to the recent overview by Vaara et al. [2] and to Chapter 27 by Wasylishen
for further examples and details.

15.4
Summary

Spin–spin coupling constants and tensors are very difficult to calculate accurately,
even nonrelativistically for light atomic systems. In addition to this, scalar relativistic
effects on nuclear spin–spin coupling constants can be spectacularly large when a
heavy nucleus is involved, which makes a relativistic treatment imperative when
experimental results are to be reproduced or interpreted. When heavy p-block ele-
ments are involved, and scalar or nonrelativistic calculations predict sizeable contri-
butions from both the FC and the OP terms, spin–orbit coupling coupling effects
are also likely to be of high importance for the coupling constant. Recent computa-
tional studies have further indicated that environmental effects can contribute
strongly to the experimentally observed coupling constants, and should thus be con-
sidered in interpretations and computational models.
A number of computer codes are available for the study of heavy atomic spin–

spin coupling constants, based on four-component theory, or employing different
relativistic approximations or RSFs, with underlying semiempirical, DFT, or ab
initio methodology. Because of the strong sensitivity of spin–spin coupling con-
stants it is advisable to use high-quality computational models whenever possible.
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16.1
Introduction

Whether you are interested in molecular or condensed phases of matter, in all but
the ideal “gas phase” you are drawn to consider large numbers of atoms and mole-
cules in extended regions of space. All “quantum chemical” theoretical techniques
for the prediction of magnetic resonance parameters naturally treat the situation of
single, small, collections of atoms or molecules.

In this chapter we will describe methods, originating in the solid state physics
community, that allow predictions of magnetic resonance parameters to be made for
extended, infinite, collections of atoms: specifically in the crystalline state, but
through the super-cell approximation, also in aperiodic systems.

These methods are based on density functional theory (DFT), and the plane-wave
pseudopotential method, a technique which has become ubiquitous in the first prin-
ciples study of complex materials [1, 2], or the linearized augmented plane wave
(LAPW) [3] method for the calculation of electric field gradients [4].

16.2
Cluster Approaches to Extended Systems

In reality, all crystals or liquids must come to an end and the infinitely periodic crys-
tal is an idealization. It is therefore natural to attempt to describe them as very large
molecules. Such a strategy is known as the “cluster” approximation, and in the
absence of a theory for the calculation of magnetic resonance parameters in truly
infinite systems, it is the only approach that can be taken. It is an approximation
because only relatively small clusters can be tackled with modern computational
techniques (certainly small as compared to macroscopic crystals).

For the reasons described in more detail below, the size of the cluster chosen to
approximate the solid can be critical, as is, if the cluster is to be as small as possible,
the precise choice of the cluster, and “termination” of the dangling bonds produced
on cutting the cluster from the infinite solid (for a covalent solid) or how the electro-
statics are dealt with (for an ionic solid).
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16 Calculations of Magnetic Resonance Parameters in Solids

Despite these limitations, the growing importance of MAS NMR as an experi-
mental tool for the determination of the atomistic properties of solids has prompted
many theoretical investigations using the necessary cluster approximation and exist-
ing approaches to the calculation of magnetic resonance parameters. For example,
Tossell and co-workers pioneered the application of the cluster approximation to the
calculation of 29Si and 17O NMR parameters in silicates [5–8]. These calculations
exhibited trends that correlate well with experimental data, and have been useful in
the quantification of structural distributions in silicate glasses.

16.3
The Limitations of the Cluster Approach

There would be little need to develop new methods to calculate magnetic resonance
parameters specifically in the solid state if we could be confident that it is well
described by existing techniques and in all situations. However, there are at least
two phenomena that cast doubt on this assumption. They may be characterized as
(i) quantum mechanical and (ii) electrostatic effects.

As a consequence of the quantum mechanical uncertainty principle, electrons are
delocalized. The perturbation of a system at a given point gives rise to a variation in
the electronic properties up to some distance from the site of the perturbation. For
example, in a cluster or a nanocrystal the HOMO–LUMO gap can be considerably
larger than the gap in the bulk material, due to quantum confinement effects (see
for example Ref. [9]). The presence of a surface in a cluster changes the NMR pa-
rameters for atoms that are not part of the surface [10]. In an insulator, the change
in the electronic properties due to the presence of a surface decays exponentially
with the distance from the surface, with a typical decay length. This decay length is
of the order of that of the maximally localized Wannier or Boys orbitals of the same
system, typically from a few �ngstroms to a few nanometers. The more covalent a
system is (or the greater the dispersion of the electronic bands) the greater the decay
length. We would therefore expect that in semiconducting systems the decay length
will be much larger than in an ionic oxide. Consequently the size of a cluster re-
quired to eliminate the quantum effects related to the presence of the surface for the
calculation of the NMR parameters is larger for semiconductors than for oxides.
Since the quantum effect decays exponentially, it is straightforward to verify the con-
vergence of these effects with cluster size.

The electrostatic effects are possibly even more important for the calculation of
magnetic resonance parameters in the solid state, because in certain situations their
range of influence can be very much greater. Again, there is a qualitative difference
between extended and finite systems. In nature, so as to minimize the energy, the
surfaces of macroscopic crystals have a surface charge which is fixed by the condi-
tion that the macroscopic electric field (the averages of the field over each unit cell)
is zero. Thus, if we want to model a real crystal we must ensure that the average
electric field per unit cell is zero. This condition is guaranteed by the use of periodic
boundary conditions for the potential, but is not reproduced in a finite approxima-
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16.5 Magnetic Resonance Parameters within Periodic Boundary Conditions

tion to the same solid if the model cluster is not large enough. This deviation of the
electric field with respect to its bulk value can affect the NMR parameters. Given the
long range nature of the electrostatic interaction, the electric field does not converge
exponentially to the bulk value with cluster size, but rather by a power law. In certain
cases the zero average electric field over the unit cell can only be obtained if elec-
trons are transferred from one part of the surface to another. This transfer can only
occur in very large clusters. The electrostatic effects are more important for ionic
systems and for the NMR parameters of highly polarisable atoms (such as oxygen).
Electrostatic effects could, in principle, be corrected by computing the NMR param-
eters for a cluster in an applied external electric field. The external electric field
would be chosen in such a way that the average electric field in a periodic unit cell is
zero. However this approach would require, at a minimum, the inclusion in the
cluster of at least one crystalline unit cell.

16.4
Infinite Crystals, Periodic Boundary Conditions

Crystals, with translational symmetry, are an important class of extended systems,
one on which much of solid state physics had focused in the past. In the process,
techniques have been developed that allow theories to be developed and experimen-
tal observations to be rationalized. The lattice translational symmetry can be
exploited, via periodic boundary conditions, so that the electronic structure can itself
be rationalized in terms of a new quantum number, the k-vector, or crystal momen-
tum.

While these theoretical techniques formally apply only to perfect crystals, it is
common practice to approximate aperiodic systems as crystals with large, or “super”
cells. These cells are chosen to be large enough that the effects of the approximation
are minimized while capturing the physics of the aperiodic structure. This super-
cell technique can be applied to isolated molecules (allowing comparison with quan-
tum chemical approaches), defects in solids, surfaces and surface chemistry, and the
amorphous or liquid states.

16.5
Magnetic Resonance Parameters within Periodic Boundary Conditions

An effective approach to the calculation of magnetic resonance properties of
extended systems is to consider a truly infinite model, allowing for the possibility of
an extended electronic structure. We now describe the technical problems, and solu-
tions to those problems, that constitute a useful, truly crystalline approach.
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16 Calculations of Magnetic Resonance Parameters in Solids

16.5.1
Magnetic Perturbation in Extended Systems

Until the work of Mauri, Pfrommer and Louie [11, 12] no theory existed for the first-
principles or ab inito prediction of magnetic resonance parameters in extended sys-
tems, forcing all attempts to perform calculations to support solid state MAS NMR
experiments to rely on the cluster approximation and existing finite system ap-
proaches. The reason for this was that the magnetic resonance parameters, calcu-
lated as a perturbative response to an applied uniform magnetic field, require expec-
tation values of the position operator to be evaluated. But these expectation values
are not defined for an extended system, since the position operator cannot be repre-
sented under periodic boundary conditions. As a result, traditional approaches are
inappropriate for the treatment of extended systems.

The approach taken by Mauri et al. [11, 12] is to obtain the magnetic response to a
uniform field as the long-wavelength limit of a periodically modulated field, and in
addition, to remove the numerical instability introduced in this limit using a sum
rule.

More recently, Sebastiani and Parrinello [13] have developed an alternative
approach. The magnetic perturbation is evaluated in terms of localized Wannier
functions (the localized occupied orbitals). The localized nature of the Wannier func-
tions allows the use of the position operator in the perturbation Hamiltonian.

Both these approaches should be thought of all-electron approaches, while they
have been used extensively in combination with pseudopotentials without any
attempt to remove the error introduced by their use. For this reason, while several
useful applications have emerged, [10, 14–20] the use of the two methods has been
restricted to the calculation of chemical shifts of the light elements (hydrogen, car-
bon, and nitrogen). The pseudopotential error for hydrogen is minimal because it
has no core electrons. For the elements of the Li–F period, the pseudisation only
weakly affects the 2p channel, which, for these atoms, dominates the dependence of
the chemical shifts on the chemical environment. Thus the uncorrected pseudopo-
tential results are in reasonable agreement with those obtained without pseudopo-
tentials (for example the pseudopotential error on the relative chemical shift of car-
bon is of the order of 20% [24]). For the elements of the other periods the pseudopo-
tential error is much larger than the relative chemical shifts [24].

The ability to deal with the heavier elements and to provide a more accurate
description of the light elements requires an explicit treatment of the complications
introduced by making the pseudopotential approximation.

16.5.2
All-Electron Magnetic Response with Pseudopotentials

Apart from the early and isolated attempt of Ridard et al. [21], it had been widely
expected within the quantum chemical community that any theory for the calcula-
tion of NMR chemical shifts for nuclei described with a pseudopotential would fail
due to the non-rigid nature of the core contributions to the total chemical shift [22].
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16.5 Magnetic Resonance Parameters within Periodic Boundary Conditions

However, a careful separation of core and valence contributions that ensures that
they are individually gauge-invariant, by Gregor et al. [23], demonstrated that this is
not the case and that the core contributions are rigid. This suggested that a pseudo-
potential based theory of NMR might, in fact, exist.

However, the calculation of NMR chemical shifts within a pseudopotential
approach requires the solution of two distinct problems. (i) The description of the
coupling of electrons to the uniform magnetic fields within a pseudopotential
Hamiltonian. Indeed, despite the widespread use of nonlocal pseudopotentials in
electronic structure calculations, until recently it was unclear how nonlocal Hamilto-
nians should be coupled to magnetic fields. (ii) The description of the induced cur-
rents within the pseudisation region. The pseudopotential approximation explicitly
neglects the form of the electronic wavefunctions near the nucleus. The pseudo-
wavefunctions are chosen to be as smooth as possible in the core region, and the
correct nodal structure of the wavefunctions is lost. This leads to a good approxima-
tion for the calculation of total energies and properties for which the matrix ele-
ments are dominated by the regions outside the core, but prevents a direct calcula-
tion of the properties, such as the electric-field-gradients or the NMR chemical
shifts, that depend critically on the details of the wavefunctions in the core region.
In particular, the NMR chemical shifts require an accurate description of the
induced currents near the nuclei.

To solve these two problems Pickard and Mauri have introduced the gauge includ-
ing projector augmented wave (GIPAW) method [24], which is an extension of
Bl�chl’s projector augmented wave (PAW) method [25]. The PAW method provides
an extremely useful framework for the unification of all-electron (full-potential) line-
arized augmented plane-wave [3] and pseudopotential approaches. Indeed, it it has
become clear that PAW offers a general approach to the calculation of all-electron
properties from pseudopotential based schemes.

In the presence of a magnetic field, the PAW approach is not invariant on spatial
translation or gauge origin transformation (even if the wavefunctions are defined in
the full Hilbert space). In the GIPAW method the translational invariance is
restored by introducing into the PAW procedure magnetic-field-dependent phase-
factors similar to those used in the gauge including atomic orbital (GIAO) method
[26].

In Ref. [24], the chemical shifts obtained using the GIPAW method have been
validated by comparison with those computed using the individual gauges for atoms
in molecules (IGAIM) [27] as implemented in GAUSSIAN94. The comparison was
performed on a set of small molecules (CH4, CH3F, C6H6, TMS, SiH3F, Si2H4,
SiH4, CO, CF4, SiF4, PF3, P2, P4). Both types of calculation were performed within
the local density approximation (LDA) of DFT. High-quality basis sets [28]
(cc-pCVQZ for C, O, F, Si and P and cc-pVQZ for H) were used in the GAUSSIAN94
calculation. In the GIPAW calculation the 1s2 orbitals were considered as core states
for C, O, and F and the 1s22s22p6 orbitals for Si and P. The molecules were placed in
6000 a0

3 supercells, and the wavefunctions were expanded in plane-waves with a
100 Ry cut-off. In Fig. 16.1 we present the data in Table 1 of Ref. [24] in graphical
form, a comparison between the GIPAW results and those calculated in the IGAIM
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approach. In the upper panel we report the GIPAW results obtained by addressing
only the first of the two problems stated above: the correct pseudo-Hamiltonian is
used but the effect of pseudisation on the currents in the core region is neglected.
In the lower panel, we report the GIPAW results obtained both using the correct
pseudo-Hamiltonian and reconstructing the all-electron currents in the core region.
The absence of reconstruction leads to meaningful results only for H and possibly
first row elements such as C. With the reconstruction of the current the agreement
between the GIPAW and IGAIM approaches is practically perfect for all elements.
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Figure 16.1 A comparison of the GIPAW
(x axis) and IGAIM (y axis) approaches for the
isotropic chemical shifts of a selection of
small molecules. In the upper panel the
GIPAW results have been obtained without

correcting the induced current in the core
region. In the lower panel the all-electron cur-
rent in the core region is reconstructed. The
dashed lines indicate a perfect agreement.



16.5.3
The Plane-Wave Basis Set

Where local orbital basis sets dominate quantum chemistry, the plane wave basis set
is widely used in the solid state physics community. While many basis functions are
required to describe each electronic band, the simplicity of the basis, along with the
use of fast Fourier transforms, ensures that a computational penalty is not paid.
Importantly, the quality of the plane-wave basis set is determined by a single para-
meter, the cut-off energy. This enables convergence with basis set size to be simply
monitored, and full convergence to be achieved at moderate computational cost. For
example, the GIPAW calculation of the NMR parameters of the ferrierite zeolite,

which contains 108 atoms in the unit cell, requires 10 h on 16 processors of an IBM
Power4 (1.3 GHz) computer. [29] In this calculation the error on the absolute chemi-
cal shifts due to the use of pseudopotentials and a plane-wave basis set is as small as
that obtained within the IGAIM approach with a cc-pCVTZ basis set (see Table 3 of
Ref. [29]). In addition, the sum rules [23, 24] that ensure the invariance of the chem-
ical shifts with respect to the vector-potential gauge are well satisfied by plane-wave
basis sets of even modest size. Thus, in contrast to calculations performed with
atomic or Gaussian basis sets, with plane-waves, the chemical shifts obtained with
the single gauge for the vector potential coincide with those obtained with the con-
tinuous set of gauge transformations (CSGT) [30] method as shown in Table 16.1.
The numbers in this Table have been extracted from Table II of Ref. [24]. Finally, the
plane-wave basis set does not suffer from any basis set superposition error, nor is
there any bias in the basis set towards either localized or diffuse electronic states.
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Table 16.1 Comparison of the NMR nuclear shielding constants obtained with GIPAW using the
single gauge method (defined as the “molecular method” in [24]) and the CSGT method (defined
as the “molecular sum rule method” in [24]). The GIPAW-LDA calculations were performed using a
plane-wave cut off of 100 Ry and in a 6000 a0

3 simulation cell.

Molecule Single Gauge CSGT

C6H6 36.13 36.14
CF4 34.62 34.30
TMS 179.17 179.19
29Si
SiF4 410.12 409.85
SiH3F 308.27 308.23
Si2H4 206.50 206.49
SiH4 427.95 427.95
TMS 302.61 302.61
31P
PF3 177.90 177.70
P2 –360.97 –360.97
P4 832.87 832.87

Molecule Single Gauge CSGT

1H
CH4 30.75 30.76
CH3F 26.02 26.01
C6H6 22.69 22.69
TMS 30.76 30.76
SiH3F 25.40 25.40
Si2H4 24.92 24.93
SiH4 27.57 27.58
13C
CO –22.92 –22.90
CH4 191.08 191.09
CH3F 98.53 98.52
CH3NH2 149.61 149.62



16.5.4
Electric Field Gradients and the Quadrupolar Coupling Constants

In addition to the NMR chemical shift tensors, for nuclei with spin greater than one
half the quadrupolar coupling constants make an important contribution to mag-
netic resonance spectra. These coupling constants can be related to the electric field
gradients at the nuclei. In principle, the electric field, and hence its gradient, is avail-
able as a result of any first principles electronic structure calculation. Indeed, it is a
quantity that has been frequently calculated in the solid state using the full potential
linear augmented wave method [4]. But, again, the pseudopotential approach does
not automatically provide the correct form of the wavefunctions at the nuclei. There
have been several approaches developed to account for this, including the work of
Meyer et al. [31] which reconstructs the all electron wavefunctions in the core region
by solving the Kohn–Sham equations using appropriate boundary equations, and
that of Trail and Bird [32] who pursue an embedding potential and Green function-
based approach. In addition, and consistently with our GIPAW approach for the
other magnetic resonance parameters, the efficient PAW reconstruction scheme has
been shown to work well by Petrilli et al. and more recently by Profeta et al. [29, 33].

16.5.5
Relativistic Effects through ZORA

As measurements of the magnetic resonance parameters of nuclei beyond the sec-
ond period are of increasing interest, it is important that accurate theoretical tech-
niques are available to predict and interpret these experimental results. The GIPAW
approach has been extended to produce a method for the efficient calculation of
NMR shielding tensors for the heavy elements [34]. Scalar relativistic effects,
neglecting the spin–orbit coupling, are introduced by means of the zeroth-order reg-
ular approximation (ZORA) approach to the Dirac equation [35]. Using this method,
a relativistic calculation on, for example, TeH2 has roughly the same computational
cost as a non-relativistic calculation on OH2, due to the removal of electronic degrees
of freedom by the use of pseudopotentials. This opens up the possibility of calculat-
ing the chemical shielding of heavy atom nuclei in molecular and periodic systems
containing several hundred atoms.

16.6
Applications of the Planewave-GIPAW Method

To demonstrate the range of applicability, and usefulness, of the planewave-GIPAW
method, two applications are discussed in the following.
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16.6.1
The Atomic Structure of Icosahedral B4C Boron Carbide

The first application of the GIPAW method was to elucidate the atomic structure of
icosahedral boron carbide, where both X-ray and neutron techniques had failed to
locate the carbon atoms in the B4C structure [36]. Combining total energy calcula-
tions for a number of candidate structures, with the calculated 11B and 13C NMR
chemical shifts, and comparing with available experimentally measured shifts
(which had been only partly interpreted), it was possible not only to determine the
location of the C atoms in the structure, but also to extract the density of defects in
the structure, and the defect structure itself. The icosahedral boron carbide structure
is shown in Fig. 16.2, and four of the possible structures that were considered are
described as follows: (i) the chain model with one CCC chain and one B12 icosahe-
dron in the unit cell, (ii) the polar model with one CBC chain and one B11C icosahe-
dron, the C atom being substituted into a polar site, (iii) the equatorial model, with
one CBC chain and one B11C icosahedron, the C atom being substituted into an
equatorial site, and (iv) the bipolar model with two C atoms in the same icosahedron
on polar sites, none on a second and two CBC chains, in a 30 atom unit cell.

Total energy DFT calculations found the polar model to be the most stable, with
the bipolar model the next most stable. Tables 16.2 and 16.3 respectively report the
experimental and theoretical 13C NMR chemical shift data, from which it is possible
to conclude that 95% of the icosahedra have the C atom in the polar site, 2.5% have
two C atoms in polar sites, and 2.5% contain no C. In addition, all chains were
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Figure 16.2 Atomic structure of B4C. The black atoms are on
the so-called polar sites, bonded to neighboring icosahedra.
The white atoms form a puckered hexagon and are in equatorial
sites. The gray atoms form the chain, to which the equatorial
atoms are bonded.



found to be CBC. This study demonstrated that the first principles calculation of
NMR chemical shifts and total energies in the solid state is a powerful complement
to experimental measurements, bringing value to existing experimental data that
might otherwise not be fully exploited.

16.6.2
Assignment of the Zeolite Ferrierite Spectrum

17O NMR parameters, both the chemical shifts and the quadrupolar coupling con-
stants, were calculated for a variety of SiO2 polymorphs [29]. The use of plane-waves
permitted fully converged calculations to be performed on structures containing up
to 144 atoms in the unit cell. The calculated NMR parameters of cristobalite, quartz,
coesite and zeolite faujasite were found to be in excellent agreement with experi-
mental data, demonstrating that density functional theory is able to reproduce, with
high accuracy, the 17O NMR parameters in SiO2 systems. This precision, absent in
previous studies [37], was used to assign the spectrum of the zeolite ferrierite (see
Fig. 16.3). The data calculated for the range of SiO2 polymorphs were used to con-
firm that there is no simple correlation between the chemical shift and quadrupolar
coupling constant and the Si–O–Si angle, emphasizing the importance of predictive
theories.
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Table. 16.2 B4C: experimental 13C NMR chemical shifts, dTMS, and the corresponding peak intensi-
ties. Note that the weak resonance at 101.3 ppm is visible only in the best resolved spectrum [40].

dTMS
a Intensitya dTMS

b Intensityb dTMS
c SIntensityc

13–15 66.7% –0.6 75.6% 1.0 66.9%
85–10 33.3% 79 24.4% 81.9 31.4%

101.3 1.7%

a) Ref. [41]
b) Ref. [42]
c) Ref. [40]

Table 16.3 Theoretical 13C NMR chemical shift, dTMS, for the four models. The shifts are calculated
using the planewave-GIPAW method and referenced by fixing the claculated 13C dTMS value of
(B11CH12)- to the experimental one. For full computational details see Ref. [36].

Structural Model
Carbon Site Polar Bi-Polar Equatiorial Chain

chain-end –3.9 –1.7 0.8 19.9
chain-end 1.3 –1.1 9.9 19.9
polar 81.6 100.8
polar 104.0
equatorial 79.1
chain-center 233.8



16.7
Work in Progress and Future Challenges

In addition to the calculation of NMR chemical shifts, the GIPAW method has been
successfully used for the description of the EPR g-tensor for defects in solids [38].
There is an ongoing effort to apply the GIPAW approach to the calculation of other
magnetic response properties, in particular of the NMR spin–spin coupling con-
stants, and the chemical and Knight shifts in metallic solids.
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Other possible future developments would include the extension of the ZORA
method to treat relativistic effects beyond the scalar approximation specifically the
spin–orbit interaction that can dominate for the very heavy elements (see Chapters
13 by Vaara et al. and 14 by Autschbach).

Concerning the technical improvements of the GIPAW method, the possibility to
use Vanderbilt ultrasoft-pseudopotentials [39], in which the wavefunction-norm is
not conserved, would result in a considerable gain in computational efficiency. In
particular, Vanderbilt pseudopotentials permit a much smaller plane-wave basis set
to be used for the so-called hard elements (the first row elements, the transition met-
als and the 4f and 5f elements). The current implementation of the GIPAW method
is based on norm-conserving pseudopotentials. However, there is work in progress
to generalize the GIPAW method to handle the relaxation of the norm-conservation
constraint.

Finally, the implementation of the GIPAW method currently makes use of DFT
and plane-wave basis sets. However, in the GIPAW formalism, the wavefunctions
could be just as well expanded in terms of Gaussian or atomic orbitals basis sets. In
particular, the GIPAW method may be equally well applied to traditional quantum
chemical approaches for the calculation of magnetic resonance parameters. This
would allow the available techniques which describe electrons at a level beyond den-
sity functional theory to be used to efficiently study the heavy elements.

16.8
Conclusion

It is now possible to compute NMR chemical shifts in extended solids using DFT
and periodic boundary conditions [11–13] In addition, the GIPAW approach [24]
reconciles the prediction of highly accurate absolute chemical shifts with the use of
pseudopotentials and plane-wave basis sets. The strength of the GIPAW method lies
in its range of applicability throughout the periodic table and in crystals or aperiodic
systems through the super-cell approximation, its relative computational efficiency,
and its scaling on massively parallel computers. The plane-wave pseudopotential
method is the first principles technique which may most convincingly be called
“black box”. As a result, we expect that experimental magnetic resonance practi-
tioners will soon be able to perform first principle calculations alongside their
experiments for systems containing several hundred inequivalent atoms.
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17.1
Introduction

The interpretation of quadrupole-split or quadrupole-relaxed NMR spectra will
include the coupling of the nuclear spin with the electric field gradient caused by
the quadrupolar deformation of the nucleus [1–4]. About three quarters of the mag-
netically active nuclei (I > 0) have a nonzero (spectroscopic) quadrupole moment
(NQM); these are the nuclei with I > 1/2. The phenomenon of nuclear deformation
has a long and interesting history. As early as 1924 it was suggested by Pauli [5] that
the hyperfine structure of atomic and molecular energy levels resulted from the elec-
tromagnetic interaction with nonspherical atomic nuclei. Ten years later, nuclear
quadrupole coupling (NQC) was observed by Sch�ler and Schmidt for the electronic
spectrum of 151Eu and 153Eu [6]. In 1936, Casimir developed theoretical foundations
of the electron–nucleus coupling due to the nonspherical distribution of nuclear
charge [2]. The fact that nuclei need not be spherical was then emphasized by Bohr
in his classic paper on the nuclear liquid-drop model [7]. In 1939 Kellog et al. ob-
served nuclear quadrupole coupling for the first time in molecules (D2 and HD)
using molecular beam magnetic resonance [8, 9]. NQC in nuclear quadrupole reso-
nance (NQR) spectroscopy was first observed by Dehmelt and Kr�ger in 1950 [10],
and in the same year in NMR spectroscopy by Pound [11]. Pound also published a
thorough theoretical analysis of the nuclear quadrupole coupling he observed in
solid-state NMR. Later in 1953 Bloembergen and Rowland [12, 13] showed that the
intensity of the nuclear magnetic resonance signal in copper decreased rapidly
when a small amount of solute was introduced, which was correctly interpreted in
1960 by Kohn and Vosko [14]. Already in 1961 a number of NQMs were derived by
Das and Pomerantz using NMR spectroscopy together with calculations for the elec-
tric field gradients (EFG) of Be, Sc, Re, La, Mg, Co, Zn, and Cd [15]. An early review
was given by Cohen and Reif [16]. The precise determination of nuclear quadrupole
moments, and electric field gradients in atoms, molecules and the solid state, is still
a very active area in quantum chemistry and physics, and will be reviewed in this
chapter.
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17 Calculation of Nuclear Quadrupole Coupling Constants

We briefly repeat some of the more fundamental aspects of nuclear quadrupole
coupling in NMR spectroscopy which will be helpful for further discussions. The
interaction energy of a nuclear charge distribution rc with a potential V is

E ¼
R
rcð~rrÞVð~rrÞ d~rr (17.1)

which, after a Taylor expansion of the potential Vð~rrÞ around the origin gives as the
most important term the quadrupole energy1)

E2 ¼
1
6

P

a;b

ðVab
Q

ab þ V
ab

dab

R
r

2
rc ð~rrÞ d~rrÞ (17.2)

with

Q
ab ¼

R
ð3xa xb � dab r

2Þ rc ð~rrÞd~rr (17.3)

Here Qab is the expectation value over the NQM (second rank) tensor operator, and
Vab is the EFG tensor. To high accuracy, the Poisson term can be neglected in NMR
spectroscopy, and the Laplace equation can be applied instead for the field gradient
tensor [17] (for a detailed discussion, see Ref. 18). Equation (17.2) therefore
becomes,

E2 ¼
1
6

P

a;b

V
ab

Q
ab

(17.4)

and we have tr(Vaß) = 0. With the use of the Wigner–Eckart theorem, the quadrupo-
lar Hamiltonian (now for N nuclei) can be written in the following form (I > 1/2)
[19]

ĤHNQC ¼
P

i

eQi

6Iið2Ii�1Þ
P3

a;b

V̂V
ab
i

3
2

ÎI
a
i ; ÎI

b
i

h i

þ
þdab

~̂II~II
2
i

� �

(17.5)

where eQi is the spectroscopic nuclear quadrupole moment, Ii the nuclear spin
quantum number and ÎIa

i the nuclear spin operator, and V̂Vab
i is the electric field gra-

dient tensor of nucleus i where a,b = x, y, or z.
Strong magnetic fields applied in NMR spectroscopy lead to large Zeeman split-

tings of the nuclear levels. As a rule, the Larmor frequency is higher than the quad-
rupolar coupling frequency, and the quadrupolar interaction can be treated perturba-
tively in first and second order [20]. This is in contrast to nuclear quadrupole reso-
nance (NQR) spectroscopy where the quadrupolar-split nuclear energy levels are
used for the resonance and weak magnetic fields are applied. Suppose that the prin-
cipal axis system for the electric field gradient is (x,y,z), that is Vab= 0 for a „ b and
the (Vab) tensor is diagonal. If we apply a strong magnetic field H0 along a new z¢-
axis with the quadrupolar nucleus placed at the origin, the Hamiltonian for an
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17.1 Introduction

axially symmetric field (Vxx=Vyy � asymmetry parameter g ¼ ðVxx � VyyÞ=Vzz with
|Vxx| £ |Vyy| £ |Vzz|) becomes

ĤH ¼ ��hcn H0 ÎIz0 þ
e2 qQ

4Ið2I�1Þ 3ÎI
2
z0 �~̂II~II

2
� �

(17.6)

and Vzz = +q, Vxx = Vyy = –1/2q. q is simply called the electric field gradient (EFG)
(note: another sign convention is often used originating from the field being defined
as~FF ¼ �grad V . The matrix elements are evaluated straightforwardly and we obtain
for the energy levels

Em ¼ ��hmcn H0 þ
e2 qQ

8Ið2I�1Þ ð3cos
2
h� 1Þð3m

2 � IðI þ 1ÞÞ (17.7)

The nuclear quadrupole coupling constant mNQCC for a specific nucleus is usually
given in MHz, mNQCC½MHz� ¼ 234:9647Q ½barn�q½a:u:�. Equation (17.7) shows that
levels with equal |m| values (e.g. m = € 1

2 and m= € 2
3 for I = 3

2) are shifted by the same
amount. Hence for I = 3

2 the absorption peak splits into a symmetric triplet with the
central absorption line unshifted (this, however, changes in higher-order perturba-
tion theory) [3]. The line splitting also depends on the asymmetry parameter if g „0
(0 £ g £ 1; see Ref. 21 for more details). From this splitting the nuclear quadrupole
coupling constant (and, in principle, the asymmetry parameter g) can be derived.

A nuclear quadrupole moment leads to rapid spin–lattice and spin–spin relaxa-
tion giving rather broad lines. Thus, for nuclei with large nuclear quadrupole
moments, high resolution work often becomes difficult if not impossible. It is there-
fore of no surprise that the influence of higher moments like the nuclear hexadeca-
pole moment (NHDM) has not yet been observed [18]; even so there have been a
number of claims in the past including methods like NQR [22, 23]. In the latest
NMR experiment, Liao and Harbison reported no evidence for nuclear hexadecapole
coupling in the 127I nucleus of CdI [24]. For heavier nuclei with larger deformations,
such effects are estimated to be in the mHz region of the spectrum. It remains
therefore questionable whether such tiny effects can be detected by NMR spectros-
copy. We mention, however, that third-order quadrupolar effects have been observed
very recently in an NMR spectrum of andalusite at 11.7 T using two-dimensional
magic-angle spinning, which gave 2.5 kHz for an aluminum site with a quadrupolar
coupling frequency of 2.3 MHz [25].

Another small effect is the dependence of the NQCC on the applied magnetic
field. The presence of an external magnetic field ~BB will alter the wavefunction and
therefore change the EFG at each atomic center. A Taylor expansion with respect to
the magnetic field yields the first- and second-order response properties described
by third- (Vabc ¼ @2Vab=@Bc) and fourth- (Vabcd ¼ @2Vab=@Bc@Bd) rank tensors
[26]. The quadratic term has been observed recently by Meersmann and Haake [27]
for the 131Xe (I = 3/2) NMR spectrum in isotropic media (Vab = 0 at 0 T) in strong
magnetic fields between 7 and 17 T, and theoretically verified and analyzed by Vaara
and Pyykk� [28]. The quadratic splitting for 131Xe is about 15 mHz T –2, while the
higher quartic term is very small and can be neglected [28].
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17.2
Nuclear Quadrupole Moments

The knowledge of accurate NQMs for specific isotopes is important for the interpre-
tation of high-precision NMR spectra. Currently the most accurate way to obtain the
nuclear quadrupole moment Q is indirectly by high-resolution spectroscopy to
derive the nuclear quadrupole coupling constant e2qQ in Eq. (17.6) together with
very precise calculations for the electric field gradient tensor Vab. This can be
achieved from either atomic experiments (electronic or muonic transitions in
atoms); from rotational spectroscopy of linear molecules or from magnetic reso-
nance or M�ssbauer spectroscopy. Nuclear quadrupole moments can be obtained
experimentally by a variety of methods, including electron scattering, inelastic
hadron scattering, Coulomb excitation, hyperfine effects in muonic atoms, and
hyperfine techniques [29]. An updated account of the most recent nuclear quadru-
pole moments has been given recently by Pyykk� [30]. NQMs can also be obtained
from nuclear structure calculations, which we briefly outline in the following.

The electric NQM is a measure of the extent to which the nuclear charge distribu-
tion deviates from spherical symmetry. The spectroscopic moment Q appearing in
Eq. (17.6) is defined by [31,32]

Q ¼ I;M ¼ Ih jQ̂Q I;M ¼ Ij i (17.8)

where the operator Q̂Q is written as

Q̂Q ¼
ffiffiffiffiffiffiffiffi
16�

5

r
PA

i¼1

ei r
2
i Y20 Xið Þ (17.9)

In Eq. (17.9), ei denotes the electric charge of the ith nucleon. For free nucleons, ep =
e and en = 0. The moment defined in Eq. (17.8) is the laboratory-system quadrupole
moment. It should not be confused with the intrinsic quadrupole moment (or the
quadrupole moment in the body-fixed system defined in terms of the principal axes
of the quadrupole tensor). If the nucleus is well deformed (i.e., the intrinsic system
can be defined), the spectroscopic moment can be expressed in terms of the intrin-
sic moments by the standard transformation to the body-fixed frame [32]. For
instance, the relation between Q and the (static) intrinsic quadrupole moment of the
axial nucleus, Q0, is given by

Q ¼ 3 K2� �
�IðIþ1Þ

ðIþ1Þð2Iþ3Þ Q
0

(17.10)

where K is the projection of the nuclear spin on the intrinsic nuclear axis. If Coriolis
coupling is present (or the nuclear shape is triaxial), the quantum number K is
strongly mixed, and proper care should be taken when calculating hK2i [18,33]. In
many cases, however, for well-deformed axial nuclei, the quantum number K is very
nearly conserved. For K = I (which usually applies to the ground state of a deformed
odd–A or an odd–odd nucleus), one gets,

282



17.2 Nuclear Quadrupole Moments

Q ¼ Ið2I�1Þ
ðIþ1Þð2Iþ3ÞQ0

(17.11)

One has to keep in mind, however, that for weakly deformed or transitional nuclei,
the concept of a body-fixed system (and that of the intrinsic quadrupole moment)
cannot be applied, and the connection between Q and the intrinsic nuclear shape
cannot be made.

The intrinsic quadrupole moment Q0 is usually calculated directly from the
charge density rc,

Q ¼
ffiffiffiffiffiffiffiffi
16�

5

r
R
�c ð~rrÞr

2
Y20ðXÞd~rr (17.12)

Often, quadrupole moments are parametrized in terms of deformation parameters.
If the nuclear surface is defined through the multipole expansion,

R X; �aað Þ ¼ Cð�aaÞroA
1=3

1þ
Pkmax

k¼1

Pk

�¼�k

ak�Yk� Xð Þ
" #

(17.13)

where (�aa) denotes the set of deformation parameters akl and Cð�aaÞ is the volume-
conserving factor. For the shapes axially symmetric with respect to the z-axis, all
deformation parameters with l „ 0 disappear. The remaining deformation parame-
ters ak0 are usually called bk, i.e. bk ¼ ak0. For small deformations, one can neglect
second-order contributions and Q0 can be written as

Q
0
¼ 3Zeðro A1=3Þ2ffiffiffiffiffiffi

5�
p b2 (17.14)

There are other definitions of nuclear deformations used in nuclear calculations. For a
comprehensive review of various parametrizations of nuclear shape see Ref. 29.

Theoretical methods to calculate the NQM can be divided into two groups. In the
models of the first group (e.g., ab initio approaches and the nuclear shell model) the
nuclear many-body wavefunction is explicitly defined in the laboratory frame. Thus,
no intrinsic frame is introduced and it is not necessary to specify any nuclear shape
or deformation. The second group consists of mean-field models utilizing the con-
cept of intrinsic frame in which the notion of shape deformation appears naturally.

17.2.1
Ab Initio Nuclear Structure Calculations

Ab initio quantum Monte Carlo calculations can be carried out for relatively light
nuclei with A £ 16. They involve the use of bare, non-relativistic two- and three-
nucleon interactions in the Schr�dinger equation. Recent calculations have shown
that nuclear structure indeed develops from the underlying nucleon–nucleon and
three-nucleon forces, and that the properties of light nuclei are reproduced satisfac-
torily [34, 35]. Ab initio calculations for few-nucleon systems have also been carried
out within the framework of the no-core shell model. Here, an effective Hamiltonian
is derived from the bare force between nucleons, and all protons and neutrons are
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active. In addition to two-body effective interactions, three- or higher-body effective
interactions as well as real three-body interactions can be utilized [36–38].

17.2.2
Laboratory-System Models

The nuclear shell model involves the use of an effective Hamiltonian within a
restricted model space. This effective interaction can, in principle, be derived from
the bare interaction. Shell-model techniques can then be applied to this effective
Hamiltonian to calculate the structure of the nucleus of interest. The dimensions of
the shell-model matrices grow very fast with the number of active orbitals. There-
fore, in the heavy region, it is only for nuclei with a few particles outside closed
shells that it has been possible to perform large-scale shell-model calculations.
Recently, with major computational advances, both in the traditional shell-model
methodology and in the use of Monte Carlo methods, the nuclear shell-model
approach has been successfully applied to the description of moderately heavy
nuclei (A ~ 60). Since the number of active nucleons is limited (contrary to the no-
core shell model mentioned above), the coupling to other shells is taken care of by
effective interactions and charges. The effective charges take into account polariza-
tion effects due to the nucleons disregarded in actual calculations. Consequently, in
the shell-model framework, the values of ep and en appearing in Eq. (17.9) deviate
from the bare charges. The recent shell-model calculations of quadrupole moments
can be found in, e.g., Refs. [39–42] (diagonalization shell-model), [43–45] (Monte-
Carlo shell-model), and [46, 47] (variational shell-model).

17.2.3
Mean-Field Models

The mean-field models for nuclear structure have been reviewed in Refs. [48, 49]. In
the self-consistent Hartree–Fock+BCS (HF) and Hartree–Fock–Bogolyubov (HFB)
methods, nucleons are described as nonrelativistic particles moving independently
in a common average field. The dependence of energy on various nucleonic densi-
ties and currents is defined through the energy functional to which the variational
principle is applied. The self-consistent mean fields depend on the effective forces
acting between nucleons. The commonly used forces used in the HFB calculations
are zero-range Skyrme and finite-range Gogny forces. In the relativistic mean-field
(RMF) models, nucleons are described as independent Dirac particles moving in
local isoscalar–scalar, isoscalar–vector, and isovector–vector mean fields usually asso-
ciated with r, x, and r mesons, respectively. These couple to the corresponding local
densities of the nucleons which are bilinear covariants of the Dirac spinors.

There is a world of different parametrizations for HFB as well as RMF. They
agree well for stable nuclei but can yield differing predictions in extrapolations. For
a particular choice of the effective force and proton and neutron numbers, the
resulting self-consistent mean field may be spherical or deformed [50]. The intrinsic
quadrupole moment is directly obtained from the charge density at the self-consis-
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tent minimum. The systematic self-consistent calculations of quadrupole moments
and equilibrium deformations across the periodic table can be found in Refs. [51–
54] (HF + BCS), [55–57](HFB), and [58,59] (RMF). Nuclear deformations can also be
calculated in the non-self-consistent macroscopic–microscopic (shell-correction)
method [60]. The main assumption of this approach is that the total energy of a
nucleus can be composed into the macroscopic energy (usually replaced by the phe-
nomenological liquid-drop or droplet model expression) and the shell-correction
term calculated using the deformed independent-particle model (usually approxi-
mated through Woods–Saxon, folded-Yukawa, or Nilsson average potentials). The
relationship between the macroscopic–microscopic method and the HF approach is
given by the so-called Strutinsky energy theorem [61]. There exist many tables of
nuclear deformations calculated within this method [29]. Commonly used are the
tabulations by M�ller and collaborators [62] (using the finite-range droplet macro-
scopic energy and the folded-Yukawa microscopic model) and the extended Tho-
mas–Fermi+Strutinsky Integral (ETFSI) model [63] (in which the macroscopic ener-
gy is given by the fourth-order extended Thomas–Fermi approximation, and the
shell correction is obtained from the same Skyrme interaction as in the macroscopic
part). Other calculations are limited to particular regions of the chart of the nuclides
[64–67].

17.3
Field Gradients from Ab Initio Calculations

The field gradient operator for the electronic Eq. (17.15) and nuclear Eq. (17.16) con-
tribution at the center ~RRX

V
ab
el ~rri ;

~RRX

� �
¼ �

3 ~rri�~RRX

� �

a

~rri�~RRX

� �

b

�~rrij �~RRX

���
2

dab

~rrij �~RRX

���
5 (17.15)

and

V
ab
nuc ~RRX

� �
¼
P

Y 6¼X

ZY

3 ~RRY�~RRX

� �

a

~RRY�~RRX

� �

b

� ~RRY

��� �~RRX

���
2

dab

~RRY

��� �~RRX

���
5 (17.16)

behaves inversely proportional to the third power of the distance from the point of
reference and is therefore considered a core-property (Note again the sign definition:
a positive unit charge on the z-axis at distance R will create a field gradient q = +2/R3).
The letters a, b denote the Cartesian components x,y,z and X,Y,Z of the electronic or
nuclear coordinates. This operator clearly emphasizes the inner regions of the elec-
tronic wavefunction, where, in the case of heavier nuclei, the electrons reach high
velocities necessitating a relativistic treatment in order to obtain accurate EFG
results [68, 69]. The nuclear contribution Eq. (17.16) exhibiting the same functional
behavior is merely an additive constant for a given molecular geometry or lattice
structure. In atoms, the (traceless) EFG tensor is non-zero only in the presence of
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open valence shells with l > 0 (j > 1/2) destroying spherical symmetry. Molecular
EFGs arise due to the nonspherical electronic density distribution, except for sys-
tems possessing cubic symmetry (octahedral or tetrahedral site). The measurement
of the NQCC is therefore a very sensitive and efficient method for detecting symme-
try breaking effects, e.g. Jahn–Teller or other distortions, disordered materials,
impurities, or defects in the solid state [70–75]. Note however, that in cubic or spher-
ical open-shell systems, spin–orbit effects can still create an EFG along the angular-
momentum axis [76–78].

In the nonrelativistic (NR) case (Hartree–Fock or Kohn–Sham DFT) the matrix
element of V̂Vab

el is directly obtained from the expectation value

V
ab ~RRX

� �
¼
P

i

j
i
~rrÞð jV̂Vab

el ~rr ;~RRX

� �
j

i
~rrð Þ

��
E
þ V

ab
nuc ~RRX

� �D
(17.17)

with ji ~rri

	 

being the molecular orbitals. At the correlated level, the construction of

the one-particle density matrix is required [79–81]. Accurate nonrelativistic corre-
lated EFG calculations for molecules containing a few light atoms are now done
routinely [82]. Due to the limited availability of analytic gradients for relativistic cor-
related methods, Sadlej and Kell� developed a finite field method using kVab

el
~RRX

	 


as a perturbation in the SCF procedure [83]. This is equivalent to calculating the
response of the molecular orbitals via the coupled-perturbed Dirac–Hartree–Fock
(DHF) equations starting from an unperturbed set of MOs. This set of modified or-
bitals then enters the four-index transformation yielding the MO-integrals necessary
for the correlated calculations. Vibrational corrections have to be considered as well
[84].

The most rigorous way including relativity from the beginning is the many-elec-
tron Dirac–Coulomb–Hartree–Fock (DC-HF) approach. In its �no pair’ form [85],
where a projection on the positive-energy spinor space is carried out, this form of
the Hamiltonian has proven to perform very well and is nowadays routinely applied
in four-component calculations including electron correlation treatment. QED cor-
rections can be added as well, which in first order leads to the Dirac–Coulomb–Breit
operator being available in numerical atomic structure codes [86] and partially (as
the Gaunt term) also in molecular DHF codes [87]. So far, not many genuine four-
component EFG results are available, which is mainly due to the large computa-
tional effort these calculations require and to the availability of accurate one-compo-
nent approximation schemes. However, the inclusion of property operators, in com-
bination with relativistic approximation schemes, bears some complications known
as the picture-change error [83, 88, 89]. If the EFG results are not governed by large
spin–orbit coupling effects, a variationally stable scalar-relativistic method such as
the Douglas–Kroll (DK) approximation [90, 91] can be applied. In general, the direct
application of Eq. (17.17) in one- or two-component relativistic schemes neglects the
unitary transformation of the EFG operator from the original Dirac to the Schr�din-
ger picture. Such picture change errors can be very large for core properties like the
EFG [89, 92]. In the case of the EFG operator, this transformation becomes quite
complicated and was just recently performed by Malkin et al. [93]. The error is toler-
able for light systems but EFG results become totally erroneous for molecules con-
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taining heavy atoms. An alternative approach has therefore been devised based on
modeling the quadrupole moment perturbation via point charges (the PCNQM
model), leading to accurate DK EFG values [94, 95].

Four-component MP2 and coupled cluster (CCSD(T)) calculations of the EFG at
the halogen centers in the corresponding hydrogen halides were performed recently
by Visscher et al. [96]. We compare their results with nonrelativistic and scalar-relati-
vistic (DK) EFGs obtained by Kell� and Sadlej [97] at the ab initio level and to DFT
results obtained by Malkin et al. [93] (Tab. 17.1). The importance of scalar relativistic
effects, especially for the heavier elements, is evident. The picture change error is
rather large (1 a.u. for the iodine EFG; compare DK-HF using Eq. (17.17) with pic-
ture change-free results listed in Table 17.1). Spin–orbit effects are difficult to esti-
mate since the scalar relativistic and four-component relativistic calculations use dif-
ferent basis sets. Nevertheless, the data listed by Visscher et al. indicate that they
further diminish the EFG on the halide center [96].

Table 17.1 Four-component CCSD(T) EFGs q at the halogen center for the HX molecules [96] com-
pared to the scalar relativistic calculations by Kell� and Sadlej [97] and to DFT results obtained by
Malkin et al. [93].

HCl HBr HI

NR-HF 3.464 6.998 9.726
DK-HF/Eq. (17.17) 3.540 7.806 12.657
DK-HF 3.511 7.520 11.683
DC-HF 3.666 7.625 11.648
NR-CCSD(T) 3.410 6.720 9.104
DK-CCSD(T) 3.481 7.489 11.819
DC-CCSD(T) 3.377 7.035 10.751
NR-DFT-PW86 3.506 7.000 9.512
DK-DFT-PW86 3.548 7.442 11.108

The influence of the Gaunt term of the Breit interaction was investigated for the
halogen EFG in hydrogen halides, and the corresponding changes amounted to (in
a.u.) –1 � 10–3 for F, –7 � 10–3 for Cl, and –22 � 10–3 for Br [98]. In the case of mole-
cules containing heavy atoms such as TlH, these contributions influenced the EFG
even more where inclusion of the Gaunt operator led to an EFG increase of
+0.125 a. u. [99].

External fields and field gradients influence the field gradient at the nucleus
under consideration and therefore the resulting nuclear quadrupole coupling. From
an expansion of the EFG in terms of such perturbations, the Sternheimer shielding/
antishielding (depending on the sign) [100–103] and the EFG polarizabilities can be
obtained [104, 105]. Detailed studies of intermolecular influences on the EFG can be
found in Ref. [106] based on a derivative Hartree–Fock calculation, and multiconfi-
guration SCF results of generalized shielding factors also became available in the
meantime [107]. A more recent study by Coriani et al. is concerned with electric
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field effects on molecular EFGs at the coupled-cluster level [108]. We note that such
EFG responses have not yet been measured.

17.4
Field Gradients from Density Functional Calculations

In the early days of computational chemistry and physics, density functional theory
(DFT) was the most popular method for the calculation of EFGs in atoms, mole-
cules, or the solid state [109]. Today DFT is routinely used for EFG calculations in
molecules or the solid state [110–117]. It is clear that DFT is specially suited for larg-
er molecules, such as biological systems, because of the low computational cost
compared to wavefunction-based procedures [118, 119]. Since the EFG is a typical
core property there was no reason to assume that DFT would not perform well.
Indeed, a comparison between B3LYP and MP4 for the deuterium NQCC for 25
molecules shows only minute differences between both methods [110], and in gen-
eral for main group elements, DFT seems to perform extremely well [120, 121],
except perhaps for electric field responses to EFGs where B3LYP yields results less
reliable than Hartree–Fock [122]. Table 17.1 shows DFT results obtained by Malkin
et al. [93] in good agreement with the relativistic coupled-cluster results.

The situation changes dramatically for a number of transition-metal-containing
compounds. For example, current DFT is not able to correctly describe the electron
density distribution in CuCl [123]. Here the polarization of the Cu(3d) core by the
electronegative chlorine atom has to be correctly described to obtain accurate electric
properties such as the dipole moment or the electric field gradient on either center.
For example, the CuCl dipole moment varies considerably between the different
DFT approximations, i.e., 4.14 D for HFS, 4.38 D for LDA, 4.30 D for BLYP, and
4.87 D for B3LYP (the DK-CCSD(T) value is 5.32 D). Slight variations in the charge
distributions obviously affect the EFG, i.e., q(Cu) is +0.67 a.u. for HFS, +0.50 a.u
for LDA, +0.54 a.u. for BLYP, and +0.15 a.u. for B3LYP [123] (–0.34 a.u. (!) at the
DK-CCSD(T) level; the experimental value is –0.31(2) a.u. [124]). The chlorine EFG
is similarly affected, although to a lesser extent. These results have been confirmed
recently by Baerends and co-workers, who also obtained large errors in DFT EFG
calculations for other copper halides and the halides of silver using the zeroth-order
regular approximation (ZORA) to the Dirac equation [125]. The situation does not
differ much for iron compounds. For q(Fe) in ferrocene, DFT calculations give
1.36 a.u. for both HFS and LDA, 1.43 a.u. for BLYP, and 1.85 a.u. for B3LYP
(1.50 a.u. at the CCSD(T) level) [39, 126]. Problems therefore arise for the accurate
determination of the 57Fe NQM [39, 127]. This is not to say that DFT does not per-
form well for all transition metal compounds, as good agreement between theory
and experiment has been achieved in calculations using the Vienna solid-state DFT
code [128–133]. The accurate determination of EFGs from DFT for transition-ele-
ment-containing compounds remains nevertheless an open question which has to
be addressed in the near future.
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18.1
Introduction

To relate the (computed or measured) magnetic shielding tensor for a nucleus in a
molecule or solid to the electronic structure of the system in question is by no
means a trivial exercise. As is discussed from different viewpoints in several chap-
ters of this book, the chemical shift tensor is a “second-order” or “linear response”
property. It reflects the simultaneous perturbation of the wavefunction of the system
by the magnetic moment of the nucleus in question, as well as by the external mag-
netic field. Even the nonrelativistic formalism involves the still relatively straightfor-
ward diamagnetic and the more involved paramagnetic contributions to nuclear
shielding. In the case of relativistic effects, in particular of spin–orbit coupling,
further contributions come into play and complicate matters even more (in a four-
component framework, the perturbation formalism looks simpler, but the underly-
ing physics are no less complex).

In view of the wide use of NMR spectroscopy and of the ready availability of NMR
chemical shift information in many areas of chemistry, biology and materials
science, it is nevertheless mandatory that one attempts to extract all possible relevant
information about molecular and electronic structure from nuclear shieldings.
Already from the beginnings of NMR history, and certainly after Ramsey published
his famous perturbation equations of nuclear shielding [1], the rapidly growing
NMR community used chemical shifts as important indicators of molecular and
electronic structure (cf. Chapter 2 by Pyykk�). Unfortunately, the absence of reliable
quantitative computational methods at the time, combined with the relative com-
plexity of the theoretical expressions, has led to numerous misconceptions. Fre-
quently, handwaving arguments were put forward which emphasized changes in
one isolated contribution as the origin of relative chemical shifts, without solid back-
ground. Sometimes, decreased nuclear shieldings (that is, larger chemical shifts)
were indiscriminately associated with lower atomic charges, i.e. with a removal of
(ground-state) electron density from the atom in question. Correlations with charges
or electronegativity abound in the literature, in spite of the facts that (i) these may
just hold in a narrow range of similar compounds, and (ii) there are crucial exam-
ples in which it has been shown that the correlations were in fact completely fortui-
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18 Interpretation of NMR Chemical Shifts

tous. A point in case is the so-called “heavy-atom effects”, which in most textbooks
and in much of the original literature are explained by inappropriate and often even
mutually contradictory models, but which are nowadays agreed to arise predomi-
nantly from relativistic spin–orbit contributions (see also Chapter 13 by Vaara, Man-
ninen, and Lantto, and Chapter 14 by Autschbach). While correlations with optical
excitation energies are popular, particularly in transition-metal NMR [2], it is well
known that the range of these correlations is also limited. They immediately cease
to work when (i) several electronic states contribute to a similar extent and chemical
modification changes their contributions in different directions, and (ii) when mag-
netic and electric-dipole symmetry selection rules differ significantly.

The development of more and more sophisticated and reliable quantum chemical
methods over the past two decades puts in our hands the necessary tools to com-
pute, with sometimes impressive accuracy, nuclear shielding tensors from first prin-
ciples, including relativistic effects as well as electron correlation, as is described in
detail elsewhere in this book (see Chapter 6 by van W�llen, Chapter 8 by Gauss and
Stanton, Chapter 13 by Vaara, Manninen, and Lantto and Chapter 14 by Autsch-
bach). This should, in principle, allow the extraction of the necessary electronic-
structure information from quantitative shielding calculations, provided we have the
necessary tools. This does not of course mean that the analysis is less difficult than
for more approximate, simpler treatments, on the contrary! However, the additional
benefit is to derive qualitative concepts from calculations that are also quantitatively
adequate.

In this chapter, we will summarize the ways in which the line from quantitative
computation to qualitative insight into chemical shifts may be drawn, and we will
illustrate the existing methodology by a few suitable examples. The first part is dedi-
cated to the nonrelativistic formalism and thus to cases where relativistic effects are
thought not to be dominant, or where at least the main trends can be understood
without relativity. The second part will emphasize relativistic effects, in particular
spin–orbit induced changes in chemical shifts, which have recently been the center
of increased attention by many workers. A more detailed account of the latter topic
is provided elsewhere [3], and relativistic shielding calculations have been reviewed
several times from different viewpoints during the past five years [4]. One part of the
“nonrelativistic” interpretation work has also been summarized [5]. Here, the under-
lying theoretical and computational formalism will be kept to the absolutely neces-
sary minimum, and the reader is referred to Chapter 6 by van W�llen, Chapter 13
by Vaara, Manninen, and Lantto, and Chapter 8 by Gauss and Stanton, for more
details.
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18.1 Introduction

18.2
Nonrelativistic Case

18.2.1
Formalism of MO-by-MO Analyses

Leaving relativistic effects aside for the moment, the well-known second-order Ray-
leigh–Schr�dinger perturbation theory (PT) formalism of the Ramsey equation
(Eqs. (18.1)–(18.3)) for nuclear shieldings is the appropriate starting point of our dis-
cussion. What we get is the well-known separation into a diamagnetic term, which
is expressed as an expectation value with the ground state wavefunction (Eq. (18.2))
and thus may be computed rather straightforwardly, and the paramagnetic shielding
term (Eq. (18.3)), which is expressed conventionally in a sum-over-states form that
implies an involvement of electronically excited states.

r = rd + rp (18.1)
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W0 and Wn denote the singlet ground and nth excited-state wavefunctions, respec-
tively, E0 and 1En are the corresponding total energies, riO and riN the distance of
electron i from the origin of the external magnetic vector potential and from the
nucleus N, respectively. The angular momentum operator lOi in the first matrix ele-
ment in the numerator of Eq. (18.3) represents the interaction of the external field
with electron i (orbital Zeeman term, OZ), and lNi · rni

–3 in the second matrix ele-
ment corresponds to the interaction of electron i with the nuclear magnetic dipole
field (paramagnetic spin–orbit term, PSO).

We keep in mind that this is only one possibility (see below), and that most com-
putational schemes avoid an explicit computation of excited states of the system.
Moreover, Eqs. (18.1) – (18.3) refer to a specific common gauge origin. Other choices
of gauge origin will change the individual expressions for rd and rp (without for-
mally changing the overall shielding). The rd and rp terms are thus not individually
gauge invariant (cf., e.g. Ref. [5]). This has to be taken into account in any reasonable
interpretation of nuclear shieldings. We will refer here to various approaches to the
gauge problem, that are discussed in detail (with detailed references) in Chapter 6
by van W�llen. These are single-gauge origin methods (SGO), “gauge-including
atomic orbitals” (GIAO), “individual gauges for localized orbitals” (IGLO), “local-
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ized-orbital local origin” (LORG), “continuous-set-of-gauge transformations” (CSGT)
or “individual gauges for atoms in molecules” (IGAIM) approaches.

Most practical calculations to date have been carried out at the Hartree–Fock (HF)
or Kohn–Sham density-functional (DFT) levels, i.e. with approaches that employ a
single Slater determinant (see Chapter 6). This provides a molecular-orbital (MO)
framework that is used in most cases to analyze the more difficult rp term. That is,
Eq. (18.3) may be expressed as a double sum over occupied and vacant MOs, Eq.
(18.4) (rd may be expressed as a single sum over occupied MOs):

r
p
N;uv ¼ 2

c
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Xocc

k
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j
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���llOi;v
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D E
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þ cc ð18:4Þ

For HF or hybrid-DFT calculations, coupled-perturbed HF or Kohn–Sham (KS)
equations have to be analyzed.1) A particularly transparent interpretation is found
within “pure” DFT treatments, i.e. when the Kohn–Sham potential is multiplicative.
This holds for local density (LDA), gradient-corrected (GGA) or meta-GGA func-
tionals, provided that the exchange-correlation functional is not made to depend on
the induced current density j

fi
(as is the case in almost all applications of these types

of functionals to date [6]; see Chapter 6). In this case, the coupling terms vanish,
and the energy denominators in Eq. (18.4) simplify further to differences between
the energies of occupied and unoccupied KS orbitals, in an “uncoupled DFT” frame-
work (in some treatments, correction terms have been added to the energy denomi-
nators for better quantitative accuracy, see e.g. Ref. [7]). In general, any single-deter-
minantal approach allows an analysis of rp in terms of occupied and vacant MOs.

As a result of this type of MO-by-MO analysis, one may deconstruct both rd and
rp into contributions from individual occupied MOs, and rp may be further decom-
posed into individual terms of Eq. (18.4), i.e. into individual couplings between
occupied and vacant MOs. Both OZ and PSO matrix elements in the numerators of
Eq. (18.4) involve angular-momentum operators arising from magnetic fields. The
PSO term contains an r–3 dependence and is thus rather “shortsighted”. It is
expected to react most sensitively to charge transfer from or to the atom in question
(see below). As both operators involve magnetic angular momentum, only couplings
that are magnetic-dipole allowed will contribute to rp. The selection rules may be
remembered best by a “right-hand mnemonic”, in which the thumb and the first
two fingers of the right hand specify the directions of the OZ and PSO angular
momentum operators, and of the resulting shielding tensor principal component,
respectively. Analyses of Eq. (18.4) were already initiated in the early days of NMR
theory, originally based on rather approximate treatments, often within an average-
energy-denominator approximation (cf. Chapter 9 by Heine and Seifert). Modern
HF or DFT shielding calculations are also commonly analyzed within MO-by-MO
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schemes. The following important points have to be taken into account in such anal-
yses:

1. As pointed out above, rd and rp are not individually gauge invariant and will
thus have different appearance and magnitude for different types of gauge
origin. Also, the individual contributions to rp in Eq. (18.4) will depend on
the gauge origin. This holds for SGO methods (which have the disadvantage
of relatively slow basis-set convergence, see Chapter 6) but also for methods
with distributed gauges. It has been suggested that methods like the CSGT or
IGAIM approaches, that use real-space information to distribute gauges, pro-
vide individually gauge invariant rd and rp contributions and may thus be
interpreted most rewardingly [8]. However, this contrasts with the overall
slower basis-set convergence of these approaches compared to, e.g., the
GIAO treatment. On the other hand, approaches like GIAO or IGLO that dis-
tribute gauge origins based on a partitioning in the Hilbert space spanned by
some atomic or molecular orbital basis set, give rise to additional terms in
Eq. (18.4). For example, in the GIAO case, additional contributions arise
from a rotation among the occupied MOs, which is difficult to interpret
chemically. These terms are sometimes summed in rp and sometimes given
separately. Similarly, within the IGLO framework, an additional rp0 term
appears that represents the shift of the gauge to the corresponding localized
orbital [5]. Provided these additional terms do not change much from one
chemical environment to the next, they will not affect relative chemical shifts
and may be ignored. Unfortunately this is not always the case, and then one
has to deal with this complication.

2. The shielding tensor is furthermore invariant to any unitary transformation
within the space of occupied and/or unoccupied MOs. However, the interpre-
tation obtained from Eq. (18.4) will change with such a transformation.
Indeed, very different rationalizations for chemical shifts have been provided
within different frameworks. In particular, a very different view is obtained
in a delocalized, canonical MO (CMO) framework compared to an interpreta-
tion in terms of localized MOs (LMOs). Typically, SGO, GIAO, CSGT or
IGAIM results have been analyzed in terms of canonical MOs. On the other
hand, in IGLO and LORG studies, the appropriate equivalents of Eq. (18.4)
are usually obtained as a sum of couplings between localized occupied and
canonical unoccupied MOs. While IGLO calculations have usually employed
[5] LMOs obtained from the Boys localization scheme [9], more recently [10]
DFT-IGLO results have also been obtained with the Pipek–Mezey (PM) locali-
zation [11]. Apart from often providing better convergence of the localization
procedure, the PM LMOs are more local than Boys LMOs (see also Section
18.2.3). Most recently, Weinhold and coworkers [12] have used an a posteriori
MO transformation to express GIAO shielding tensors in terms of contribu-
tions from natural bond orbitals (NBO). NBOs are strictly localized MOs, and
small delocalization tails show up as additional, sparsely occupied “antibond-
ing” or “Rydberg-type” NBOs. This “natural chemical shielding” analysis
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(NCS) allows an even finer decomposition of the shielding contributions to
discuss small delocalization effects, such as hyperconjugation. The NBO
framework is not unambiguous, however, and depends strongly on the most
appropriate NBO “Lewis structure” obtained during the NBO procedure. As
any LMO-based approach, NCS fails in more delocalized situations.

This discussion shows, that a bewildering variety of possible MO-by-MO analysis
schemes is available. The interpretations obtained from these schemes are bound to
differ strongly, and it is most important that a consistent discussion does not mix up
arguments across the schemes. Different types of analyses may be used more bene-
ficially in a complementary fashion. Moreover, it should generally be stated clearly
which framework has been used in a given analysis, and the model dependence of
any of these analyses should be acknowledged. Obviously, the applied analysis meth-
od should be chosen appropriately, according to the system of interest: LMO- (or
NBO-) based schemes are most appropriate when dealing with well-localized bond-
ing situations, CMO analyses will be advantageous in delocalized cases, such as
clusters, transition metal complexes, or extended p-systems. It should also be noted
that a connection of the energy denominators in Eq. (18.4) to excitations observed by
optical spectroscopy is only possible in the case of CMO-based schemes. If one is
interested in r/p separation for planar or quasiplanar p-systems, a CMO analysis or
an LMO analysis with PM LMOs seems most appropriate. A few representative
examples are provided in Section 18.2.3.

18.2.2
Real-Space Analyses

As indicated above, a sum-over-states expansion such as the Ramsey equations
(18.2)–(18.4) is only one way of expressing the perturbation of the system. A real-
space quantity that plays an important role in the interpretation of nuclear shield-
ings is the induced current density j

fi
, which may also be separated into a diamag-

netic and a paramagnetic part (again, the separation is gauge dependent):

j
fi

= j
fi

d + j
fi

p = –2A
fi

extW
*W + i(W*�

fi
W–W�

fi
W*) (18.5)

j
fi

is a vector field and thus may be visualized in terms of flux lines, isocontour lines
or little arrows indicating the direction and magnitude of j

fi
at a given point in space

(see cover picture). Current density plots are particularly important in the interpreta-
tion of magnetic susceptibilities but are also useful for nuclear shieldings. This is
specifically the case for delocalized ring currents in extended p-systems. The inter-
pretation of ring currents in the context of discussions of aromaticity is covered in
Chapter 24 by Chen, Heine, Schleyer, and Sundholm and will thus not be elaborated
upon here. The same holds for iso-shielding surfaces, i.e. three-dimensional dis-
plays of shieldings in space.

A quantity related to j
fi

is the shielding density r
fiN(r) introduced by Jameson and

Buckingham [13], which is defined by
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The shielding density provides the shielding constant (more precisely the appropri-
ate tensor components) when integrated over all of space. There has been compar-
ably little further work on rN(r), possibly because it is demanding to compute analy-
tically. Keith and Bader integrated rN(r) over atomic basins within the “atoms-in-
molecules” framework [14]. They found that almost all changes in the shielding of a
given nucleus in different environments arise from the atomic basin of the nucleus
in question. This is not very surprising, given the shortsighted nature of the PSO
operator (see above). It seems that the potential of these types of real-space func-
tions, “property densities”, has not yet been exploited fully, and it is expected that
their further scrutiny will provide more insight. Similar real-space approaches have
recently been shown to give unprecedented insight into the pathways of indirect
nuclear spin–spin coupling [15]. This is discussed in more detail in Chapter 19 by
Malkina. The particular advantage of real-space analyses is the independence from
orbital transformations.

18.2.3
A Few Application Examples

Immediately after the development of the CHF-IGLO method by Kutzelnigg and
coworkers [16], the art of LMO analyses of shielding tensors was demonstrated and
used extensively for the understanding of many observations. Before GIAO-based
methods became competitive in terms of computational efficiency, for a number of
years the IGLO method was almost the only method applied regularly to larger
chemical systems. We refer the reader to a basic and widely cited article [5] that does
not only show some of the first plots of current densities, but provides also numer-
ous examples for CHF-IGLO-based LMO analyses of shielding tensors for light
main group compounds, encompassing shifts of essentially all NMR-active nuclei
up to chlorine. Often, the contributions of different MOs have been illustrated by
plotting the result of the action of cartesian components of angular momentum
operators (cf. Eq. (18.4)) on a given MO or LMO, i.e. the transformed MO u¢= �uu.
This corresponds to the right-hand side of one of the matrix elements in Eq. (18.4),
either with or without an r–3-factor. Provided that the transformed occupied MO u¢
overlaps well in space with a vacant MO, the corresponding matrix element will be
large (the same holds for the coupling of a transformed vacant with an occupied
MO, see below). As an example, Fig. 18.1 uses these types of plots to explain the
occurrence of a paramagnetic current in the BH molecule, one of the few small Van-
Vleck-paramagnetic closed-shell systems.

A number of important general features were noted in these LMO analyses: (i)
The core–shell LMOs on one center make negligible contributions to the shieldings
of other atoms in the system. This provides a justification for the subsequent use of
effective-core potentials on heavy atoms for the inclusion of scalar relativistic effects
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in the calculation of shieldings of light neighboring atoms [17]. (ii) The 1s-type
core–shell contributions at the nucleus of interest are generally transferable from
one system to another. In the third and lower periods, the further core–shell LMO
contributions were no longer necessarily very well transferable (better transferability
of core–shell contributions may be obtained with a different choice of gauge, which
has been used to construct a pseudopotential-based scheme [18], see also Chapter 16
by Mauri and Pickard). (iii) The predominant contributions to relative shifts come
in any case from the valence orbitals, and both their spatial extent and shape, and
their energies matter. Since lone-pair-type LMOs are usually relatively high in ener-
gy, they frequently make particularly large contributions to rp, especially if low-lying
vacant MOs are present (e.g. from an adjacent multiple bond). (iv) The valence-shell
contributions are normally not transferable in the sense of an increment system, as
the contribution from a given occupied LMO depends strongly on the availability of
low-lying vacant MOs to which the occupied LMO may be coupled by the magnetic
operators. A relatively recent application to substituent effects in carbon, silicon,
and titanium compounds may serve as a good example for the question of transfer-
ability [19].

The initial applications were done mainly within a CHF-IGLO approach. The de-
velopment of the first DFT-IGLO implementations by Malkin et al. [7] extended the
routine applicability of the IGLO approach, and thereby of LMO-based analyses, to
systems in which electron correlation effects play a larger role, e.g. to transition
metal complexes. However, the usefulness of an LMO-based analysis decreases as
one moves to more and more delocalized bonding situations (see above). LMOs
based on the PM localization scheme [11] were used for the first time in DFT-IGLO
calculations of 17O shieldings in transition metal oxo complexes [10], where they
provided a more stable scheme with less dependence of the shieldings on the way
the metal core–shells were localized than with the traditional Boys scheme. Apart
from these technical advantages, the PM-IGLO scheme also provided useful MO-
analyses, e.g., for a set of transition metal carbonyl clusters [20]. A main motivation
for the implementation of the “PM-IGLO” scheme was, that in studies of delocalized
p-systems, the PM localization, unlike the Boys scheme, provides a separation into
r- and p-LMO contributions [21] (see also Chapter 24). For LMO analyses within a
LORG treatment, we refer to Ref. [22].
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Figure 18.1 LMO-based explanation of the
occurrence of a paramagnetic current in BH
(adapted from Fig. 6 in Ref. [5]). a) Lone pair
u1 on B (occupied LMO). b) Result of “rota-
tion”: u1¢= luu1 (lu represents angular momen-
tum perpendicular to the molecular axis).

c) low-lying vacant MO, available to couple
with u1¢. As a result of these couplings, a para-
magnetic current in the plane is created (and
an equivalent one in the molecular plane per-
pendicular to it).



The analysis of nuclear shieldings in terms of canonical MOs based on DFT-
GIAO calculations [23] was pioneered by Ziegler and coworkers, with particular
emphasis on transition-metal complexes. As an example we will discuss here the
analysis by Ruiz-Morales et al. of the unusually large 1H shieldings in typical transi-
tion metal hydrides LnMH [24]. Already Buckingham and Stevens [25] had proposed
a model that involves paramagnetic currents within the incomplete metal d-shell
that are “off-center” at the position of the hydrogen nucleus and thereby provide an
overall positive shielding contribution to r(1H) (cf. the related, simpler example of
19F shielding in ClF [5, 8]). This has been confirmed by a DFT-GIAO-based CMO-
analysis in [24], as illustrated in Fig. 18.2. The components of the magnetic field
perpendicular to the M–H bond induce current loops in the xz- and yz-planes. The
angular momentum operators couple mainly dp-type metal orbitals to the low-lying
vacant dr*(M–H) MO, thereby providing large positive contributions to r

p
^. We note

in passing, that in case of the largest “hydridic high-field shifts” known, which
range down to chemical shifts of –50 ppm relative to TMS in case of some iridium
complexes [2], these rp contributions are augmented further by sizeable shielding
spin–orbit effects [3, 26] (cf. Section 18.3.1).

Similar analyses have been carried out in several cases, e.g. for 31P coordination
shifts in some transition metal phosphine complexes [27], or in a recent study of
195Pt shifts [28]. In these studies, illustrations of u¢= luu, as well as discussions of
the energy denominators in Eq. (18.4) have played a major role, whereas no detailed
decomposition of Eq. (18.4) into individual terms has been provided. This may be
partly due to the fact that the GIAO shieldings also involve rotations within the
space of the occupied MOs, which are hard to interpret chemically.

In a recent study of 29Si shifts in symmetrically and unsymmetrically substituted
disilenes, we have, for this reason, resorted to CMO-analyses within the framework
of SGO-based calculations [29], using sufficiently large basis sets. This allowed us to
make somewhat more detailed analyses of the individual matrix elements in the
numerators of Eq. (18.4). It turned out, e.g., that the energy denominators control
largely the magnitude of substituent effects in symmetrically substituted disilenes,
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Figure 18.2 Explanation of 1H high-field shifts
in transition metal hydrides, based on DFT-
GIAO analyses (adapted from Ref. [24]). a) dp-
type HOMO; b) dr*-type vacant MO; c) Result
of action of angular momentum operator along

y-direction on dr*-type vacant MO. This trans-
formed MO may interact with the dp-type
HOMO. An equivalent interaction results from
angular momentum along x, and a dp-type MO
in the yz plane.



as had been assumed previously [30]. In contrast, the PSO matrix elements in Eq.
(18.4) explained the unusually large, characteristic differences between the two sili-
con nuclei in unsymmetrically substituted disilenes [29]. In the latter case, the same
CMOs, and thus the same energy denominators, are involved in the shieldings of
both silicon nuclei. Consequently, the spatial extent of the CMOs at the two sites
was shown to be the decisive factor. Somewhat less detailed CMO analyses within a
CGO scheme have also been carried out in many examples by Nakatsuji and cowork-
ers [31]. An interesting and detailed analysis of the large 19F shielding in ClF and in
related compounds has been carried out by Wiberg et al., using the abovementioned
simplification of the analysis within the IGAIM approach [8]. Previous arguments
about the importance of the phase of the relevant CMOs were thus confirmed, but
again a further analysis in terms of energy denominators and matrix elements was
not done.

18.3
Relativistic Effects

Everything said up to now has assumed that relativistic effects are negligible. This is
frequently not the case. In particular, even for light nuclei, spin–orbit effects due to
neighboring heavy atoms may be substantial and are nowadays accepted to be the
source of the long-known “heavy-atom effects” on nuclear shieldings (in particular,
the so-called “heavy-atom effect on the shielding of the light neighboring atom”,
HALA; cf. Ref. [32] and Chapters 13 and 14). The inclusion of spin–orbit effects may
indeed change the predominant rationalization of relative chemical shifts funda-
mentally. As the interpretation of relativistic effects on nuclear shieldings has
recently been covered in depth elsewhere [3], we will only briefly mention here the
main aspects and refer the reader to Ref. [3] for more details.

18.3.1
Spin-Orbit Effects

If we consider spin–orbit (SO) coupling as a further perturbation, SO corrections to
chemical shifts are computed within third-order PT (for details, see Chapter 13; in
contrast, variational inclusion of spin–orbit coupling in a two- or four-component
treatment preserves the second-order PT framework, see Chapter 14). At the Breit–
Pauli PT level, the dominant third-order terms may be written in a sum-over-states
expansion as:

r
SO�I�K
N ¼

X

m;n6¼0

0
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D E
mT
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D E
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where HK represents hyperfine interactions (predominantly a Fermi-contact term,
HFC), HSO the molecular one- and two-electron spin–orbit operators, and HB0 the
external magnetic field (cf. also Eq. (18.3)). The expression couples both singlet and
triplet states, as HSO and HK involve electronic spin. Other perturbation terms, that
arise at the same order in the fine structure constant a as these SO terms, contribute
mainly to the absolute shieldings of the heavy nuclei themselves. However, they
appear to be negligible for the shieldings of neighboring nuclei, and in general for
relative shifts (see Chapter 13).

At first sight, the expressions in Eq. (18.7) look very complicated and difficult to
interpret. To this end, a relatively simple analogy to the Fermi-contact mechanism of
indirect nuclear spin–spin coupling has been extremely helpful [33]: In the presence
of an external magnetic field, spin–orbit coupling near the nucleus of a heavy atom
in the system mixes some triplet character into the singlet ground-state wavefunc-
tion and thereby causes spin polarization, primarily in the valence shell of the heavy
atom. However, the spin polarization is also felt near the NMR-active nuclei in the
system (even for light nuclei) and causes an extra contribution to their chemical
shifts via hyperfine interactions (mainly via the Fermi-contact term, HFC). The mag-
nitude of this “spin–orbit chemical shift” may range from very small to almost the
entire shielding range of a given nucleus. It may be shielding or deshielding. The
value of the abovementioned analogy (cf. schematical displays of this scheme in
Refs. [3, 4, 33]) lies in the fact, that the appreciable know-how about the Fermi-con-
tact mechanism of spin–spin coupling (cf. Ref. [2] and Chapter 7 by Helgaker and
Pecul, and Chapter 19 by Malkina) holds also to a large extent for the spin–orbit-
shifts. This analogy was proven in detail [33], and it has been applied to a wide
range of systems and questions [3] (further similarities link the SO shifts to the con-
tact shifts in paramagnetic NMR, cf. Chapter 20 by Moon and Patchkovskii).

Here we just point out some of the main conclusions drawn from these studies:

1. Long-range SO contributions follow the well-known patterns known for
spin–spin-couplings, e.g. the damped oscillatory behavior in aromatic sys-
tems or a Karplus-type dependence on dihedral angles [33].

2. As for the FC mechanism of spin–spin couplings, the s-character in the
bonds from the NMR-active atom to its neighbors (along the bond path to the
heavy atom(s)) is decisive for the magnitude of the effect. This explains many
well-known observations and trends throughout the periodic table: s-charac-
ter is large in main-group systems in their maximum oxidation state, and
SO-shifts are correspondingly large. This results, e.g., in the well-known nor-
mal-halogen dependence (NHD), that is, increasing shielding with increas-
ing atomic number of the halogen substituent bonded to the NMR-active
atom, and increasing shielding with increasing number of heavy-atom sub-
stituents. The latter trend may be faster than linear, due to the increasing s-
character along the same series [3]). In contrast, s-character is small in bond-
ing to main-group atoms in lower oxidation states (the s-character concen-
trates in nonbonding orbitals) and in complexes of early transition metals.
SO-shifts are thus small in these systems. Atoms with particularly large s-

18.3 Relativistic Effects 303



character in bonding, especially hydrogen but also, e.g., mercury, feature an
extremely large dependence on SO effects, whereas atoms with low s-charac-
ter in bonding, like fluorine or oxygen, experience small SO effects on their
shieldings [3].
Further insights that are compatible with the perturbation expressions (Eq.
(18.7)) but which do not follow directly from the abovementioned analogy are
(for heavy-atom substituents directly bonded to the NMR atom):

3. If occupied MOs of p-type character with respect to the bond from the NMR
atom to the heavy-atom substituent dominate the interactions in Eq. (18.7),
the SO-effects are shielding [3, 34]. This holds, e.g., for heavy halogen or chal-
cogen substituents (with the former having two, the latter only one p-type
nonbonding orbital), or for the t2g-type MOs of octahedral d6 transition metal
complexes [3]. If, in contrast, the predominant interactions involve an occu-
pied MO of r-character, as for example in the case of the 13C shifts in organo-
mercury or organoindium(I) compounds, the SO-shifts are deshielding.

4. The energy denominators in Eq. (18.7) involve a product of two energy differ-
ences. It is thus mandatory for large SO-shifts that the ground and excited
states involved (in an MO framework the occupied and vacant MOs) do not
differ too much in energy.

5. As the SO-shifts are typically anisotropic, they may also change significantly
the anisotropy, and sometimes the orientation, of the overall shielding tensor [3].

These insights derive from calculations at rather disparate levels of theory, rang-
ing from two-component Douglas–Kroll-based Hartree–Fock or ZORA-DFT levels to
one-component DFT, either with fully analytical or with partly finite-field PT treat-
ments. Many examples and references may be found in Ref. [3], and we refrain here
from going into detail.

18.3.2
Spin-Free (Scalar) Relativistic Effects

The main effect of scalar relativity is a modification of the overall electronic structure
of the system. This may affect chemical shifts either via a change of molecular struc-
ture or via changes in the wavefunction at a given structure. For example, the relati-
vistic expansion of the d-shell in 5d-metals makes bonds to electronegative ligands
in high oxidation states stronger and more ionic, or the contraction of the 6s-shell
affects significantly the electronic structure of late transition metals or main-group
elements in the 6th period [35]. The interpretation of these scalar relativistic effects
depends to some extent on the theoretical framework used (i.e. four-component,
two-component, one-component treatments, and perturbational or variational treat-
ments of scalar relativistic effects). We refer to Ref. [3] and to Chapters 13 and 14 for
more details.
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18.4
Concluding Remarks

The NMR chemical shift tensor is not an easy property to interpret chemically. Sim-
ple correlations with only one quantity, like atomic charge or energy denominators,
are usually not sufficient for a detailed understanding of shielding trends. An under-
standing that is a basis for predictive models necessarily has to be derived from a
detailed analysis of the relevant perturbation expressions. Only then we may identify
the decisive interrelations between electronic structure and spectroscopic observ-
able. We have provided examples of the methods that are commonly used to extract
chemical information from computed shielding tensors. In particular, we have
attempted to point out the advantages and disadvantages of a given theoretical
framework for specific bonding situations and chemical questions. Currently, the
detailed MO-by-MO analysis of rd and rp at a suitable level, where necessary aug-
mented by an analysis of spin–orbit effects, is the most widely used approach. Real-
space analyses, based on current densities or on shielding densities, deserve further
study as promising alternative tools.
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19.1
Introduction

The high sensitivity of indirect nuclear spin–spin coupling constants to subtle
changes in the geometrical and electronic structure makes them an important
source of chemical information. However, the extraction of this information is not
always straightforward, and couplings often require careful analysis and interpreta-
tion. For this reason, measurements of spin–spin coupling have always been accom-
panied by attempts to rationalize the phenomenon and explain its mechanisms. Nu-
merous reviews are devoted to this topic. In recent years this field has become the
subject of even more interest for two major reasons. First, tremendous progress in
quantum-chemical calculations of spin–spin couplings allows one to obtain reliable
results, even for systems of considerable size, using density functional theory (DFT)
(see Chapter 7 by Helgaker and Pecul), to take into account relativistic effects for
compounds containing heavier elements (see Chapter 15 by Autschbach and Zieg-
ler), or to get highly accurate data for difficult cases employing post-Hartree–Fock
approaches. Theoretical methods have become so reliable that all information
needed for the analysis of spin–spin couplings can, in principle, be taken from cal-
culations. Second, the experimental discovery of spin–spin coupling through hydro-
gen bonds called for new interpretational tools in order to understand its mecha-
nisms (see Chapter 22 by DelBene). Therefore, it is not surprising that in recent
years, analysis of spin–spin coupling has become topical again. In this chapter, avail-
able tools for the interpretation of spin–spin couplings, including new approaches
for the visualization of spin–spin coupling pathways using real-space functions, will
be outlined.

In the non-relativistic treatment, there are four contributions to the indirect
nuclear spin–spin coupling constant: the Fermi-contact (FC), paramagnetic spin–
orbit (PSO), spin-dipolar (SD) and diamagnetic spin–orbit (DSO) terms (see
Chapter 7). Splitting the total coupling constant into these four contributions may
be considered as a first level of interpretation. The FC term is usually dominant.
However, in some cases (such as coupling through a multiple bond) other terms
may be as important as the contact term. For example, equation-of-motion-CCSD
calculations [1] showed that in the CO molecule, the PSO term is responsible for
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about 80% of the total coupling (13.0 of 15.5 Hz) and the DSO contribution is of the
same order of magnitude as the FC term (– 4.6 and 7.0 Hz correspondingly). In the
N2 molecule, the PSO contribution is found to be 2.8 Hz, while the FC part is only
0.3 Hz (EOM-CCSD [1]). The PSO term is also known to play an important role in
1J(H–F) and 1J(H–Cl) couplings [1, 2]. It can also be significant for two-bond cou-
plings. For example, for 2J(F–F) in CF4, the PSO part accounts for about –112 Hz [3].
Another remarkable example is 1J(M–O) in 3d-oxo-complexes [4], where the PSO
term is not only comparable in magnitude with the FC contribution but is actually
the leading term defining the trend in the M = V, Cr, Mn series. Khandongin and
Ziegler [4] found the PSO term to be extremely important for such couplings, and
they analyzed it further by decomposing it into individual contributions from molec-
ular orbitals. It should be noted that the PSO part itself being so carefully examined
is a rather rare event. Since the calculation of the PSO contribution is computation-
ally very similar to the calculation of NMR chemical shifts (CS), all techniques avail-
able for analysis of CS can be applied to the PSO term (see Chapter 18 by Kaupp).
Still, in the overwhelming majority of applications the analysis of spin–spin cou-
plings is restricted to the FC term, as it typically governs the coupling. Approaches
based on different perturbation theories for the analysis of this contribution have a
long history and are well developed nowadays. In the remainder of the chapter, we
will consider only the interpretation of the Fermi-contact term.

Before considering the available tools for analyses of couplings, let us outline pos-
sible goals of the interpretation: (1) understanding the underlying physical phenom-
ena; (2) rationalization of the observed trends in a series of compounds, in other
words finding the most important factors influencing the coupling; (3) explanation
of “unusual” (counterintuitive at first glance) values and dependences; (4) prediction
of the sign and magnitude of unknown coupling constants, even without doing
direct quantum-chemical calculations; (5) last, but not least, understanding of the
coupling pathways, for example, in multiple-ring systems, or answering the old
question of whether a particular spin–spin interaction goes “through-bond” or
“through-space”. It should be mentioned that there is no universally accepted defini-
tion of “through-space” coupling despite the topic having been disputed for many
years. The term usually refers to anomalously large coupling constants for nuclei
many bonds apart but physically close in space [5]. One of the most striking exam-
ples of “through-space” interaction is the coupling constant of J(F–F) = 17 Hz found
for a pair of spatially proximate fluorines in a polypeptide formally separated by 89
bonds [6].

Analysis of coupling usually assumes the establishment of a connection between
the coupling and a set of chemically relevant quantum-mechanical concepts used
for the characterization of electronic structure. The most commonly used concepts
are localized and canonical molecular orbitals (MO), one-electron energies, bond
orders, populations, atomic charges, electronegativities, etc. Although very useful in
describing the electronic structure, none of these concepts are observable in the
quantum-mechanical sense, and thus their meaning is to an extent somewhat arbi-
trary. Accordingly, the interpretation (and the obtained conclusions) can depend on
the models or concepts employed. It would be preferable to have an approach which
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19.2 The Dirac Vector Model of Spin–Spin Coupling

involves little or no arbitrary concepts or approximations. Below we will discuss dif-
ferent theoretical approaches, keeping in mind the previously-formulated goals and
the possible “non-uniqueness” of the interpretation.

Historically, the first interpretations were aimed at establishing a physical picture
and general understanding of spin–spin interaction rather than quantitative analy-
sis: (i) the Dirac vector model explaining the propagation of spin-polarization
(induced by the FC interaction) through a chain of chemical bonds in a molecule [7];
(ii) Pople and Bothner-By’s model [8], which allows one to analyze the coupling in
terms of individual excitations and s-character of MOs at the nuclei; typically this
interpretation is illustrated by energy level diagrams; (iii) the interpretation, sug-
gested by Barfield and Karplus, in terms of so-called “interbond bond orders” char-
acterizing the interaction of a pair of bonds; this analysis was implemented in the
framework of the valence-bond (VB) method [9]. Both analyses (ii) and (iii) are based
on Ramsey’s sum-over-states (SOS) expression [10]. Later, another approach for the
calculation of spin–spin couplings, based on finite perturbation theory (FPT) [11],
became popular. Within FPT, the Fermi-contact operator on one of the coupled
nuclei is included in the Hamiltonian as a perturbation, and the coupling constant
is obtained from the spin density at the position of the second coupled nucleus.
This gives the background of interpretation of couplings based on the analysis of the
spin-density matrix in terms of molecular orbitals (canonical, localized, semiloca-
lized etc.). It should be kept in mind, that methods other than SOS or FPT (i.e.
coupled Hartree–Fock, coupled DFT, or linear response) can also provide the basis
for interpretation, using either an “SOS-like” expression or a spin-density matrix. A
review of all modern approaches for the calculation of spin–spin couplings is
beyond the scope of this chapter, the remainder of which will focus on the discus-
sion of possible methods of interpretation and their historical origins. New ap-
proaches for visualization of spin–spin coupling by real-space functions will be pre-
sented in Section 19.4. Before going to more sophisticated tools for analysis, in Sec-
tion 19.2 we will briefly outline a simple physical picture of coupling, known as the
Dirac vector model.

19.2
The Dirac Vector Model of Spin–Spin Coupling

This model, based on the FC interaction of nuclear and electron spins and Hund’s
rule, can be found in almost any NMR textbook. The explanation is considered so
classical that the names of its authors are often omitted. The Dirac vector model of
spin–spin coupling was proposed by Duval and Koide [7] in 1964 in order to account
for the appearance of different signs in the long-range couplings in saturated com-
pounds.

Let us consider the coupling of two directly bonded nuclei (M and N) with positive
magnetogyric ratios. The Fermi-contact mechanism at M stabilizes the anti-parallel
orientation of an electron spin in the proximity of nucleus M. Consequently, the
second electron of the bond (possessing the opposite spin according to the Pauli
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principle) will have a slightly higher probability of being found near N. In turn, the
contact mechanism at N will make the anti-parallel arrangement of the second
nuclear spin preferable (with respect to the spin of the nearest electron, and there-
fore also anti-parallel with respect to the spin of the first nucleus). In this case, the
anti-parallel orientation of nuclear spins leads to a lower energy and the Dirac vector
model predicts a positive coupling constant.

If the coupled nuclei are separated by a number of bonds, then the electronic
interaction in the region of each intervening atom should be taken into account.
According to Hund’s rule, in these areas the parallel orientation of the electron
spins is preferred. Applying the Pauli principle to each bond in the chain connecting
two coupled nuclei, one can conclude that coupling through an odd number of
bonds should be positive and through an even number of bonds, negative (again
assuming positive magnetogyric ratios of both coupled nuclei).

Though the Dirac vector model gives a simple physical picture of how the spin
interaction propagates over the pathway connecting two coupled nuclei and greatly
aids general understanding of the effect, this model is an oversimplification. It fails
to explain the variety of couplings. For example, the positive sign of 2J(H–H) in for-
maldehyde is an obvious contradiction of the Dirac vector model, which does not
take into account spx-hybridization of coupled or intervening atoms. Therefore cou-
plings through multiple bonds are outside the applicability of this model. The Dirac
vector model is not able to describe the influence of lone pairs on couplings, and
many other experimentally known effects. Furthermore the model was designed to
yield a picture of a purely “through-bond” interaction (assuming a well localized
Lewis-type electronic structure), and as such it cannot provide any immediate
insight on “through-space” coupling. In short, the Dirac vector model is too simple
for an adequate interpretation of the complex phenomenon of indirect nuclear
spin–spin coupling. More sophisticated quantum-chemical approaches are needed.
Among them, the oldest, which still remain very popular, are sum-over-states (SOS)
and finite perturbation theory (FPT).

19.3
Decomposition into Individual Contributions

19.3.1
SOS within Linear Combination of Atomic Orbitals (LCAO)

The basis for sum-over-states calculations of spin–spin couplings was developed in
1953 by Ramsey [10]. In 1964, Pople and Santry [12] applied Ramsey’s SOS equa-
tions to the calculation of coupling constants in the framework of molecular orbital
theory, obtaining the following expression for the Fermi-contact contribution to the
reduced coupling constant KMN:
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19.3 Decomposition into Individual Contributions

Here b is the Bohr magneton, d is the Dirac-delta function, RM and RN are the posi-
tions of the coupled nuclei. As can be seen from Eq. (19.1), only pairs of molecular
orbitals (ji and jj) having non-zero amplitudes at the positions of both atoms M
and N can contribute to the coupling. Also, the magnitude of a particular contribu-
tion depends on the energy difference between the ground state singlet and the cor-
responding excited triplet (3DEifij). It turns out that analysis of these two quantities,
the amplitudes of molecular orbitals and the energy denominators, can indeed
explain many couplings. Eq. (19.1) became a favored basis for interpretation of cou-
pling constants for many years (see, for example, the reviews [13–15]), partly because
in simple cases experimentalists are able to estimate the energy denominator and at
least the signs of the molecular orbitals at the positions of the coupled nuclei with-
out doing quantum-chemical calculations.

In the LCAO (linear combination of atomic orbitals) approach, Eq. (19.1) can be
rewritten as follows:
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where Cgk are molecular orbital coefficients. This expression allows one to interpret
the couplings in terms of atomic orbitals vg. If one is interested only in the domi-
nant terms, further approximations can be made. The triplet–singlet energy differ-
ence can be approximated by the difference of the one-electron energies of the corre-
sponding molecular orbitals. Furthermore, since at the position of a given atom
atomic orbitals from other atoms are likely to have small amplitudes, two-center
integrals in Eq. (19.2) can be neglected. Taking into account that only s-orbitals have
non-zero amplitudes at the position of the atom, we get the following equation1):
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where pl,m is the so-called “mutual polarizability” of the atomic orbitals vl and vm

introduced by Coulson and Longuet-Higgins [16]. In Equations (19.3) and (19.4), the
value of KMN is written as the sum of the contributions from the individual ifi a
excitations. Those with smaller (ei – ea) differences are the most important ones.
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1) In the original paper [12], Pople and Santry
employed the INDO (intermediate neglect of
differential overlap) method and, thus, only
valence atomic orbitals were considered. There-

fore, in their work, in order to compensate for
the absence of 1s orbitals, they treated contri-
butions from 2s atomic orbitals as fitted para-
meters.



Usually, there are only a few significant terms in the right-hand side of Eq. (19.4).
Therefore for the interpretation it may be enough to analyze just a few excitations
(i.e. from bonding to antibonding orbitals). Molecular orbital coefficients in Eq.
(19.4) can be positive or negative and, consequently, each contribution can be either
positive or negative. The interplay between the values of (ei – ea) and the signs of the
MO coefficients determines the coupling.

The magnitude of the coupling is also proportional to the s-densities of the molec-
ular orbitals at the nuclei, that is, to the s-character of the corresponding MOs.
Since, in turn, the s-character of the bonds is influenced by the spx-hybridization
and electronegativity of ligands, the use of the s-character argument can, in princi-
ple, explain a variety of couplings in chemically different situations and rationalize
the trends observed in series of compounds (which the Dirac vector model cannot
do). However, it should be noted that the p electrons (known to play an important
role in the spin–spin coupling for unsaturated compounds) do not enter this inter-
pretation directly, though they do affect the electronic distribution in a molecule.
Therefore, it is not surprising that it can be difficult to understand spin–spin cou-
pling pathway(s) solely by considering Eqs. (19.3) and (19.4).

19.3.2
Valence-Bond Bond-Order SOS approach

In 1969, Barfield and Karplus [9] suggested the valence-bond bond-order formula-
tion of Ramsey’s SOS equations. In this method, the singlet ground state wavefunc-
tion is written as a linear combination of linearly independent, nonpolar valence-
bond (VB) functions [17] constructed in a special way from atomic orbitals. After a
number of approximations, including somewhat less transparent ones than those of
Pople and Santry, Barfield and Karplus arrive at the following expression for the FC
coupling term:
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where p(t,u) is the Penney–Dirac bond order [18, 19]. In the case of completely local-
ized bonds, p(t,u) is equal to one for bonded atoms and zero otherwise. In delocal-
ized systems it can be either positive or negative. In Eq. (19.5), the coupling is
decomposed into the sum of contributions from the pairs of atomic orbitals. We see
again that only atomic orbitals with nonzero densities at the positions of the coupled
atoms can contribute to the FC term.

In order to provide a basis for further analysis, Barfield and Karplus considered
the interaction of two bonds in the molecular four-electron fragment and introduced
a new quantity characterizing this interaction: “interbond bond orders” (four for
each four-electron fragment; see Ref. [9] for more details). It was shown that, within
some additional approximations, the interbond bond orders are determined by the
formal two-electron exchange integrals associated with the corresponding orbitals.
The Penney–Dirac bond orders can be expressed in Taylor series with respect to
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interbond bond orders. After neglecting the third- and higher order terms and sub-
stituting the Penney–Dirac bond orders by these expansions in Eq. (19.5), one can
get the “direct” (first-order terms) and “indirect” contributions (second-order terms).
Barfield and Karplus pointed out that the “direct” contributions could be important
not only for geminal and vicinal H–H couplings, but also for long-range couplings,
if the bonds containing the coupled nuclei are sufficiently close in space (resulting
in non-negligible values of the exchange integrals).

The dependence of the interbond bond orders on the exchange integrals was used
in an attempt to clarify the dichotomy between “through-space” and “through-
bonds” interactions. According to Barfield and Karplus, the exchange interaction be-
tween non-bonded orbitals corresponds to a “through-space” mechanism, while the
interaction of adjacent orbitals contributes to “through-bonds” coupling. From this
point of view, the vicinal 3J(H–H) coupling in ethane represents neither a pure
“through-space” nor a pure “through-bonds” interaction.

We see that despite a number of severe approximations the valence-bond bond-
order formulation of SOS brings us closer to an understanding of coupling path-
ways. In fact, valence bond theory was considered [5] as a “great success in qualita-
tively describing trends in 3J(H–H)”. In particular, this theory was able to provide an
explanation for the dependence of the vicinal H–H coupling on the dihedral angle
(nowadays known as Karplus-type dependence).

Sum-over-states based approaches for the interpretation of spin–spin couplings
turned out to be quite successful. The work of Pople and Bothner-By [8] on the sys-
tematization and interpretation of geminal H–H couplings is one of the definitive
works in this field. Following Pople and Santry [12], energy diagrams were used for
the rationalization of 31P couplings in transition metal complexes [14, 15]. The signs
of lone-pair effects on spin–spin coupling constants were also explained with the
help of energy diagrams [13]. Unfortunately, SOS approaches at both Hartree–Fock
(HF) and density functional theory (DFT) levels (i.e. for quantum-chemical methods
with moderate computational demand) in many cases cannot quantitatively repro-
duce experimentally observed values of couplings without an artificial scaling proce-
dure [20, 21]. Therefore, quite often these methods can provide information only for
qualitative or semi-quantitative interpretation, and are thus not truly satisfactory
from a theoretical point of view.

19.3.3
Single Finite Perturbation Theory (FPT)

Another method for the calculation of the FC contribution was suggested by Pople
et al. in 1967 [11]. The idea of the method is as follows. First, the Fermi-contact
operator at one of the coupled nuclei is included as a small but finite perturbation in
the Hamiltonian. Due to the presence of the spin operator, the perturbation will
have different signs for alpha and beta electrons, causing spin-polarization in an
otherwise closed-shell system. The Schr�dinger equation is then solved self-consis-
tently. The perturbed molecular orbitals thus obtained are used to calculate the
expectation value of the second Fermi-contact operator that is essentially the value
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of the spin density at the position of the second coupled nucleus. Actually, the values
of the spin density can be calculated at the positions of all other nuclei (with the
obvious exclusion of the one chosen as the center of the perturbation), and thus only
one SCF (self-consistent-field) calculation is required to obtain the couplings of one
nucleus with all others. The FPT calculations, being based on a numerical evaluation
of the energy derivative, can be sensitive to the value of the perturbation parameter
(a description of a more elaborate linear response method can be found in Chapter
7). However, FPT can be easily implemented at different levels of theory and, more
importantly, in most cases gives rather reliable results at the DFT level [22]. There-
fore, finite perturbation theory can be applied for calculation of couplings in systems
of moderately large size, and the information obtained can be used directly for a
quantitative interpretation of spin–spin couplings.

Since, in the single-FPT framework, the value of the spin–spin coupling constant
is expressed as the spin density, all tools available for analyzing the electron density
can be applied. A natural way to analyze the spin density (which is simply the differ-
ence between alpha- and beta-electron densities) is to decompose it into contribu-
tions from canonical or localized molecular orbitals (LMOs). For a localization pro-
cedure, different criteria can be used. In fact, the canonical molecular orbitals can
be subjected to any unitary transformation. The resulting molecular orbitals will
give the same total energy and the same alpha- and beta-electron densities, though
the picture in terms of individual contributions can be quite different. The interpre-
tation is not unique and the underlying concepts should always be kept in mind.

The choice of appropriate orbitals for the analysis (LMOs versus canonical MOs)
is subjective. Canonical orbitals can be too delocalized, but can be classified by their
one-electron energies. For example, Munzarov� and Sklen�ř [23] recently used cano-
nical MOs for the interpretation of three-bond sugar–base couplings in purine and
pyrimidine nucleosides. They showed that the difference in the Karplus-type depen-
dences for those nucleosides is connected to the two highest occupied (canonical)
molecular orbitals. On the other hand, the localized molecular orbitals are closer to
chemical intuition, but they may not be the best choice to describe a phenomenon
with a delocalized nature, such as a long-range nuclear spin–spin coupling. Another
disadvantage of the localized molecular orbitals is that they cannot be used for ener-
gy level diagrams because LMOs are not eigenfunctions of the Hamiltonian.

With the goal of overcoming the shortcomings of the usual LMOs while keeping
their advantages regarding chemical interpretation, Wilkens et al. suggested the so-
called natural J-coupling analysis (NJC) [24] based on natural bond orbitals (NBO)
and natural localized molecular orbitals (NLMO) [25]. The starting point for con-
structing the NBO and NLMO sets is the density matrix rather than canonical mo-
lecular orbitals. By construction, both NBOs and NLMOs are complete and ortho-
normal, and they are connected to canonical MOs by unitary transformations. Nor-
mally, NBOs of near double occupancy are well localized and correspond to Lewis-
type orbitals commonly used by chemists. The density matrix in the NBO basis is
usually slightly non-diagonal. In contrast to NBOs, NLMOs are semilocalized. In the
expansion of a particular NLMO in the NBO basis, the coefficient in front of the
parent NBO is near unity (and therefore the shape of the NLMO resembles that of
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the parent NBO). The sum of other terms (antibonding and/or Rydberg NBOs, both
weakly occupied) represents a non-Lewis delocalization tail of the NLMO. The den-
sity matrix in the NLMO basis is diagonal. This allows one to rewrite the expression
for the FC contribution in the framework of single perturbation theory as the sum
of individual NLMO contributions.

The splitting of each NLMO into a linear combination of NBOs gives the decom-
position of coupling in terms of NBOs. The contribution arising from the parent
NBO is called the Lewis coupling contribution [24]. According to Wilkens et al. [24],
the origin of the Lewis contribution lies in steric interaction and its mechanism is
analogous to the “direct” coupling mechanism introduced by Barfield and Karplus
[9] in the VB method. The contributions coming from antibonding NBOs (and
related to “indirect” contributions in VB) are usually smaller. In NJC, they are inter-
preted as “residual intrabond repolarization” and “interbond spin delocalization”
contributions, depending on whether the NBO corresponds to the NLMO’s own
antibond or not. In the latter case, delocalization contributions reflect either conju-
gative or hyperconjugative interactions. Typically the hyperconjugative phenomena
are more important for J-coupling than other delocalization mechanisms. For exam-
ple, according to the NJC analysis for 3J(H–H) in ethane (trans conformation,
B3LYP/6-311**), the NLMO contributions from the C–H bonds containing the
coupled protons give 14.04 Hz of the total value of 14.72 Hz. Each contribution of
7.02 Hz consists of the Lewis part (+5.52 Hz), the interbond delocalization contribu-
tion (+2.63 Hz) corresponding to the hyperconjugative interaction with the C–H
antibonding MO of another coupled proton, the repolarization contribution
(–0.07 Hz) and the remaining delocalization contributions with the sum of
–1.05 Hz. It should be noted that NJC, even in the framework of single FPT, allows
(to an extent) energy arguments to be brought out (see Ref. [24] for more details),
although no direct connection with the excitation energies can be concluded.

However, in the current implementation [24], the NJC analysis is not able to over-
come another deficiency of single FPT: the results of interpretation may depend on
which of the coupled nuclei was chosen as a center of perturbation. Wilkens et al.
[24] suggested to “restore the physical symmetry of coupling” by averaging individ-
ual spin density contributions from two single FPT calculations (with perturbation
on the first and then on the second nucleus). This probably still cannot be consid-
ered as a full remedy, just as the result of the interplay of two FC operators cannot
be replaced by their half sum and the plot of the averaged spin density would not
necessarily reflect the coupling pathway.

19.3.4
Some Examples

It should be noted that the use of one perturbation theory for calculation of spin–
spin couplings does not prohibit the interpretation of the results with the techniques
typical for another one. One can combine different approaches making use of their
advantages. Let us consider some instructive examples.
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To the best of our knowledge, the first calculation of spin–spin coupling at the
post-Hartree–Fock level was done already in 1967 by Armour and Stone [26]. They
used the configuration interaction method (CI) to compute the H–H couplings in
ethylene. The sum-over-states perturbation theory was employed. Due to very lim-
ited computer facilities at that time, the basis set was fairly small by modern stan-
dards: it contained only 14 Slater orbitals. The CI calculated values for vicinal cou-
plings (both cis and trans) were in good agreement with experiment while the gem-
inal constant was some way off. In order to understand the reason for this failure,
the authors performed another CI calculation based on localized MOs to find out
the nature of important contributions. They rewrote the CI expression for the FC
contribution as a perturbation expansion in the electron correlation and analyzed
the series in terms of canonical and localized orbitals. Armour and Stone found that
(1) the inclusion of correlation is very important; (2) the expansion converges rather
slowly; (3) when localized orbitals are used, the expansion converges even more
slowly. Still, the transformation to LMOs proved to be useful, because it showed
that, for geminal couplings, the most important contributions come from bonding
and antibonding C–H orbitals. The plot of these orbitals in the molecular plane
demonstrates that the nodal lines of both orbitals pass near the second hydrogen.
That means that small changes in the positions of nodes can significantly alter the
contributions from these orbitals and even change their sign. This is why the gem-
inal coupling was difficult to calculate.

Bacskay et al. [27] calculated the Fermi-contact term in 2J(H–D) for molecular
hydrogen complexes of Os(II) with various ligands using FPT at the density func-
tional theory level. The calculated results were in reasonable agreement with experi-
ment, in contrast to earlier calculations of Craw et al. performed with Hartree–Fock
and MP2 methods using double finite perturbation theory [28]. Strong correlations
of the calculated 2J(H–D) values with the H–D distance and the Os–HD bond
strength (defined as the energy associated with the removal of the HD ligand from
the complex) were explained on the basis of SOS arguments. In the molecular
hydrogen complexes of Os(II), the bonding and antibonding HD orbitals mix with
the appropriate metal orbitals, reducing their s-character on H and D. Assuming
that the changes in the energy denominator in Eq. (19.1) are small upon complex
formation, the value of 2J(H–D) should correlate with the strength of the metal–di-
hydrogen interaction, that is, a stronger metal–hydrogen bond should be accompa-
nied by a decreased value of coupling.

Khandogin and Ziegler [4] studied M–C and M–O couplings in transition-metal
complexes using the FPT DFT approach for calculations. For the interpretation of
the results, they also used the sum-over-states expression for the FC contribution.
Though FPT and SOS cannot be expected to give the same answer (for example,
compare the SOS-DFT [21] and FPT-DFT [29] performances for various C–C and
C–H couplings), for 1J(M–O) in 3d-transition-metal tetraoxo complexes the results
of the two approaches are quite close. This allowed the authors to interpret the
results in terms of contributions from individual occupied MOs. The contributions
from the two highest occupied orbitals (calculated with SOS) constitute about 90%
of the FC value obtained with FPT. The contribution from the lower orbital is posi-
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tive and about 2–3 times larger in magnitude than the HOMO (highest occupied
molecular orbital) contribution, which is negative. For M–C couplings in 3d-carbon-
yl complexes, the picture is more complicated. While for V(CO)6

– and Co(CO)4
– the

contributions from the two highest occupied orbitals sum to nearly the total FC
value, for Fe(CO)5 they sum to about 66% and 120% of the equatorial and axial FC
couplings respectively.

Another interesting example [30] is a combination of the NBO/NLMO analysis
with the SOS-HF calculation for vicinal NMR proton–proton couplings. It should be
noted that in order to get quantitative agreement with experimental values, all calcu-
lated couplings were scaled according to the fitting procedure of Edison at al. [20].
The individual contributions to 3J(H–H) were obtained in the following non-trivial
way. After reaching SCF convergence, the Fock matrix was transferred to the NBO
basis. The relevant off-diagonal elements (for example, those corresponding to a par-
ticular bonding–antibonding interaction) were then deleted from the Fock matrix
and the new MO coefficients (still in the NBO basis) were found. After transforming
the MO coefficients back to the AO basis, the coupling constant was calculated once
more. The difference between the values obtained with the complete Fock matrix
and with some particular interaction excluded is treated as the contribution from
this interaction. It is instructive to compare the results of this analysis with the
above-discussed NBO/NLMO analysis of Wilkens et al. [24] for the trans 3J(H–H)
coupling in ethane. Esteban et al. [30] did not find explicit Lewis contributions, in
contrast to Ref. [24], where they were responsible for about 75% of the total value.
According to Wilkens et al., the remaining part of the coupling was due to two bon-
ding–antibonding interactions (of the C–H bonds of coupled protons), which gave
about 35%, and a few other interactions with smaller negative contributions. Este-
ban et al. obtained a very different picture: virtually the entire calculated coupling
constant (about 17.6 Hz) arose from only the two bonding–antibonding interac-
tions.2) The discrepancy may be connected with the different accuracy of the meth-
ods employed (SOS-HF versus FPT-DFT) and with the difference in the concept of
the contribution itself.

We see that the decomposition of the value of coupling into separate contribu-
tions is by no means unique. There is no commonly accepted point of view on the
interpretation of even such a well-studied example as vicinal proton–proton cou-
pling in ethane. Is there an alternative way to analyze the coupling without splitting
its value into different components which are very much dependent on the under-
lying concepts? The answer will be provided in the next section.
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19.4
Visualization of Coupling by Real-Space Functions

While all the approaches discussed above rely on decomposition of couplings into
contributions from different sorts of orbitals, an alternative way is to look at the dis-
tribution of some functions, closely related to the coupling, in 3-D space without
further separation. For example, the distribution of the spin density, obtained from
FPT (or response theory), can be easily visualized. The plot will show the propaga-
tion of the spin-polarization due to the magnetic moment of the perturbed nucleus.
Looking at such a picture and judging by the spin density at the positions of all
other nuclei, one can immediately estimate the signs and magnitudes of all cou-
plings with that nucleus. For example, Fig. 19.1 shows the distribution of the spin
density in benzene with the center of perturbation on one of the hydrogens. Com-
parison with experiment shows that the signs and relative magnitudes of all cou-
plings with this hydrogen atom are correctly reproduced. However, this kind of pic-
ture is not very useful for understanding the pathways of one particular coupling
because the plot contains too much information and is not specific for any one cou-
pling.

Another general approach for visualization is to express a given property as a
three-dimensional integral. Then the integrand can be considered as a property den-
sity, and hence is a real space function that can be visualised. The plot of the prop-
erty density can show us to what extent different areas of the electronic structure of
the molecule are involved in the analyzed property. This general idea was thoroughly
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Figure 19.1 Visualization of the spin density in benzene
obtained from single FPT with the center of perturbation on the
hydrogen at the right upper part of the plot.



discussed by Jameson and Buckingham [31]. Moreover, using the concept of the cur-
rent density induced by an external magnetic field, Jameson and Buckingham visu-
alized nuclear magnetic shieldings. Quite recently, two different approaches for
visualization of spin–spin couplings were suggested: by Soncini and Lazzeretti [32]
and by Malkina and Malkin [33].

Besides using the property density, there is another possibility suggested by Mal-
kina and Malkin [33]: namely to visualize the difference between the electron densi-
ties obtained for the same molecule but with the two nuclear spins being parallel
and antiparallel. Since the electron density is an observable, it is possible, in princi-
ple, to measure both densities and thus their difference. This is an advantage in
comparison with the visualization of a property density: the latter may be defined
using different expressions. Below we will briefly discuss different methods for
visualization of coupling.

19.4.1
Visualization Based on the Concept of the Current Density

For constructing a spin–spin coupling density, Soncini and Lazzeretti [32] used the
coupled Hartree–Fock (CHF) computational scheme (see Chapter 7). Similar to the
approach of Jameson and Buckingham, the concept of the current density, this time
induced by the nuclear magnetic dipole, was employed. Although the densities of all
four contributions (FC, PSO, DSO and SD) were considered, most attention was
paid to the Fermi-contact coupling density dominating for one- and two-bond cou-
plings in CH4, NH3, H2O, and HF. The spin–spin coupling densities were plotted
as three-dimensional perspectives and contour maps in the plane 0.2 Bohr above the
formal “through-bond” path. The couplings were characterized by the sequence of
spike-up and spike-down patterns along the bonds involving the coupled nuclei.
Soncini and Lazzeretti rationalized the patterns in the language of the Fermi correla-
tion. Their explanation is in accordance with the Dirac vector model. No molecular
orbitals were involved in the interpretation of spin–spin couplings in this work. It
was found that the intensities of peaks depended on the electronegativity of the
heavier atom.

The visualization approach of Soncini and Lazzeretti appeared only recently and,
to the best of our knowledge, it has not been applied yet for different types of cou-
plings (e.g. through multiple bonds) or to distinguish between “through-bond” and
“through-space” interactions. The approach is interesting, though its real usefulness
still remains to be seen. However, at least one possible shortcoming can be indicated
even now. The expression for the coupling density derived in that work [32] is not
symmetric with respect to the coupled nuclei: it contains the current density
induced only by one of the two interacting magnetic dipoles. Therefore, from the
physical point of view, the straightforward picture following from this expression is
not completely correct. The authors suggested to symmetrize the integrand by tak-
ing the half sum of the two expressions containing different current densities (due
to one of the coupled nuclei). It is not clear whether the artificial symmetrization
fully restores the correctness of the picture.
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19.4.2
Visualization Based on the Double Finite Perturbation Theory

In 1979, for calculation of spin–spin couplings at the CI (configuration interaction)
level, Kowalewski et al. [34] proposed an elegant idea in which both coupled nuclei
are treated on an equal basis. In this approach, called double finite perturbation the-
ory (DFPT), the FC operators on both coupled nuclei are included in the Hamilto-
nian simultaneously. The value of the coupling constant is proportional to the
bilinear derivative of the total energy with respect to the nuclear magnetic moments,
which in DFPT is calculated numerically:

JMN ¼
@

2

EðkM ; kNÞ

@kM@kN

�����
kM¼kN¼0

�
EðkM ; kNÞ � EðkM ;�kNÞ

2kMkN

ð19:6Þ

(here the magnetic moments of the coupled nuclei M and N are considered as per-
turbation parameters kM and kN, respectively). In other words, the calculation of one
coupling constant requires two SCF steps, for the parallel (kM and kN of the same
sign) and antiparallel (kM and kN of opposite signs) orientations of the magnetic
moments of the interacting nuclei. From the computational point of view, DFPT is
less practical than single FPT where one SCF step gives couplings of one nucleus
(chosen as a center of perturbation) with all others. However, DFPT is valuable as a
basis for interpretation because it faithfully describes the underlying physics: the
coupling constant is a probe of the energy splitting between the states with parallel
and antiparallel nuclear spins. Moreover, since both Fermi-contact operators are
included simultaneously, the picture obtained from DFPT reflects the real interaction
of the operators and no artificial symmetrization is needed.

If the total energies from both SCF calculations are written as three-dimensional
integrals, then the difference of the integrands gives the coupling energy density
eMN (CED) multiplied by a proper coefficient:

JMN ¼
Z

eðkM ; kNÞ � eðkM ;�kNÞ
2kMkN

dV ¼ �h
2p c

M
c

N

Z
eMNðrÞdV ð19:7Þ

The integral of CED over space is equal to the reduced coupling constant. Actually,
CED is also a property density in the sense used by Jameson and Buckingham [31],
though different from the coupling density of Soncini and Lazzeretti [32]. The plot
of CED can clearly show the coupling pathways. For example, Fig. 19.2 illustrates
the different mechanisms (“through-space” and “through-bond”) of 2J(P–P) in bis(-
difluorophosphino)methylamine. In this and the following plots, blue and red colors
correspond to positive and negative function values, respectively. The relative impor-
tance of different pathways may be judged by intensities and volumes. Figure 19.2
clearly demonstrates that a considerable pathway goes “through space” (the area of
the lone pairs of the phosphorus atoms), but the “through-bond” interaction is also
important. It is interesting to note that a significant amount of CED is located out-
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side the formal pathways of the interaction (mostly in the area of fluorine lone
pairs). It suggests that substitution of fluorine atoms by hydrogens or other atoms/
groups without lone pairs may change the value of the P–P coupling noticeably.

Besides CED, DFPT can provide another real-space function, the coupling defor-
mation density (CDD), as a useful tool for the interpretation of spin–spin couplings:

r
MN
ðrÞ ¼ rðkM ; kn ; rÞ � rðkM ;�kN ; rÞ

kM kN
ð19:8Þ

where r (kM, kN, r) and r (kM, –kN, r) are the electron densities for parallel and anti-
parallel orientation of nuclear spins. The topologies of CED and CDD are very simi-
lar [33]. Nevertheless, it should be noted that, in contrast to CED, the integral of
CDD over space is equal to zero (the integral of CED over space is equal to the
reduced coupling constant). As an example of CDD, the paths of the spin–spin inter-
action for 5J(H–H) in benzene are presented in Fig. 19.3. From the comparison of
Figs. 19.1 and 19.3 one can easily see that the information obtained from single and
double FPT is different and somewhat complementary. The latter shows the defined
pathways only for one particular coupling but contains no information about other
couplings.

The visualization of couplings can thus provide a picture of spin–spin interaction
without involving any molecular orbitals or other auxiliary chemical or physical con-
cepts. Furthermore, both CDD and CED allow one to perform further analysis with
decomposition of CDD or CED into individual contributions. The space within a
molecule can be divided into smaller basins according to Bader’s “atoms in mole-
cules” approach [35] or with the help of the electron localization function (ELF) [36].
The integral of CED over a basin will then give the contribution of this particular
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Figure 19.2 Visualization of 2J(P–P) coupling energy density
(CED) in bis(diflurophosphino)methylamine.



basin to the coupling constant. For example, for the trans 3J(H–H) in ethane3), the
CED contributions from the ELF basins are as follows [37]: the carbon core regions
together give about +10 Hz and the C–H bonds containing coupled hydrogens have
the largest contribution of +68 Hz, while the other four C–H bonds give only 2 Hz.
The area of the C–C bond gives a negative contribution of about –65.5 Hz.

CDD, being the difference of two electron densities, can be naturally analyzed in
terms of canonical, localized, or any other type of molecular orbitals including
NBOs and NLMOs [25]. One possibility is the least squares fit of CDD by a linear
combination of the products of pairs of the unperturbed molecular orbitals (both
occupied and vacant) that are obtained from the SCF calculation with the unper-
turbed Hamiltonian. Mathematically, this procedure is simply reduced to the fit of
the CDD density matrix by a linear combination of the density matrices correspond-
ing to the products of MOs. Interesting insights are provided by visualization of the
trans 3J(H–H) coupling in ethane (see Fig. 19.4) – an example where different MO-
based analyses lead to different conclusions, as discussed above. The origin of the
mismatch in the interpretations is quite obvious, the red lobes which lie between
C–C and C–H bonds. Different schemes of localization and analyses would assign
them to different bonds, leading to different conclusions. Our new analysis of CDD
in terms of pairs of MOs shows, however, that for qualitative interpretation of these
areas of the overall CDD picture one has to take into account not only seven bonding
and seven antibonding MOs (as one might expect for this molecule) but also seven
vacant molecular orbitals lying above the antibonding MOs [38].

19 Interpretation of Indirect Nuclear Spin–Spin Coupling Constants322

Figure 19.3 Visualization of 5J(H–H) coupling
electron deformation density (CDD) in benzene.

3) The plot of CED is not shown here but it is very
similar to the CDD picture in Fig. 19.4.



19.5
Conclusions

Many different tools for the interpretation of spin–spin coupling constants are avail-
able. Different perturbation theories used for the analysis have their advantages and
disadvantages. The interpretation is not unique and depends on the underlying con-
cepts. Recently developed approaches for the visualization of spin–spin coupling
pathways give new insight into the complex phenomenon of spin–spin coupling.
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Figure 19.4 Visualization of trans 3J(H–H) coupling electron
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20.1
Introduction

The importance of nuclear magnetic resonance (NMR) spectroscopy for studies of
paramagnetic species, particularly in biomolecules, cannot be overestimated [1–3].
Paramagnetic NMR (PNMR) spectra serve as the source of long-range structural
data (available through the pseudocontact shift dPC) [4–6] and provide a sensitive
probe of the magnitudes and signs of the spin density distributions (through the
Fermi contact shifts dFC) [7, 8]. With the continuing experimental advances in the
field of paramagnetic NMR [2, 3], its value can only increase in the future.

In the analysis of PNMR spectra, experimental chemical shift is customarily
decomposed into three parts: the “reference” (or “orbital”) shift dorb, the Fermi con-
tact shift dFC, and pseudocontact shift dPC :

d ¼ d
orb þ d

FC þ d
PC

(20.1)

The reference shift dorb is analogous to the usual NMR chemical shift in diamag-
netic systems (see Chapter 6). This term is approximately temperature-independent
and is usually taken to be equal to the chemical shift in a similar diamagnetic envi-
ronment.

The contact shift dFC arises from the Fermi contact interaction between the
nuclear magnetic moment, and the average spin density at the location of the
nucleus. In the simplest case, it is given by [9]:

d
FC ¼ Aiso

�ggbe SðSþ1Þ
gI bN

3kT
(20.2)

In Eq. (20.2), Aiso is the isotropic hyperfine coupling constant, �gg is the rotationally
averaged electronic g-value, gI is the nuclear g-value, be and bN are the Bohr and
nuclear magnetons, respectively. The multiplicity of the electronic state is given by
(2S+1), while kT represents the thermal energy.

The pseudocontact shift dPC arises due to the long-range dipolar interaction be-
tween the induced magnetic moment at the radical site, and the nuclear magnetic
moment. In the simplest form, it is given by [10]:
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d
PC ¼ b2

e SðSþ1Þ
3kT

ð3cos2 X�1Þ
R3 FðgÞ (20.3)

If the radical centre is taken at the coordinate origin, X is the angle between its
principal symmetry axis, and the direction to the nucleus of interest. The distance
between the induced magnetic moment and the nucleus is given by R. Finally, F(g)
is an algebraic function of the g-tensor components, which subsumes the relative
magnitudes of various relaxation times. In more complicated situations, the pseudo-
contact term can also exhibit T–2 temperature dependence [11, 12].

Despite the remarkable progress made in the field of the first-principles calcula-
tions of NMR parameters (See Ref. [13] and other chapters of this book), the simple,
„back of the envelope” equations (20.1)–(20.3) still form the mainstay of both the
experimental and theoretical approaches to the paramagnetic NMR shifts. (How-
ever, see Refs. [11, 12, 14–20] for some counterexamples.) This is hardly surprising,
given that the published paramagnetic NMR expressions are often geared for a spe-
cific class of radicals [12, 14–16, 20], and can be rather laborious (but enlightening)
in their practical application [14–16].

The aim of this chapter is to show that the development of the first-principles
approaches to NMR and EPR parameters (and particularly, the EPR g-tensor and
hyperfine A-tensor) has reached the stage, where completely non-empirical predic-
tion of the PNMR chemical shifts is finally becoming possible. The rest of this chap-
ter is organized as follows: Section 20.2 introduces a complete, general expression
for the paramagnetic NMR shielding and gives the recipe for practical calculations.
In Section 20.3, a special case (spatially non-degenerate Kramers doublet) is consid-
ered in more detail. Section 20.4 presents selected numerical results, while Section
20.5 provides the summary and outlines possible future developments.

20.2
Paramagnetic Shielding Tensor: The General Case Treatment

In the theoretical analysis of the open-shell NMR shielding tensor rab, it is advanta-
geous to separate the electronic Hamiltonian into four parts:

ĤH ¼ ĤH
o þ ĤH

B þ ĤH
l þ ĤH

l;B
(20.4)

The field- and nuclear spin-free part ĤHo is given by (atomic units) [21]:

ĤH
o ¼

X

j

� 1
2
r2

j �
X

j;n

Zn

j~rrj �~RRn j
þ
X

j<k

1
j~rrj �~rrk j

(20.5)

where indices j and k refer to electrons, and index n goes over the (fixed) nuclei,
with their charges given by Zn. In systems with significant spin–orbit (SO) interac-
tion, field free spin–orbit (SO) operators (Eqs. (32.6), (32.8) and (32.9) of Chapter 32)
will also appear in ĤHo.
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The operator ĤHB collects all terms linear in the magnetic field strength ~BB. At the
minimum, it will include the orbital Zeeman and electron spin Zeeman operators
[21]:

ĤH
B ¼ a

2

X

j

ð r*j � p̂pjÞ �~BBþ ge ŝsj �~BB
h i

(20.6)

Here, a is the fine structure constant (a ¼ 2be ¼ 1=c in atomic units, where c
»137.04 is the speed of light). Operators p̂pj and ŝsj refer to the momentum and spin
of an electron j, respectively. Factor ge is the free-electron g-value (ge» 2.0023). If the
SO coupling operators are included in Eq. (20.5), corresponding gauge corrections
should appear in Eq. (20.6) as well [21].

The operator ĤHl includes the terms linear in the nuclear magnetic moment
~llI ¼ gIbNÎI, where ÎI is the nuclear spin operator. At the least, the dipolar and Fermi
contact hyperfine operators should be considered [21]:

ĤH
l ¼ �a

2
ge
P

j

ŝsj �~llI

j~rrj�~RRl j3
� 3
ð̂ssj �ð~rrj�~RRlÞÞð~llI

�ð~rrj�~RRlÞÞ
j~rrj�~RRl j5

 !

þ 4pa
3

g
0P

j

ŝsj �~llI dð~rrj �~RRlÞ (20.7)

where g0 is the spin–orbit g-factor (g 0 =2ge – 2). Coordinates of the magnetic moment
~llI are given by ~RRl. Please see Ref. [21] and Chapters 29 and 30 for other relevant
contributions to this operator.

Finally, the operator ĤHl;B includes the terms bilinear in B
*

and ~ll. The minimal
treatment must include at least the nuclear Zeeman gauge (diamagnetic) correction
[21]:

ĤH
l;B ¼ a

2

2

X

j

ð~rrj � ð~rrj �~RRlÞÞð~llI �~BBÞ � ð~rrj �~llI Þðð~rrj �~RRlÞ �~BBÞ
j~rrj �~RRl j

3
(20.8)

Further, we assume that the total energies of low-lying, thermally accessible elec-
tronic states Ek are known at least through the terms linear and bilinear in B

*

and ~ll:

EkðB; lÞ ¼ E
ð0;0Þ
k þ

X

a

E
ða;0Þ
k Ba þ

X

b

E
ð0;bÞ
k l

b
þ
X

a;b

E
ða;bÞ
k Bal

b (20.9)

E
ða;0Þ
k ¼ @Ek

@Ba

� �

~ll¼~BB¼0

(20.10)

E
ð0;bÞ
k ¼ @Ek

@l
b

 !

~ll¼~BB¼0

(20.11)

E
ða;bÞ
k ¼ @

2 Ek

@Ba@l
b

 !

~ll¼~BB¼0

(20.12)

The means of calculating the derivatives (20.10)–(20.12) are discussed elsewhere [13,
22, 23]. For most systems of practical interest, the second term in Eq. (20.9) is gen-
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erally comparable to the thermal energy kT, while the third and the fourth terms are
small, compared to both kT, and the second term.

A subtle, but important point is related to the choice of the wavefunctions, used
for the evaluation of the derivatives (20.10)–(20.12). The derivatives of Ek with
respect to the “small” perturbation ~ll must be taken for the eigenstates of the Hamil-
tonian, adapted to the “large” perturbation B

*

. For example, the total energy E must
include the electronic Zeeman operators (Eq. (20.6)) variationally, but the hyperfine
terms (Eq. (20.7)) only through the first order [9]. The derivatives Eð0;bÞk are then
implicitly dependent on the direction of the (formally zero) magnetic field B

*

(See
Section 20.3 for a practical example).

Assuming that the electronic energy levels are in a thermal equilibrium, the aver-
age energy for fixed values of B and l is given by:

EðB; lÞh i ¼

P

k

EkðB; lÞe�Wk ðB;lÞ=kT

P

k

e
�Wk ðB; lÞ=kT (20.13)

Because of the different time scales of the nuclear and electron spin relaxation, the
Boltzmann energy factors Wk in Eq. (20.13) are not necessarily identical to Ek. For
the moment, it is sufficient to assume that Wk(B,l) can be expanded similarly to
Eqs. (20.9)–(20.12).

As an example, consider a system of one unpaired electron (S=1/2), and one nuclear
magnetic moment (I=1/2). The electron and nuclear spins are coupled to a heat bath,
with the relaxation times TS and TI, respectively. If TS << TI (as is usually the case), equi-
librium state populations are determined by the faster process alone [24], and Wk(B,l)
will show no dependence on the nuclear magnetic moment. In more complicated
cases, density matrix methods can be used to calculate equilibrium state popu-
lations [25]. Such simulations require detailed knowledge of the relaxation pro-
cesses in the system, and are therefore beyond the scope of this chapter.

Assuming that the equilibrium implied by Eq. (20.13) is fast on the NMR time
scale, the average components of the absolute NMR shielding tensor rab are given
by:

rab ¼
@

2

@Ba@l
b

EðB; lÞh i
 !

~ll¼~BB¼0

(20.14)
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After straightforward, but tedious algebra, this derivative is given by:1)

rab ¼ E
ða;bÞ

D E

0
(20.15a)

� 1
kT

E
ð0;bÞ

W
ða;0Þ

D E

0
(20.15b)

� 1
kT

E
ða;0Þ

W
ð0;bÞ

D E

0
(20.15c)

� 1
kT

E
ð0;0Þ

W
ða;bÞ

D E

0
� E

ð0;0Þ
D E

W
ða;bÞ

D E

0

� �
(20.15d)

þ 1
kTð Þ2 E

ð0;0Þ
W
ða;0Þ

W
ð0;bÞ

D E

0
� E

ð0;0Þ
D E

W
ða;0Þ

W
ð0;bÞ

D E

0

� �
(20.15e)

In Eq. (20.15), the averages are taken in the absence of magnetic fields:

Xh i0¼

P

k

Xk e
�W
ð0;0Þ
k =kT

P

k

e
�W
ð0;0Þ
k =kT

(20.16)

The first term (20.15a) is simply the Boltzmann average of the familiar, orbital NMR
shielding tensor. The second term (20.15b) describes the interaction of the nuclear
magnetic moment with the average spin-density, induced by the orbital- and elec-
tron spin-Zeeman interactions. The remaining three terms (20.15c)–(20.15e) arise
from the changes in the electronic state populations, induced by flipping the nuclear
spin. Under the conditions where the nuclear relaxation time is sufficiently long to
allow direct observation of the NMR transition, thermal populations of the electronic
states are determined solely by the orbital and electron spin-Zeeman interactions
[9–11], so that:

W
ð0;bÞ ¼W

ða;bÞ ¼ 0 (20.17)
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1) Formal differentiation of Eq. (20.14) leads to the following terms, in addition to the contributions
shown in Eqs. (20.15a–e):

þ 1
kT

Wða;0Þ
D E

0
Eð0;bÞ
D E

0
þ 1

kT
W ð0;bÞ
D E

0
Eða;0Þ
D E

0

� 1

kTð Þ2
W ða;0Þ
D E

0
Eð0;0ÞWð0;bÞ
D E

0
� 1

kTð Þ2
Wð0;bÞ
D E

0
Eð0;0ÞWða;0Þ
D E

0

þ 2

kTð Þ2
Eð0;0Þ
D E

0
W ða;0Þ
D E

0
W ð0;bÞ
D E

0

Symmetry with respect to time reversal guarantees that all states contributing to Eq. (20.16) are either:
a) unchanged by the magnetic field to the first order; or b) appear in pairs, which are degenerate at the
zero magnetic field. In the presence of the field, the energies of the latter (Kramers) pairs are shifted by
equal amount, and in the opposite direction. As a result, the averages Eða;0Þ

� �
0, W ða;0Þ� �

0, and
Eð0;0ÞW ða;0Þ� �

0 must vanish, so that the terms above do not contribute to the final Eq. (20.15).



Finally, if the electron spin relaxation is faster than any spatial reorientation process
(the so-called „solid state case” [9, 11]), derivatives of the Boltzmann energy factors
and the electronic energy with respect to the external field strength coincide:

W
ða;0Þ ¼ E

ða;0Þ
(20.18)

Substituting Eqs. (20.17) and (20.18) into Eq. (20.15), we obtain the working equa-
tion for the paramagnetic shielding tensor:

rab ¼ E
ða;bÞ

D E

0
� 1

kT
E
ð0;bÞ

E
ða;0Þ

D E

0
(20.19)

In Eq. (20.19), the second term is equivalent to the general-case expression of Kur-
land and McGarvey [11]. The first term is the generalization of the orbital contribu-
tion of Rinkevicius et al. [20]. To the best of our knowledge, Eq. (20.19) represents
the first complete, universal treatment of the paramagnetic shielding tensor.

Practical calculations of the paramagnetic shielding tensor can proceed as follows:
First, energies and wavefunctions for all thermally accessible electronic states must
be determined, in the absence of magnetic fields. For each of the states,2) the orbital
NMR shielding tensor defines Eða;bÞk . The EPR g-tensor determines Eða;0Þk , while the
hyperfine A-tensor leads to Eð0;bÞk . The Boltzmann averages in Eq. (20.19) then fully
determine the paramagnetic NMR shielding tensor. Obviously, each of the ingredi-
ents in Eq. (20.19) can be treated independently, using the most suitable theoretical
technique. A similar prescription was previously given by Lohr, Miller, and Sharp
[16], within the ligand field theory.

20.3
Paramagnetic Shielding for an Isolated Kramers Doublet State

A doubly degenerate electronic ground state (S=1/2), with no thermally accessible
electronically excited states, represents the simplest possible case for calculations of
paramagnetic NMR shieldings. The structure of the energy levels for such system
can be summarized by an effective spin Hamiltonian (see Chapter 4):

ĤH ¼ �~BB � ð1� r
orbÞ �~llI þ be

~BB � g � ŜSþ 1
gI bN

~llI � A � ŜS (20.20)

The orbital nuclear shielding tensor rorb, electronic paramagnetic resonance g-ten-
sor, and the hyperfine coupling tensor A are discussed elsewhere in this book.

In the absence of nuclear magnetic moment (~llI=0 in Eq. (20.20)), the energy lev-
els of this Hamiltonian are given by Eq. 32.2 in Chapter 32. Differentiation with
respect to the magnetic field strength gives:
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2) For high-spin states with significant (compared to kT) zero-field splitting (ZFS), each degenerate
subset has to be treated separately. For example, a triplet state can be treated as a combination of an
effective doublet and an effective singlet (see Ref. 26).



E
ða;0Þ
m ¼ mbeðg

2
ax þ g

2
ay þ g

2
azÞ1=2

(20.21)

In Eq. (20.21), the magnetic quantum number m can take values of –1/2, while a
specifies the direction of the external magnetic field (a=x, y, z).

The corresponding eigenvectors, for magnetic field applied in the direction
~nn (~nn = ~BB=jBj), can be obtained by diagonalizing the Hamiltonian matrix in the basis
of the electronic a, b-spin functions. The resulting eigenvectors are given by [21]:

Uð~nnÞ ¼ Uþ1=2 ;U�1=2

� �
¼ cosj �sinj � e�iv

sinj � eiv
cosj

 !
(20.22)

where the angles j and v are defined as [21]:

j ¼ 1
2

atan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

xþG2
y

p

Gz

 !
(20.23)

v ¼ atan
Gy

Gx

� �
(20.24)

Gc ¼ ð~nn � gÞc , c = x, y, z (20.25)

The hyperfine contribution to the effective spin Hamiltonian, for nuclear magnetic
moment oriented along the direction ~ff (~ff= ~llI=jlIj) in the same a, b basis is given
by:

ĤHhf ¼
l

I

2gI bN

Az Ax � iAy

Ax þ iAy Az

� �
(20.26)

Ac ¼ ð~ff � AÞc , c = x, y, z (20.27)

Taking the expectation value of ĤHhf for the eigenfunctions of the g-only Hamiltonian
(Eq. (20.22)), and differentiating with respect to the nuclear magnetic moment, we
obtain the first-order hyperfine contributions as:

E 0;bð Þ
m
¼ m

g
I
b

N

ðA
bx

g
ax
þA

by
g

ay
þA

bz
g

az
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

ax
þg2

ay
þg2

az

p (20.28)

In Eq. (20.28), the external magnetic field is taken along axis a (a = x, y, z), thus
defining the composition of the electronic eigenfunctions (Eq. (20.21)).

The final ingredient, required to evaluate the averages in Eq. (20.19), is the mixed
derivative with respect to the magnetic field strength ~BB and nuclear magnetic
moment ~llI . This is given simply by:

E
ða;bÞ
m ¼ r

orb
ab (20.29)
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(We exclude the nuclear Zeeman contribution �~llI �~BB, to be consistent with the defi-
nition of Eq. (20.6)). Both m =1/2 and m = -1/2 states will lead to the same Eða;bÞ

derivative.
In the absence of magnetic fields, the m = –1/2 levels are exactly degenerate and

must be taken with the same weight. Combining all contributions (Eqs. (20.21),
(20.28) and (20.29), we finally obtain:

r ¼ r
orb � be

4kTgI bN

g � AT
(20.30)

where the superscript T denotes a matrix transpose. It is often useful to consider the
isotropic and traceless parts of the g and A tensors separately:

giso ¼
1
3

TrðgÞ (20.31)

~gg ¼ g� giso 1 (20.32)

Aiso ¼
1
3

TrðAÞ (20.33)

Adip ¼ A� Aiso 1 (20.34)

In this case, the PNMR shielding tensor is given by:

r ¼ r
orb � be

4kTgI bN

giso Aiso 1þ Aiso ~ggþ giso A
T
dip þ ~gg � AT

dip

� �
(20.35)

The first term in brackets is identical to the McConnell�s contact shift (Eq. (20.2)).
The next contribution represents the anisotropic part of the contact shift (already
pointed out by McGarvey [14]). Both this and the third term (gisoAT

dip) are traceless.
Finally, the ~gg � AT

dip contribution arises due to the interaction between the anisotropic
parts of the g and A tensors and can contain an isotropic part, the pseudocontact
shift.

The isotropic PNMR shielding takes a particularly simple form in the coordinate
system where g is diagonal, with the principal components given by g1, g2 and g3:

riso ¼ r
orb
iso �

be

4kTgI bN

giso Aiso �
be

12kTgI bN

g1Adip;11 þ g2 Adip;22 þ g3 Adip;33

� �
(20.36)

where the first, second, and third terms represent the orbital, Fermi contact, and
pseudocontact contributions. In Eq. (20.36), the traceless hyperfine tensor Adip must
be taken in the coordinate system diagonalizing the g-tensor, so that the diagonal
components Adip;ii may not coincide with the principal components of the Adip ten-
sor.
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20.4
Practical Applications

Due to the complexity of the PNMR shielding tensor, most practical calculations of
this property, traditionally rely on semi-quantitative approaches such as the ligand
field theory [12, 14–16, 27, 28]. Such calculations give a minute understanding of
the electronic structure [16], but require adjustable empirical parameters to repro-
duce the experimental results. Very recently, the first fully non-empirical calcula-
tions of the PNMR chemical shifts have been reported [17–20]. We will restrict our-
selves just to these, first-principles techniques.

The implementation of Rinkevicius et al. [20] includes the rorb
iso , gisoAiso, and gisoAdip

terms of Eq. (20.35). Moreover, it assumes that the deviation of the molecular g-
value giso, from the free-electron g-factor ge, is negligible. The orbital contribution
rorb

iso is treated at the ROHF, MCSCF (implemented in DALTON [29]), and DFT
(implemented in deMon-NMR [22, 30, 31]) levels. In the approach of Moon et al.
[18, 19], all terms in Eq. (20.35) are considered. The orbital contribution is approxi-
mated at the DFT level, by quasi closed-shell NMR chemical shifts in a fictitious
system, with half of an electron of a- and b-spin assigned to the SOMO. Calculation
of NMR shielding tensors in such systems was previously implemented by Schreck-
enbach and Ziegler [32] in ADF [33]. The g-tensors, required for calculation of the
pseudocontact term, are obtained with ADF [33] or deMon-EPR [31] codes. In both
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Figure 20.1 Correlation between the experi-
mental and calculated paramagnetic 13C NMR
chemical shifts in substituted nitroxide radi-
cals. Orbital and contact contributions were

calculated using P86 [35,36] and B3LYP [37]
exchange-correlation functionals (“P86m”)
respectively. Experimental and theoretical
results are taken from Ref. [20].



Rinkevicius� and Moon�s approaches, the hyperfine tensors can be calculated using
any available implementation, such as Gaussian [34], DALTON [29], deMon [22, 30,
31], or ADF [33].

The quality of DFT calculations of the 13C PNMR chemical shifts is illustrated in
Fig. 20.1, which is based on the results of Rinkevicius et al. [20] for simple nitroxide
radicals. For 13C chemical shifts, the root mean square error (RMSE) is 71.8 ppm, or
2.9% of the experimental range. The linear correlation slope is 0.893, with the inter-
cept (at d(13C) = 0 ppm) of –28.3 ppm. Given that neither the solvent effects, nor
thermal vibrational motion are treated [20], this should be considered an excellent
agreement with experiment.

For 1H PNMR chemical shifts (Fig. 20.2), one calculated value (for 2-CH3 of the
“N6” radical) shows a significant deviation from experiment (“P86m”: –329 ppm;
expt.: –231 ppm [20]). If this outlier is excluded from statistics, the 1H results are
also in good agreement with experiment (RMSE 1.6 ppm; RMSE/range 5.3%; slope
0.968; intercept 5.1 ppm). The anomalous results for the 2-CH3 protons are accom-
panied by strong dependence on the choice of the XC functional [20]. The latter
often indicates a small HOMO–LUMO gap; the situation notoriously difficult for
the prediction of magnetic properties in DFT.

We illustrate the relative importance of the different contributions to the PNMR
chemical shieldings using an example of 2-methylphenyl-tert-butylnitroxide
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Figure 20.2 Correlation between the experimental and calcu-
lated paramagnetic NMR chemical shifts for 1H nuclei in substi-
tuted nitroxide radicals. See Fig. 20.1 for details. Chemical shift
of 2-CH3 in “N6” is not shown (see text).



(MPBN). In this radical, the Fermi contact term dominates 1H chemical shifts, and
determines all qualitative trends (Tab. 20.1). The orbital contribution dorbis small,
but not negligible ( dorb

.
dFC








 � 15 %). This term clearly brings the calculated val-

ues into a better numerical agreement with experiment. At the same time, it should
be emphasized that the calculated orbital shifts are essentially identical to the NMR
chemical shifts in similar, closed-shell environments. For example, experimental
NMR chemical shifts of the aromatic hydrogens in aniline are in the range 6.7 to
7.2 ppm [39]. Calculated orbital contributions to the aromatic protons of MPBN are
between 7.4 and 7.5 ppm. Similar results are seen for the 2-Me protons (2.4 ppm in
toluene [39] vs. 2.5 ppm MPBN) and tert-butyl protons (0.9 ppm in neopentane [38]
vs. 1.9 ppm in MPBN).

Finally, the pseudocontact shifts dPC are negligible in MPBN, and contribute less
than 0.1 ppm to any of the 1H shifts in Table 20.1. This is not surprising, given the
small anisotropy of the g-tensor (g11 = 2.002, g22 = 2.008, g33 = 2.013) calculated for
this radical. The pseudocontact contribution will become more important in transi-
tion metal complexes, which commonly exhibit anisotropic g-tensors. The presence
of the occupied p and d orbitals at the NMR nucleus will also increase the dPC term,
through a larger Adip contribution.

The final practical point, which we would like to address, is the pronounced sensi-
tivity of the PNMR chemical shifts to structural changes. The dependence of the
calculated isotropic 1H chemical shifts in MPBN on the orientation of the tert-
BuN(O)- substituent is shown in the top panel of Fig. 20.3. When the radical centre
is coplanar with the benzene ring (u = 0�), the spin density is delocalized to the aro-
matic system, leading to large contact shifts on the ortho- and para-hydrogens. The
methyl substituent (2-Me) is also strongly affected through hyperconjugation with
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Table 20.1 Calculated paramagnetic NMR chemical shifts relative to TMS (at 295 K, in ppm) of
2-methylphenyl-tert-butylnitroxide radical, in comparison with experiment.a

DFT(BP86)

dorb dFC dPC dtotal

Expt.b

d

t-bu-H 1.87 –14.26 –0.02 –12.41 –16.70
2-CH3 2.46 22.72 0.08 25.26 19.14
3-H 7.55 51.14 0.01 58.70 52.44
4-H 7.36 –64.83 –0.01 –57.48 –23.44
5-H 7.38 53.19 0.00 60.57 60.02
6-H 7.46 –79.88 –0.04 –72.46 –55.45

a Paramagnetic NMR chemical shifts were calculated using Eq.
(20.35), with TMS taken as a reference (rref =32.04 ppm). Orbital
contributions were determined with the ADF program [33], using
an all-electron Slater-type basis set of TZP quality. Hyperfine and g
tensors were calculated with the deMon program [22, 30, 31], using
IGLO-III basis set [38]. Geometry was optimized at the B3LYP/6-
311G(d,p) level, using Gaussian98 [34]. Further details are available
elsewhere [18].

b Experimental results (CCl4 solution) cited from Ref. [40].



the aromatic system. Once the conjugation between the N(O) and the benzene p-
system ring is interrupted (u = 90�), the magnitude of the contact shifts decreases.
Given the soft potential energy surface for the u rotation (see the lower panel of Fig.
20.3), thermal motion effects will be significant for this radical and may lead to a
deviation from the T–1 Curie law dependence of the paramagnetic chemical shifts.
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Figure 20.3 Structural dependence of the isotropic PNMR
chemical shifts in 2-methylphenyl-tert-butylnitroxide (MPBN)
radical, on the relative orientation of the tert-BuNO substituent
and benzene ring. Parameter u is the dihedral angle ONC1C2.
Computational details are given in Table 20.1.



20.5
Conclusions

Unlike the closed-shell NMR shielding tensor, and many other NMR and EPR pa-
rameters, paramagnetic NMR shielding is an intrinsically statistical property,
defined only as an ensemble average. Calculations of the PNMR shielding therefore
require knowledge of magnetic parameters for thermally accessible excited states. In
this chapter, we derive the first complete, general expression for the shielding tensor
in open-shell species. The treatment considers all relevant contributions linear and
bilinear in the external magnetic field and nuclear spin. Calculated values can there-
fore be compared directly to experiment.

In diamagnetic compounds, our expression reduces to the “standard” closed-shell
NMR shielding tensor. For paramagnetic species, knowledge of the state energies in
the absence of the field, together with the per-state orbital shieldings, hyperfine ten-
sors, and EPR g-tensors, is sufficient to determine the paramagnetic shifts in the
limit of fast electron spin relaxation. The theory takes a particularly simple form for
an isolated Kramers doublet state, with no thermally accessible excited states. In the
latter case, first-principles calculations show excellent agreement with experiment
[20].

Paramagnetic NMR shifts can exhibit a strong dependence on structural parame-
ters and so can be sensitive to thermal motion. Combined with the intrinsic temper-
ature dependence of the PNMR shielding, this may complicate separation of the or-
bital and contact terms from temperature-dependent experimental spectra. Unravel-
ing the individual contributions in such systems, required for determination of the
electronic and molecular structure, may be simply impossible without theoretical
input.

It is clear that the field of first-principles calculations of NMR chemical shifts in
open-shell systems is only in its infancy. Nonetheless, all the ingredients required
for accurate simulations of this property are already in place, and will lead to excit-
ing new applications.
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21.1
Introduction

The appearance of the one-dimensional proton NMR spectrum of an organic mole-
cule is dominated by two key parameters, the chemical shifts (which determine the
positions of the resonance lines) and the splittings of those lines caused by spin–
spin interactions. Studies on biomolecules typically use multidimensional tech-
niques and isotopic labeling to resolve and identify the large number of peaks pres-
ent in the spectrum, but an understanding of how structure influences shifts and
coupling constants is still of considerable importance in extracting information
from NMR spectra. Since these two parameters depend upon electronic structure, it
is appropriate to consider them in a book on the relationships between quantum
chemistry and NMR.

In practice, however, quantum chemistry techniques are almost always applied to
fragments of proteins and nucleic acids, and not to the macromolecules themselves,
which in any event are studied in condensed phases whose effects are difficult to
include in quantum chemistry calculations. Indirect spin–spin couplings are often
mainly influenced by the local chemical structure, so that results on fragments can
be applied directly to larger systems. This is much less true for chemical shifts,
which often have significant contributions from longer-range interactions. For this
reason, a common intermediate step is often used, in which quantum results on
peptide or nucleotide fragments are fit to empirical models, and the latter are then
applied to systems of more direct biological interest [1, 2].

Another feature that characterizes studies of chemical shifts in biomolecules is
that the local chemical environments are quite limited; for example, there are just
20 amino acids, whose characteristic shifts (as measured in short peptides) are well
known [3]. Hence, the primary focus is generally on the effects of rotations about
carbon–carbon single bonds, and on contributions from the more distant chemical
environment. This often means that one can use smaller basis sets than would gen-
erally be required for studies of more diverse chemical species [4], and that an
understanding of non-covalent interactions (such as hydrogen-bond effects) will be
an important component of such studies.
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It is clearly not possible in a short article to provide any comprehensive account
of calculations of NMR parameters of biomolecules. Instead, I shall try to provide a
flavor of some approaches that appear promising for understanding the relationship
between molecular structure and chemical shifts and spin–spin couplings. The
quantum chemistry calculations cited here use the DFT model; this is often the only
practical scheme for large fragments, but appears to give results of useful accuracy
in many cases, at least when large basis sets are used.

21.2
Chemical Shifts, Classical Models

21.2.1
Group Susceptibility Effects

The most common model describing long-range effects on chemical shifts considers
the case of remote functional groups with significant magnetic susceptibilities, gen-
erally characterized by “group susceptibilities.” The interaction of these groups with
the static spectrometer field induces local currents which, in turn, lead to local mag-
netic fields at probe nuclei in the vicinity of the functional group. This general
model describes ring current shifts, pseudocontact shifts in paramagnetic systems,
and a variety of other phenomena. The “McConnell equation” [5], gives the contribu-
tion to the shielding tensor arising from induced currents in a remote chemical
group with magnetic susceptibility v:

r ¼ v

r
3 �

3vðrr
TÞ

r
5 ð21:1Þ

Here r is the vector from the center of the remote group to the probe nucleus,
and rrT is the outer product of r with itself. (See Ref. [6] for a discussion of units and
conversion between the SI and cgs systems.)

Eq. (21.1) has most often been used to compute contributions to isotropic shifts,
which are –1/3 the trace of r. It is straightforward to show that the isotropic shift
arises only from anisotropies in susceptibility tensors. For the case of an axially sym-
metric magnetic anisotropy, this becomes

d ¼ ð1=3Þr�3
Dvð3 cos

2
h� 1Þ ð21:2Þ

where h is the angle between the vector r and the unique axis, and Dv is the differ-
ence between magnetic susceptibilities along the unique axis and perpendicular to
it. Hence the contribution to the isotropic shift vanishes when the susceptibility is
isotropic, i.e. when Dv= 0. The use of this model to interpret chemical shift tensors
is discussed elsewhere [6].

Semiempirical theories have been used for many years to generate atom- or
group-based models for molecular magnetic susceptibilities [7]. More recently,
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renewed attention has been paid to the ability of ab initio calculations to compute
accurate susceptibility tensors. The Hartree–Fock limit (at least for hydrocarbons)
can be reached with relatively small basis sets [8, 9], and correlation effects appear to
be modest, tending to reduce Hartree–Fock values by 2–10% [10]. There is a long
history, which I do not have space to review here, of attempts to fit group suscepti-
bility tensors or ring-current “intensities” to observed shift data [11–14]. Calibration
against quantum mechanical calculations can be done in a manner analogous to
that commonly used to model charge distributions: parameters in group susceptibil-
ity models are determined by fits to grids of points surrounding the molecule [15].

Unpaired electrons, especially at transition metal sites, often make dominant con-
tributions to magnetic susceptibilities. The contribution of this susceptibility to iso-
tropic chemical shifts, is called the pseudo-contact term, and it can lead to large
shifts if the unpaired electron distribution is especially anisotropic. This effect has
been extensively studied in a variety of metalloproteins, and structure refinement
methods have been developed to fit calculated and observed pseudocontact shifts
[16]. The contribution of paramagnetic metal sites to chemical shift anisotropies
also follows Eq. (21.1), and this has proved fruitful in extracting long-range
geometric constraints for proteins [6, 17]. See also Chapter 20 by Moon and
Patchkovskii.

21.2.2
Electric Field Effects

The susceptibility effect described above is “direct“, in the sense that currents
induced in neighboring groups give rise to secondary magnetic fields that contribute
directly to the observed shielding at probe nuclei. A significant but more indirect
contribution to chemical shifts arises from distant polar groups, which polarize the
electron cloud around the probe nucleus and thereby increase or decrease the local
shielding by electrons. The most significant term for protons is expected to be pro-
portional to the projection of the local electric field onto the X–H bond vector, where
X is the atom connected to H. The isotropic shift due to polarization effects is gen-
erally written as an expansion in the field strength:

dpol ¼ AðE � r̂rÞ þ BE
2 ð21:3Þ

where E is the electric field, r̂r is a unit vector along the bond direction, and A and B
are proportionality constants specific to the X–H bond. Basically, fields that push
electrons away from the H atom towards X (which have a positive projection on the
X–H bond in the convention used here) will reduce the electron density near the H
nucleus, tending to deshield it.

Modern quantum mechanical methods can be used to estimate the derivative of
the proton shielding with respect to an external electric field. These calculations sug-
gest a value of A close to 20 ppm �2 e–1 [15, 18–20]. For protons in methane, B has
been estimated at –0.3 to –0.4 � 10–18 e.s.u–2 via shielding hyperpolarizability calcula-
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tions [18, 21]. In most circumstances, estimated contributions from the second term
in Eq. (21.3) are quite small compared to the first term.

Electric field effects on 13C or 15N are undoubtedly more complex to unravel, not
least since these atoms are involved in more than one bond, so that a model of bond
polarization is more difficult to apply. Furthermore, multi-configuration SCF results
indicate that correlation effects can be quite important for 13C, changing the shield-
ing polarizabilities in methane, for example, by nearly a factor of two, compared to
Hartree–Fock results [20]. This is in contrast to proton results, which show only
small effects of correlation, and may make it more difficult to calibrate empirical
theories against quantum calculations for these heavier nuclei. An empirical bond
polarization model [22] gives a good account of many features of 13C tensors in a
variety of environments, and further work along these lines seems promising.

21.2.3
Close Contact and Solvent Effects

The study of close contact contributions to chemical shifts has a long and somewhat
confusing history. At close proximity, London forces due to correlations of fluctuat-
ing dipoles can induce a buildup of electron density between molecules. The resul-
tant loss of electron density near the nuclei is expected to decrease chemical shield-
ing, by an amount that would be proportional to the mean square of the electric
field, as in Eq. (21.3) [21, 23]. It is likely, however, that close-contact de-shielding
effects also arise from exchange-repulsion effects that result from the electron reor-
ganization required when the electron clouds of neighboring atoms begin to over-
lap. This can have a steep distance dependence that may be difficult to distinguish
from the r–6 behavior predicted for dispersion. The general deshielding effect for
protons has been fit to this sort of functional form for isotropic shifts computed for
rare gas interactions with methane and N-Methylacetamide (NMA), and for a variety
of small peptide models [1].
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Realistic models for interactions in biomolecules involve a combination of suscep-
tibility, bond polarization and close contact interactions. Figure 21.1 illustrates the
application of all three terms discussed above to the amide proton shielding in an
NMA dimer making a linear C = O_H–N hydrogen bond [6]. The solid lines show
results from an empirical model based on shielding anisotropy, electric field, and
close contact effects; squares and circles show results from DFT calculations. Al-
though this is a very simple example of conformational analysis, we have shown
elsewhere that similar models work for a variety of peptides [1], and these general
ideas undergird many attempts to explain and predict shifts in biomolecules [2, 4,
24].

21.3
Chemical Shifts Calculations on Polypeptides and Proteins

Although the general subject has a long history, the use of quantum chemical calcu-
lations to interpret shifts in proteins really accelerated in the 1990s, with the devel-
opment of efficient means of using gauge-including orbitals [25, 26], and the devel-
opment of generalized-gradient DFT functionals. The group led by Oldfield was a
leader in this “modern” era, showing how good results could be obtained from anal-
ysis of fragments of crystal structures [27–34], an idea that has been taken up by
others [35]. Other groups have concentrated on studies of peptides, both as a func-
tion of the nature of the side chain and as a function of conformational parameters
[1, 2, 4, 36–38]. Scaling these ideas up to full proteins is an active area of research;
current models to predict shifts from structure capture much of the observed disper-
sion in proteins, but are far from accurate enough to be useful in assignment or
even for most structural interpretations. A key current goal is to gain a better under-
standing of the effects of hydrogen bonding (and of other close contact interactions)
on heavy atom (13C and 15N) shifts.

Interpreting chemical shift tensors in biomolecules (for example, by studying
chemical shift anisotropy (CSA) relaxation) can also be a difficult task since the mag-
nitudes and orientations of the shielding tensors are generally not known and since
CSA relaxation competes with dipolar relaxation. Several groups have extracted
CSA-related information for amide groups in proteins in liquids, both for 15N [35,
39–44] and for protons [40, 45, 46]. The proton CSA appears to vary in a predictable
way with hydrogen bond strength [6, 46, 47]. A key point that is not yet fully resolved
is the extent to which the 15N CSA in amides varies from one residue to another.
The origins of this variability (as with the isotropic 15N shift itself) have so far eluded
generally applicable structural interpretations [35].

Carbon CSA effects are also receiving increasing attention in protein NMR.
Experiments analogous to those described above for the amide N–H spin pair can
also be used to probe CSA-dipolar cross-correlated relaxation along the Ca–Ha bond
[48], or along Ca–C¢ or H–C¢, where C¢ is the carbonyl carbon [49–51]. The Ca aniso-
tropy probed by these experiments appears to be related to backbone torsional
angles in a straightforward fashion that could be used for structure determination
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or refinement [6]. Since the orientation of the carbonyl carbon shielding tensor is
closely related to the direction of the C=O bond vector, it can provide information
about the structure and dynamics of the peptide plane which can be difficult to
obtain by other means [52, 53].

21.4
Chemical Shifts in Nucleic Acids

There have been fewer quantum chemical studies of shifts in nucleic acid fragments
than in proteins, but this is likely to change as increased attention is paid to NMR
studies of DNA and RNA and their complexes with proteins. The high charge den-
sity in nucleic acids makes it likely that careful attention to electrostatic effects
(including solvent screening) will be required, and not just for 31P shifts that are
part of the formally-charged phosphate groups. This means that the conventional,
gas-phase fragment approach that has proven so useful for peptides will probably
have to be augmented by models that explicitly or implicitly take into account the
effects of solvation and counterions. This may delay the application of quantum
chemistry to these problems, but by no means represents an insuperable barrier.

Here we consider just a single example of how quantum calculations can yield
insight into the relation between shifts and conformation. Figure 21.2 summarizes
some recent computational results on a deoxythymidine model system [54]. Here
the base is in the anti position, and the anisotropy of two of the sugar carbons is
plotted against the pseudorotation phase. It is noteworthy that the C1¢ and C3¢ val-
ues clearly discriminate between N and S sugars (with P near 0� and 180�, respec-
tively). The difference between these conformers is about 30 ppm, which is about
3–4 times larger than the changes seen in the isotropic shifts. These large predicted

variations have been confirmed in subsequent experiments [55].
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21.5
Indirect Spin–Spin Couplings in Biomolecules

21.5.1
Dependence of Three-Bond Couplings on Torsion Angles

The “classic” application of coupling constants to conformation analysis uses three-
bond coupling constants to infer information about the magnitude of the torsion
angle that connects the two spins whose coupling is being monitored. The basic
model for how these couplings should depend upon the intervening torsion was
first worked out for proton–proton couplings about 40 years ago [56], and much has
been learned from empirical modeling [57], but accurate quantum chemistry calcu-
lations are still very valuable, particularly in situations where it is difficult to prepare
good model complexes for calibration.

Figure 21.3 shows a recent comparison between DFT results and empirical mod-
els for the six three-bond couplings that traverse the u backbone dihedral in pep-
tides. Just a few years ago, similar calculations gave very poor agreement with
experiment [58], but more recent approaches that use gauge-including orbitals, den-
sity functional theory, and larger basis sets have yielded excellent results, often as
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good as or better than can be achieved with empirical fits. Among the many similar
studies that could be cited, two recent analyses have yielded some surprising (yet
experimentally verified) results for couplings about the glycosidic torsion in DNA
[59], and about the Ca–Cb bond in peptides [60].

21.5.2
One-Bond Couplings

Recent experimental studies have also focused on the conformational dependence
of one-bond spin–spin couplings. Traditionally, one-bond coupling constants have
not been extensively studied in proteins, but this is now changing with the develop-
ment of methods that produce a partial orientation of macromolecular systems [61].
In partially oriented systems, there are both direct and indirect contributions to the
observed spin–spin couplings, and a measurement of the indirect contribution
(usually under isotropic conditions) is required to extract the direct contribution by
difference. Any local structural information that can be extracted from the indirect
contribution would further increase the usefulness of these sorts of measurements.

A potentially important source of information about protein backbone conforma-
tions comes from one-bond Ca–Ha and Ca–Cb couplings [53, 62, 63]. These appear
to be most sensitive to the w backbone angle, with the Ca–Ha coupling being largest
near w= –60� and the Ca–Cb coupling being large near w= +60�. These conforma-
tions are those where the Ca–Ha or Ca–Cb (respectively) are syn to the adjacent C=O
bond [53]. In aR regions, where both u and w are positive, the Ca–Ha coupling is
especially small, offering a useful way to observe this unusual conformation.

21.5.3
Couplings Across Hydrogen Bonds

Finally, it has recently been demonstrated that measurable spin–spin couplings can
be observed for spins connected by hydrogen bonds as well as by covalent interac-
tions. For peptides and proteins, the values which can potentially be measured are
2hJ(C¢–H) and 3hJ(C¢–N), where the “h” in the superscript indicates that one of the
two or three bonds connected the nuclei is a hydrogen bond [65]. Although these
couplings are rather small, they can provide key information, indicating not only the
presence of a hydrogen bond (which might otherwise be inferred from chemical
shift patterns) but also direct evidence about the partners involved in it, and in favor-
able cases, information about bond lengths as well [66]. Quantum calculations
appear to be in generally good agreement with experiment, and indicate how the
hydrogen bond angle as well as its length should influence the observed couplings
[67, 68]. For example, Fig. 21.4 shows DFT results for the N-methylacetamide dimer
as a function of H-bond distance. These indicate, somewhat surprisingly, that the
2hJ(C¢–H) and 3hJ(C¢–N) couplings should have (accidentally) about the same magni-
tude, and this prediction has subsequently been confirmed experimentally [69].

For nucleic acids, observations of internucleotide couplings can be used to
securely identify hydrogen-bonded partners, which can be particularly important for
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non-canonical patterns [65]. As in proteins, the general nature of the results appears
to be in accord with results from density functional calculations [70, 71], a feature
which may be of use in developing more elaborate interpretations of this sort of
data. A surprising result is that the 2hJ(N,N) coupling is larger than 1hJ(N,H), even
though the proton is a much more sensitive nucleus than 15N. This can be rationa-
lized in terms of a near cancellation in 1hJ(N,H) of two larger contributions of oppo-
site sign, one arising from polarization of the N–H r bond and the other from N
lone pair to NH r* delocalization [72]. It seems likely that a more quantitative inter-
pretation of these couplings (along with chemical shift trends) will be useful in char-
acterizing the strength and directionality, as well as the existence, of these interest-
ing hydrogen bonds. More insight into trans-H-bond couplings can be found in
Chapter 22 by Del Bene.

21.6
Conclusions

This chapter could only touch the surface of this subject, and many interesting
investigations have been passed over. This reflects to some extent a vibrant and
active field. Although one always needs to carefully examine the accuracy and preci-
sion of quantum chemical calculations, it appears that many aspects of the confor-
mational and environment dependence of shifts and spin–spin couplings are mod-
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eled to useful accuracy by (large basis set) DFT calculations. As computer power
increases, this opens the way for studies of molecular fragments that are increas-
ingly realistic surrogates for biomolecules.
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22.1
Introduction

Studies of the hydrogen bond have a long history, with the publication of the classic
book “The Hydrogen Bond” by Pimentel and McClellan [1] signaling the beginning
of an era of intense experimental research on this subject. However, it was not until
the late sixties and early seventies that ab initio quantum chemical studies of hydro-
gen-bonded complexes were carried out in an effort to determine the structures and
binding energies of these complexes from first-principles calculations. During the
last 30 years of the twentieth century, developments in computational algorithms
and their implementation in software packages, the advent of more powerful com-
puting machines, and methodological improvements have had a dramatic impact
on ab initio computational quantum chemistry. Computed structures, binding ener-
gies, and infrared (IR) vibrational spectral data, obtained at sophisticated levels of
theory, have achieved an accuracy which makes them complementary to experimen-
tal data, and gives them predictive value in those cases for which experimental data
are not available. Studies of hydrogen-bonded complexes carried out at these levels
have led to a better understanding of the fundamental nature of the hydrogen bond.

In contrast, it was not until the last decade of the twentieth century that the first
experimental measurements of NMR two-bond spin–spin coupling constants across
hydrogen bonds were made. In a landmark paper [2], Dingley and Grzesiek reported
two-bond 15N–15N spin–spin coupling constants across N–H...N hydrogen bonds in
AU and GC pairs. This paper generated a great deal of interest and excitement in
the chemical and biochemical communities, since it was suggested that such mea-
surements might provide structural information about hydrogen-bonded complexes
in solution. Subsequently, other experimental measurements of two-bond spin–spin
coupling constants in hydrogen-bonded complexes have been made, and these are
summarized in recent review articles by Elguero and Alkorta [3], and by Grzesiek,
Cordier, and Dingley [4].

Just as there had been no experimental measurements of two-bond spin–spin
coupling constants across hydrogen bonds until the end of the twentieth century,
there were also no published ab initio calculations on this subject until that time. It
would not be unreasonable to state that just a few years prior to the end of the cen-
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tury, the data base of knowledge related to spin–spin coupling constants for a pair of
hydrogen-bonded atoms based upon fundamental theoretical studies was compar-
able to the data base of knowledge of the structures, binding energies, and vibra-
tional spectra of such complexes based on ab initio calculations in the early 1970s.
Hence, investigations of two-bond spin–spin coupling constants across hydrogen
bonds are a new and exciting area of experimental and theoretical research. From a
computational viewpoint, there are many questions about spin–spin coupling con-
stants across hydrogen bonds that need to be addressed at a level of theory capable
of providing reliable answers. Among these questions are the following.

1. What is the relative importance of the paramagnetic spin–orbit, diamagnetic
spin–orbit, Fermi-contact, and spin–dipole contributions to the total coupling
constant?

2. How do spin–spin coupling constants vary with the nature of the atoms X
and Y, and the hybridization and bonding of these atoms?

3. To what extent do spin–spin coupling constants depend on the structure of
the hydrogen-bonded complex, particularly on the X–Y distance and the ori-
entation of the hydrogen-bonded pair?

4. What is the dependence of the coupling constant on hydrogen bond type and
on the charge on the complex?

5. What can spin–spin coupling constants reveal about the nature of the hydro-
gen bond?

This chapter contains a summary of the results of ab initio calculations carried out
in this laboratory to determine 13C–15N, 15N–15N, and 19F–15N spin–spin coupling
constants across C–H–N, N–H–N, and F–H–N hydrogen bonds, respectively, in
both neutral and charged complexes. It is hoped that these results may provide
some insights into the answers to the questions raised above.

22.2
Methods

Recent computational studies of spin–spin coupling constants across hydrogen
bonds have been carried out using both DFT and ab initio methods. A review of
these calculations has been given by Elguero and Alkorta [3], so the reader is
referred to that paper for details. In this chapter the focus will be on studies carried
out in this laboratory, using equation-of-motion coupled-cluster singles and doubles
theory (EOM-CCSD).

The first step is to determine the optimized structures of the complexes at sec-
ond-order perturbation theory (MP2) [5–8] with the 6-31+G(d,p) basis set [9–12].
This level of treatment employs an explicitly correlated wavefunction and a valence
double-split basis set augmented with polarization functions on all atoms and dif-
fuse functions on nonhydrogen atoms. It has been recommended as the level of
theory required to provide reliable structures and vibrational frequency shifts (if the
harmonic approximation is appropriate) at minimum computational expense [13].
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22.2 Methods

Obtaining reliable energetics requires a larger basis set, such as Dunning’s aug-cc-
pVTZ basis [14, 15] without counterpoise corrections for binding energies [16].

Ab initio calculations to determine spin–spin coupling constants across hydrogen
bonds have been carried out using the equation-of-motion coupled-cluster singles
and doubles (EOM-CCSD) formalism in the CI-like approximation [17–20]. EOM-
CCSD with the Ahlrichs (qzp, qz2p) basis set [21] gives good agreement between
computed and experimental coupling constants in molecules [18], and good agree-
ment with experimental data for hydrogen-bonded complexes when comparisons
can be made. It is this level of theory which has been used for all of the studies that
will be discussed below. Early calculations employed the qz2p basis set on all hydro-
gen atoms. However, subsequent studies indicated that replacing this basis set by
Dunning�s cc-pVDZ basis [14] on hydrogen atoms not involved in the hydrogen
bond has little effect on computed X–Y coupling constants, but reduces the compu-
tational cost.

Two-bond X–Y spin–spin coupling constants across X–H–Y hydrogen bonds are
designated 2hJX–Y, where “2” indicates that the coupling is across two bonds, “h” indi-
cates that the coupling is across a hydrogen bond, and “X–Y” are the hydrogen-
bonded atoms that couple. In nonrelativistic theory, 2hJX–Y has four components: the
paramagnetic spin–orbit (PSO), diamagnetic spin–orbit (DSO), Fermi-contact (FC),
and spin–dipole (SD) terms. Because the calculation of spin–spin coupling con-
stants across hydrogen bonds is a new area of research, we initially computed all
terms that contribute to 2hJX–Y for a series of complexes in which X and Y are fixed,
in order to evaluate the relative importance of each term for determining the X–Y
coupling constant for a particular pair of hydrogen-bonded atoms.

22.3
Discussion

22.3.1
Hydrogen Bond Types and 2hJX–Y

When examining both the IR and NMR spectral properties of hydrogen-bonded
complexes, it is advantageous to classify X–H–Y hydrogen bonds into one of three
types: traditional, proton-shared, or ion-pair [22–24]. A hydrogen bond is called tradi-
tional if the X–H bond of the proton-donor group remains intact in the complex,
and the X–Y distance is normal (as opposed to short). The IR spectrum of such a
complex is characterized by a strong X–H stretching band shifted to lower frequency
relative to the X–H band in the monomer. The traditional hydrogen bond is by far
the most common type found in uncharged complexes in the gas phase. Examples
include (H2O)2, (HF)2, FH:NH3 and ClH:NH3. In this chapter, a traditional hydro-
gen bond will be designated as X–H...Y.

In particular cases, the hydrogen-bonded proton can be transferred from X to Y,
forming a hydrogen-bonded ion pair. In such a complex the X–Y distance is similar
to the X–Y distance in a corresponding complex with a traditional hydrogen bond.
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The Y–H distance is elongated relative to the corresponding isolated cation, and the
IR spectrum exhibits a strong Y–H stretching band shifted to lower frequency rela-
tive to the cation. Such hydrogen bonds are depicted as X–...+H–Y. This type is not
common in the gas phase, but can be formed if a very strong proton donor is com-
plexed with a very basic proton acceptor. An ion-pair hydrogen bond stabilizes the
complex formed between HBr and N(CH3)3 in the gas phase [25].

Intermediate between these two is the proton-shared hydrogen bond. A complex
stabilized by such a hydrogen bond has a short X–Y distance, but long X–H and
Y–H distances. The proton-stretching band is very intense and appears at a very low
frequency. Other strong bands may be observed, depending on the nature of the
complex. A hydrogen bond of this type is designated as X...H...Y. The complex be-
tween HCl and N(CH3)3 has a proton-shared hydrogen bond in the gas phase [25]. If
in a proton-shared hydrogen bond the proton is shared equally between two equiva-
lent atoms, the hydrogen bond is called symmetric. If the sharing is equal (as mea-
sured by the forces exerted by X and Y on H) but X and Y are different atoms, the
hydrogen bond is referred to as a quasi-symmetric proton-shared hydrogen bond.
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22.3 Discussion

Research in enzyme kinetics has suggested that proton-shared hydrogen bonds
(sometimes called “low-barrier” hydrogen bonds) may play an important role in
determining reaction rates [26–32]. Could measurements of 2hJX–Y serve to prove the
existence of such hydrogen bonds? We have addressed the relationship between
2hJX–Y and hydrogen bond type in a series of papers [22–24, 33–38]. We first recog-
nized this relationship in a study of the ClH:NH3 complex. Our interest in this and
the related BrH:NH3 complex [39] was originally stimulated by their unusual low-
temperature Ar matrix vibrational spectra, and by the failure of the harmonic
approximation to reproduce the large experimental low-frequency shifts of the Br–H
and Cl–H stretching bands in these complexes [40]. In the course of our studies, we
observed that an external electric field applied along the hydrogen-bonding axis was
capable of mimicking the matrix environment of these and related complexes, in-
ducing proton transfer, and thereby changing hydrogen bond type from traditional,
to proton-shared, to ion-pair [39–41]. The ClH:NH3 complex subsequently became
our workhorse system, allowing for detailed studies of IR and NMR properties as a
function of hydrogen bond type in a single chemical system. From such studies a
rich harvest of information concerning the variation of these properties with hydro-
gen bond type has been obtained.

This variation is most succinctly illustrated in Fig. 22.1, which plots the equilibri-
um Cl–N distance, the two-bond spin–spin coupling constant (2hJCl–N), the chemical
shift of the hydrogen-bonded proton, and the two-dimensional anharmonic proton-
stretching frequency as functions of increasing field strength and therefore chang-
ing hydrogen bond type. As is apparent from this figure, these properties are finger-
prints of hydrogen bond type, exhibiting extremum values for a quasi-symmetric
proton-shared hydrogen bond. The variation of 2hJX–Y with hydrogen bond type will
be seen in the subsequent discussion of coupling constants across N–H–N, C–H–N,
and F–H–N hydrogen bonds.

22.3.2
N–H–N Hydrogen Bonds

The experimental measurement of 15N–15N spin–spin coupling constants across the
N–H...N hydrogen bonds in the AU and GC base pairs [2] generated a great deal of
excitement. Hence, it seems fitting to begin this discussion of spin–spin coupling
across hydrogen bonds by considering 2hJN–N. Based on EOM-CCSD calculations for
a series of complexes stabilized by N–H–N hydrogen bonds, we demonstrated that
2hJN–N is determined solely by the Fermi-contact (FC) term. This is not due to a can-
cellation of other terms, but arises because the FC term is more than an order of
magnitude greater than any other term. Because the FC term approximates 2hJN–N

so well, calculations of 15N–15N coupling constants are feasible in relatively large
systems. Moreover, the Fermi-contact term and therefore total 2hJN–N are distance
dependent, decreasing (in an absolute sense) with increasing N–N distance [34–36].
This suggests that it should be possible to obtain intermolecular N–N distances
from experimentally measured N–N coupling constants. It was also our hope that
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the innate simplicity of the Fermi-contact term might carry over and lead to general
relationships between coupling constants and intermolecular distances.

Since the two-bond N–N coupling constant across an N–H...N hydrogen bond
had been directly measured [2], we computed 2hJN-N for the CNH:NCH complex at
an N–N distance of 2.90 �, which corresponds to the N–N distance in the AU and
GC pairs. The computed value is 7.2 Hz, in excellent agreement with the experi-
mental value of about 7 Hz. This result was initially puzzling, since CNH:NCH
would not be expected to be a good model for base pairs, and suggests that 2hJN–N is
not very sensitive to the bonding at the nitrogens. Table 22.1 reports equilibrium N–
N distances and 2hJN–N values computed at the equilibrium geometries of a series of
neutral and cationic complexes with N–H–N hydrogen bonds [34–36]. The nitrogen
atoms may be sp, sp2, or sp3 hybridized, although no cationic complexes with sp
hybridized nitrogens as proton donors are included. The neutral complexes are sta-
bilized by traditional hydrogen bonds, while the hydrogen bonds in the cationic
complexes may be either traditional or proton-shared. Figure 22.2 shows a plot of
2hJN–N versus the N–N distance for these 13 complexes. The value of 2hJN–N at
2.90 � obtained from this curve is 7.5 Hz, in agreement with the value of 7.2 Hz
obtained for the CNH:NCH complex at the same N N distance, and with the experi-
mental value of about 7 Hz for the AU and GC base pairs. These results suggest
that two-bond 15N–15N spin–spin coupling constants across hydrogen bonds are
insensitive to the nature of the hybridization of the nitrogens, the nature of the sub-
stituents bonded to nitrogens, and the presence or absence of a positive charge on
the complex. However, it should be emphasized that there is an indirect dependence
of 2hJN–N on the nature of the hybridization and bonding of the N atoms for a partic-
ular complex, since these properties determine the equilibrium N–N distance,
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Table 22.1 N–N distances (�) and 15N–15N spin–spin coupling constants (2hJN–N, Hz) in
equilibrium structures of neutral and cationic complexes stabilized by N–H–N hydrogen bonds.

R(N–N) 2hJN–N

Neutral complexes
CNH:pyridine 2.793 10.7
CNH:NCLi 2.833 9.6
CNH:NH3 2.846 8.7
CNH:NCH 2.996 5.5
Pyrrole:NCH 3.164 3.0
Cationic complexes
1,4-Diazinium:NCLi 2.633 16.5
NH4

+:NCLi 2.634 16.1
Pyridinium:NCLi 2.673 14.4
NH4

+:NH3 2.705 12.9
NH4

+:NCH 2.830 9.2
1,4-Diazinium:NCH 2.834 9.4
Pyridinium:NCH 2.872 8.2
NH4

+:N2 3.108 3.2
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which in turn, determines 2hJN–N. Figure 22.2 should be useful for estimating N–N
distances from experimental 15N–15N coupling constants, and for predicting 2hJN–N

when experimental values are not available.
All of the complexes in Table 22.1 have linear hydrogen bonds formed with a di-

rected lone pair of electrons on the proton-acceptor nitrogen atom. How does 2hJN–N

change if the hydrogen bond becomes nonlinear, or if the directed lone pair is
removed from the hydrogen bond? Figures 22.3 and 22.4 show the variation of
2hJN–N graphically as such changes occur in CNdH:NaCH. To obtain 2hJN–N as a func-
tion of the linearity of the hydrogen bond, a rotational axis was placed through Nd

perpendicular to the Nd–Na line, and CNdH was rotated about this axis, keeping all
other coordinates fixed. Similarly, to obtain the variation in 2hJN–N as the lone pair is
removed from the hydrogen bond, an axis was placed through Na perpendicular to
the Nd–Na line, and NaCH was rotated about this axis, again keeping all other coor-
dinates fixed. Figures 22.3 and 22.4 suggest that small perturbations which distort
the hydrogen bond from linearity or displace the directed lone pair from the hydro-
gen bonding axis have relatively small effects on 2hJN–N. However, 2hJN–N decreases
rapidly as these perturbations become larger.

22.3.3
C–H–N Hydrogen Bonds

In principle, it should be possible to measure spin–spin coupling constants across
C–H–N hydrogen bonds. In anticipation of such experimental studies, we have car-
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ried out systematic investigations of 13C–15N coupling constants in a series of neu-
tral, cationic, and anionic complexes stabilized by C–H–N hydrogen bonds [42].
These complexes include C and N atoms that are sp, sp2, and sp3 hybridized. All of
these complexes are stabilized by traditional hydrogen bonds in which a C–H group
is the proton donor to N, except for pyridinium:CNH and NH4

+:CNH, which are
stabilized by traditional N–H+...C hydrogen bonds.

C–N distances, the Fermi-contact term, and total 2hJC–N for the equilibrium struc-
tures of 23 complexes with C–H–N hydrogen bonds are reported in Table 22.2. The
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Table 22.2 Equilibrium distances (�) and the Fermi-contact term (FC) and 2hJC–N (Hz) for com-
plexes with C–H–N hydrogen bonds.

R(C–N) FC 2hJC–N

Neutral complexes
HCCH...NCH 3.440 –5.24 –5.26
ClCCH...NCH 3.413 –6.03 –6.06
FCCH...NCH 3.412 –6.33 –6.35
NCH...NCH 3.316 –7.31 –7.34

HCCH...NCLi 3.303 –8.34 –8.37
FCCH...NCLi 3.272 –10.09 –10.09a

ClCCH...NCLi 3.268 –9.77 –9.77a

NCH...NCLi 3.160 –12.16 –12.21

NCH...pyridine 3.163 –12.66 –12.66a

HCCH...NH3 3.327 –8.13 –8.14
ClCCH...NH3 3.303 –9.26 –9.26
FCCH...NH3 3.301 –9.73 –9.73a

NCH...NH3 3.204 –10.95 –10.98

F(O)CH...NCH 3.466 –5.19 –5.19a

F(O)CH...NH3 3.340 –8.39 –8.39a

F3CH...NCH 3.456 –4.68 –4.68a

F3CH...NH3 3.341 –7.30 –7.30a

Cationic complexes
Pyridine–H+...CNH 2.974 –22.24 –22.24a

H3NH+...CNH 2.936 –26.40 –26.49
HNCH+...NCH 2.832 –40.03 –40.13

Anionic complexes
HCCH...NC– 3.117 –16.19 –16.25
FCCH...NC– 3.077 –20.09 –20.09a

NCH...NC– 2.940 –24.66 –24.77

a Estimated from the Fermi-contact term.



PSO, DSO, and SD terms make negligible contributions to the total coupling con-
stant, and FC approximates 2hJC–N to 0.1 Hz in those complexes for which all terms
were computed. Since the FC term is distance dependent, 2hJC–N also depends on
the C–N distance. As evident from Table 22.2, the equilibrium distances in the
charged complexes are relatively short compared to the neutral complexes, and the
values of 2hJC–N are also greater.

2hJC–N values for the entire set of 23 complexes have been plotted in Fig. 22.5 as a
function of the C–N distance. There is some scatter in the data, as evident from
Fig. 22.5 and the correlation coefficient of 0.97 for the best-fit quadratic curve. The
scatter is due primarily to the dependence of 2hJC–N on the hybridization and bond-
ing at the proton-donor C–H group [42]. Since 2hJC–N is also relatively insensitive to
small deviations which perturb the linearity of the hydrogen bond, the curve pre-
sented in Fig. 22.5 should be useful for relating experimentally measured C–N cou-
pling constants to C–N distances.

22.3.4
F–H–N Hydrogen Bonds

Experimental measurements of 19F–15N spin–spin coupling constants across F–
H...N hydrogen bonds are available, due primarily to the work of Limbach and his
associates [43, 44]. We have investigated F–N coupling constants for neutral com-
plexes with F–H...N hydrogen bonds [45] and cationic complexes with N–H+...F
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hydrogen bonds [46]. Figure 22.6 presents 2hJF–N versus the F–N distance for the
optimized structures of 13 neutral and 18 cationic complexes. The best-fit quadratic
curve is not shown, but its low correlation coefficient of 0.62 is not unexpected given
the scatter evident in these data. The scatter may be attributed primarily to the sig-
nificantly greater values of coupling constants for cationic complexes compared to
neutral complexes at the same F–N distance. This is apparent from Fig. 22.6, which
shows that when 2hJF–N for neutral and cationic complexes are plotted separately
against the F–N distance, improved correlations are found, although there is still
some scatter. There are two obvious questions to be addressed.

1. What causes the scatter in the plots of 2hJF–N versus the F–N distance, partic-
ularly in the cationic complexes?

2. Why do the cationic complexes have larger coupling constants over the entire
range of F–N distances?

Table 22.3 lists the F–N distances, PSO, DSO, FC, and SD terms, and 2hJF–N for
complexes stabilized by F–H...N and N–H+...F hydrogen bonds. The Fermi-contact
term is again a good approximation to 2hJF–N, although the differences between FC
and 2hJF–N for the complexes of FH with ammonia and substituted amines are
greater than observed previously for other complexes. For FH:NHF2 and FH:NH2F,
FC underestimates (in an absolute sense) 2hJF–N primarily because of the contribu-
tion of the SD term. In contrast, for FH:NH3 and FH:NH2(CH3), FC overestimates
2hJF–N primarily because of the relatively large positive value of the PSO term.
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The equilibrium structures of all of the neutral complexes have linear hydrogen
bonds formed with directed lone pairs of electrons, while the equilibrium structures
of the cationic complexes do not necessarily have this ideal structure. However, for
comparison purposes, the structures of the cationic complexes were constrained
during optimization so that N–H+...F–H are collinear. These constraints are not
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Table 22.3 Equilibrium distances (�) and two-bond spin–spin coupling constants (2hJF–N) and
componentsa of 2hJF–N (Hz) for complexes with F–H...N and N–H+...F hydrogen bonds.

F–N PSO DSO FC SD 2hJF–N

Neutral complexes
FH:NF3 3.095 –4.2 –4.2b

FH:NCCN 2.895 0.2 0.0 –13.1 –0.5 –13.4
FH:NHF2 2.869 –0.5 –0.1 –16.1 –1.2 –17.9
FH:NCF 2.846 0.4 0.0 –18.1 –0.4 –18.1
FH:NCH 2.817 0.3 0.0 –21.2 –0.6 –21.5
FH:NH2F 2.721 0.3 0.0 –32.4 –1.6 –33.7
FH:1,3,5-triazine 2.684 –40.3 –40.3b

FH:NCLi 2.660 0.6 0.0 –47.5 –0.9 –47.8
FH:1,4-diazine 2.638 –49.1 –49.1b

FH:NH3 2.637 2.8 0.0 –45.2 –1.3 –43.7
FH:pyridine 2.611 –57.0 –57.0b

FH:NH2(CH3) 2.598 2.9 0.0 –53.3 –1.7 –52.1
FH:4-Li-pyridine 2.572 –70.5 –70.5b

Cationic complexes
4-Li-Pyridinium:FH 2.933 –21.7 –21.7b

Pyridinium:FH 2.882 –26.9 –26.9b

(CH3)H2NH+:FH 2.872 –23.8 –23.8b

1,4-Diazinium:FH 2.855 –30.1 –30.1b

H2C=NH2
+:FH 2.838 –33.5 –33.5b

H3NH+...FH 2.835 0.5 0.0 –28.7 –0.2 –28.4
1,3,5-Triazinium:FH 2.834 –32.2 –32.2b

(F)HC=NH2
+:FH 2.814 –36.9 –36.9b

LiCNH+:FH 2.795 0.4 –0.1 –47.1 –0.1 –46.9
1,2,4,6-Tetrazinium:FH 2.785 –49.7 –49.7b

F H2NH+:FH 2.762 0.3 –0.1 –42.3 –0.3 –42.4
H2C=N(F)H+:FH 2.748 –56.4 –56.4b

(CH3)CNH+:FH 2.696 –78.7 –78.7b

F2HNH+:FH 2.687 0.0 –0.1 –64.1 –0.5 –64.7
HCNH+:FH 2.647 0.4 –0.1 –94.5 –0.2 –94.3
FCNH+:FH 2.632 0.5 –0.1 –109.1 –0.1 –108.8
NCCNH+:FH 2.627 0.4 –0.1 –105.4 –0.2 –105.3
F3NH+:FH 2.612 –102.3 –102.3b

a PSO = paramagnetic spin–orbit; DSO = diamagnetic spin–orbit;
FC = Fermi-contact, SD = diamagnetic spin–orbit.

b Estimated from the Fermi-contact term.



unreasonable, as discussed in detail in ref. 46. Although the quadratic correlation
between 2hJF–N and the F–N distance for the neutral complexes is good, there is still
some scatter in the data, as evident from Fig. 22.6. This scatter can be traced to the
dependence of 2hJF–N on the hybridization of the nitrogen, as evident from Fig. 22.7.
If the proton-acceptor molecules are grouped according to the nitrogen hybridiza-
tion, excellent quadratic correlations between 2hJF–N and the F–N distance are
found, with correlation coefficients between 0.99 and 1.00. Similarly, the greater
scatter in the data for the cationic complexes can also be attributed to the hybridiza-
tion of the nitrogen, as evident from Fig. 22.8. It is interesting to note that 2hJF–N for
cationic complexes in which the proton donors are sp3 hybridized have lower abso-
lute values than 2hJF–N for complexes with sp and sp2 nitrogens over the entire
range of F–N distances.

It is also apparent from Fig. 22.6 that at a given F–N distance, 2hJF–N is signifi-
cantly greater for a cationic complex, a reflection of its greater proton-shared charac-
ter. One way to measure the degree of proton-sharing is to examine the difference
between the F–H and N–H distances in a pair of neutral and cationic complexes
that have similar F–N distances. (This comparison is not strictly valid, since the van
der Waals radii for N and F are different. However, the radii are similar enough at
1.55 and 1.47 �, respectively, to warrant such a comparison.) Table 22.4 presents
data for three sets of neutral and cationic complexes that have similar N–F distances.
It is evident from these data that the absolute value of the difference between the
F–H and N–H distances is smaller in the cationic complexes, and these complexes
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have significantly larger coupling constants. Perhaps an even more compelling
argument can be made from the data in Table 22.4 that provide absolute values of
the difference between the F–H and N–H distances for pairs of neutral and cationic
complexes that have similar coupling constants but different F–N distances. It is
evident from these data that when the degree of proton sharing is approximately the
same (as measured by the difference between the F–H and N–H distances in the
pair), then the coupling constants for the pair are very similar. Even though the
hydrogen bonds in these complexes are traditional hydrogen bonds, they have a sim-
ilar degree of proton-shared character.

Another feature of complexes with F–H–N hydrogen bonds is the very large val-
ues of F–N coupling constants. While the maximum N–N and C–N coupling con-
stants computed are about 20 Hz and 45 Hz, respectively, F–N coupling constants
can exceed 100 Hz. (Although reduced coupling constants 2hKX–Y should be used
when comparing coupling constants for different atoms, it is 2hJX–Y that is measured
experimentally, hence the large differences are significant.) An interesting conse-
quence of the large range of values for N–F coupling constants is that a neutral and
a cationic complex with similar F–N distances can have coupling constants that dif-
fer by more than 50 Hz!

In some recent experimental studies, Limbach and his associates investigated the
temperature dependence of coupling constants across hydrogen bonds [43, 44, 47–
49]. They observed that as a function of decreasing temperature, two-bond spin–
spin coupling constants initially increase, exhibit a maximum absolute value, and
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then decrease. They interpreted their results in terms of solvent ordering and proton
transfer. They suggested that as the temperature decreases, the type of hydrogen
bond changes from traditional, to proton-shared, to ion-pair. Thus, they came to the
same conclusions about the relationship between 2hJX–Y and hydrogen bond type
based on experimental data as we did based on EOM-CCSD calculations. That reli-
able ab initio calculations can assist in the interpretation of experimental coupling
constants for hydrogen-bonded complexes is illustrated below using the FH:colli-
dine complex.

In a recent experimental study of the temperature dependence of 2hJF–N for the
FH:collidine (FH:2,4,6-trimethylpyridine) complex between 100 and 200 K [43],
Limbach and co-workers noted that as the temperature decreased, proton transfer
occurred and hydrogen bond type changed from traditional, to proton-shared, to
ion-pair. As the temperature decreased, they observed that the one-bond F–H cou-
pling constant (1JF–H) decreased, the absolute value of the H–N coupling constant
(1hJH–N) increased, but the two-bond F–N coupling constant remained essentially
constant at –96 € 5 Hz. This is puzzling, given their and our previous results. To
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Table 22.4 2hJN–F values (Hz) and differences between F–H and N–H distances (�) for selected
neutral and cationic complexes with F–H–N hydrogen bonds.

R(N–F) |R(N–H) – R(F–H)| 2hJN–F

Complexes with similar N–F distances
FH:NCH 2.817 0.941 –21.5
(F)HC=NH2

+:FH 2.814 0.767 –36.9

FH:1,3,5-triazine 2.684 0.778 –40.3
F2HNH+:FH 2.687 0.595 –64.7

FH:NH3 2.637 0.711 –43.7
FCNH+:FH 2.632 0.560 –108.8

Complexes with similar N–F coupling constants
FH:pyridine 2.611 0.678 –57.0
H2C=N(F)H+:FH 2.748 0.683 –56.4

FH:1,4-diazine 2.638 0.718 –49.1
1,2,4,6-tetrazinium:FH 2.785 0.721 –49.7

FH:NCLi 2.660 0.750 –47.8
LiCNH+:FH 2.795 0.763 –46.9

FH:NH2F 2.721 0.824 –33.7
H2C=NH2

+:FH 2.838 0.792 –33.5

FH:NCH 2.817 0.941 –21.5
4-Li-pyridinium:FH 2.933 0.899 –21.7



gain insight into these experimental results, we computed 1JF–H, 1hJH–N, and 2hJF–N

in two model systems, FH:NH3 and FH:pyridine [50]. For each system we systemati-
cally varied the F–H distance, optimized the complex at each distance, and then
computed the coupling constant for each optimized structure. Figure 22.9 shows
the variation of 1JF–H, 1hJH–N and 2hJF–N as a function of the F–H distance, and there-
fore changing hydrogen bond type, for FH:pyridine. As the F–H distance increases,
the F–N distance decreases to a minimum when the hydrogen bond is proton-
shared, and then increases as the ion-pair hydrogen bond is formed. These distance
changes are intimately related to the variation of 2hJF–N that is seen in Fig. 22.9. It
should be noted that since collidine is a stronger base than pyridine, the equilibrium
structure of FH:collidine has greater proton-shared character, even in the gas phase.
Our data suggest that at the highest temperatures investigated experimentally in so-
lution, the hydrogen bond in FH:collidine is proton-shared, being on the traditional
side of quasi-symmetric. At the lowest temperature, the hydrogen bond is still pro-
ton-shared, but is now on the ion-pair side. Thus, the vertical bars in Fig. 22.9 are
drawn to correspond to the region of the potential surface probed by the experi-
ments. In this region, the potential surface for proton motion is relatively flat. This
allows the proton to move freely while the F–N distance remains constant. It is the
constancy of this distance that gives rise to the constancy of 2hJF–N.
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Although Limbach et al. were not able to specifically identify the temperature at
which the complex is stabilized by a quasi-symmetric proton-shared hydrogen bond
due to the constancy of 2hJF–N, they presented their estimates of the values of F–H,
F–N, and H–N coupling constants that might characterize such a complex. These
are given in Table 22.5, along with our computed values for FH:pyridine in the pro-
ton-shared region. Given that pyridine is not as basic as collidine, and that 2hJF–N

has been estimated only by the Fermi-contact term, the computed results are in
good agreement with the experimental, and provide insight into the interpretation
of the experimental findings.

22.4
Concluding Remarks

This chapter presents a summary of EOM-CCSD calculations carried out in this lab-
oratory to characterize two-bond spin–spin coupling constants across N–H–N, C–
H–N, and F–H–N hydrogen bonds in neutral and charged complexes. From the
computed results, we have constructed curves for 2hJX–Y as a function of the X–Y
distance for each set of hydrogen-bonded complexes. These curves are presented as
tools for extracting X–Y distances from experimentally-measured coupling con-
stants, and for predicting these constants in the absence of experimental data. The
computed results have led to new insights into the factors that determine 2hJX–Y.

Future work will expand on these results, with the aim of providing a systematic
characterization of spin–spin coupling constants across various types of X–H–Y
hydrogen bonds.
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Table 22.5 NMR spin–spin coupling constants (Hz) for quasi-symmetric proton-shared hydrogen
bonds in FH:collidine and FH:pyridine.

FH:collidine
Experimental

FH:pyridine
EOM-CCSDa

F–H (�) 1.15 1.20 1.25
F–N (�) 2.489 2.480 2.484
2hJF–N –96 –89 –90 –87
1JF–H 30 68 24 –8
1hJH–N –50 –21 –31 –41

a Estimated from the Fermi-contact term.
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23.1
Introduction

Carbocation chemistry is characterized by the fruitful interplay of experiment and
theory. NMR spectroscopy has evolved as the important experimental method for the
direct study of the structure and dynamics of carbocations in solution and, recently,
also in the solid state. For general structure elucidation contemporary NMR tech-
niques rival X-ray crystallography, which is particularly difficult for carbocations.
Quantum chemical methods have developed as indispensable tools to complement
experimental results. Despite great interest in ab initio calculation of experimentally
observable molecular properties, calculations of NMR chemical shifts and coupling
constants have become routine only recently. This chapter will review, in a non-com-
prehensive attempt, recent applications of quantum chemical calculations of NMR
chemical shifts and spin–spin coupling constants in carbocation chemistry.

The IGLO method, an important breakthrough for the calculation of magnetic
properties, was developed in the middle 1980s by Kutzelnigg , Fleischer and Schind-
ler [1]. After some applications to carbocations were published in a landmark paper
by Schindler [2] in 1987 the calculation of carbocations and related species rapidly
developed into a flourishing field exploited by many research groups, especially
Schleyer and collaborators [3, 4]. These early IGLO applications to carbocations were
an important contribution to the recognition of NMR computations as a potential
structural tool [5].

Further historical, methodological and practical aspects have been summarized
and will not be considered in detail here [6]. Explanations for the acronyms and
abbreviations used in theoretical chemistry and in this review are published by the
IUPAC organization [7].

Recently the GIAO method for calculation of NMR chemical shifts has become
the de facto standard and has been implemented in major quantum chemistry
packages. The GIAO approach facilitates accurate NMR shift calculations via elec-
tron-correlated methods (see Chapter 8). GIAO-DFT methods have evolved as a stan-
dard tool, in particular for the calculation of shifts for larger molecules and transi-
tion metal complexes. DFT NMR results, however, for some types of carbocations
are less satisfactory and lack possibilities for systematic improvements compared to

371

23

Calculation of NMR Parameters in Carbocation Chemistry

Hans-Ullrich Siehl and Valerije Vrček
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23 Calculation of NMR Parameters in Carbocation Chemistry

those obtained with the traditional methods for treating electron correlation. Calcu-
lations using the GIAO-MP2 approach have convincingly demonstrated the impor-
tance of electron correlation effects in NMR chemical shift calculations and could
resolve a number of problems concerning the interpretation of experimental NMR
spectra of carbocations [8–12].

However, GIAO-MP2 in certain cases tends to overestimate electron correlation
effects on the absolute shielding constants [13]. The GIAO coupled cluster schemes
provide shieldings with quantitative accuracy and CCSD(T) NMR calculations have
been used extensively for benchmark calculations [14] and some challenging chemi-
cal shift problems in carbocation chemistry [15, 16].

It should be kept in mind that quantum chemical calculations of structures and
magnetic properties generally are done for the isolated molecule or ensemble, with-
out taking into account its environment and media effects such as solvent, site-spe-
cific solvation or counter ion effects. This is a critical point since NMR spectra of
carbocations, with a few exceptions, are studied in superacid solutions, and proper-
ties calculated for the gas phase species are of little relevance if the electronic struc-
ture of the ion is strongly perturbed by solvent effects.

Another important point is whether disagreement between calculated and ob-
served chemical shifts is due to an inadequate level used for the calculation of the
geometry and/or a consequence of deficiencies in the model used for the calculation
of NMR chemical shifts. Fortuitous error cancellation is ubiquitous in quantum
chemistry at all levels of theory. Calculated relative NMR shifts are magnetic shield-
ing differences and are thus prone to error cancellation effects. Provided that appro-
priate methods are used, and that the results for the geometry optimization and
shielding tensors are sufficiently converged with respect to wave function model
and basis set, the congruence of calculated and observed 13C shifts would suggest
that the geometry adopted by carbocations in superacid solution is similar to the
gas-phase prediction and unperturbed by interaction with the environment. Such
costly benchmark types of NMR calculations using the traditional methods for treat-
ing electron correlation, MP2, CCSD and CCSD(T), have been performed for very
few carbocations, known to be particularly difficult cases for NMR chemical shift
computations [15, 16].

23.2
Alkyl and Cycloalkyl Cations

CH5
+ (protonated methane 1) is considered as the parent of hypercoordinated carbo-

cations containing a five-coordinated carbon atom. It has a fluxional structure as
evident from infrared investigations and ab initio dynamic simulations [17]. For a Cs

symmetrical structure of CH5
+ a 13C chemical shift of –11.5 ppm is calculated,

which is 7.1 ppm more shielded than that of CH4 at the GIAO-MP2 level [18]. The
shielding effect in 1 is expected for such a hypercoordinated carbon [19].

The calculated parent six-coordinated dication 2, diprotonated methane (CH6
2+)

has two 3c–2e bonding interactions in its minimum energy structure (C2v). The cal-
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culated 13C NMR chemical shift of the dication is –25.7, 14.2 ppm more shielded
than that of 1 [20]. The studies have been extended to hypercoordinated onium-car-
bonium dications of type 3 (X = NH3, PH3, H2O, H2S, HF, HCl, CO, N2, CO2 and
CS2) [21].
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The prototypical primary ethyl cation, C2H5
+, is not stable enough to be observable

directly in superacid media. Quantum chemical calculations predict the l-hydrido-
bridged form 5 to be 6–8 kcal mol–1 more stable than the “open” form 4. NMR chem-
ical shifts for both forms were calculated at the GIAO-MP2//CCSD level of theory
[22]. The calculated 13C chemical shifts of C1 and C2 in 4 were 361.17 and
73.96 ppm, respectively, while in the symmetrically bridged form 5 the calculated
value for carbon atoms was 163.97 ppm. The chemical shift (-0.02 ppm) of the bridg-
ing hydrogen (Hb) is in accord with a 3c–2e bond in the bridged form. NMR spin–
spin coupling constants were calculated with the EOM-CCSD method [23]. The
small value calculated for 1J(CHb) of 13 Hz compared to 1J(CH) = 125–250 Hz in
hydrocarbons is diagnostic for such 1,2-hydrogen-bridged structures.
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A systematic study of a set of 16 alkyl- and cycloalkyl cations (Scheme 23.1) was
performed to investigate the performance of GIAO-B3LYP methods which require
much less computational resources in terms of cpu time, memory, and temporary
storage compared to GIAO-MP2 methods [24]. The chemical shifts of the carbons at
positions most sensitive to the positive charge, i.e. C1, the formally positively
charged carbon, and the a- and b-carbon atoms were investigated in detail. The
structures were optimized at the B3LYP/6-31G(d) level and, for comparison, also at
the MP2/6-31G(d) level. Chemical shift calculations were done at the GIAO-B3LYP/
6-311G(d,p) level. Generally, the chemical shifts were calculated more downfield
than the experimental shifts. This is due to deficiencies of the applied method, since
GIAO-DFT calculations are known to overestimate the paramagnetic contributions
to the chemical shielding, resulting in overly deshielded chemical shifts. The effect
is, however, not uniform for all carbons. The slope and intercept for a correlation
equation were determined separately for C+ and the a- and b-carbon positions, and
were found to be related to the mode of hyperconjugative charge delocalization in
the particular carbocation structure. The chemical shifts calculated using the GIAO-
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DFT method for MP2/6-31G(d) optimized structures are generally somewhat closer
to the experimental values, however, at higher computational costs.

H

H H

Scheme 23.1

The 2-propyl cation 6 has a C2 symmetric structure which, at the MP2/6-311G(d,p)
level, is the only open-chain minimum on the C3H7

+ potential energy surface [25].
IGLO-HF/II chemical shift calculations for this geometry agree reasonably well
(deviation D = +4 ppm) for the C+ carbon (exp. 320.6 ppm), and slightly worse for the
methyl carbons (exp. 51.5 ppm, D = – 7 ppm) [26]. At the GIAO-MP2/TZP/DZ level
somewhat better agreement for the methyl groups was obtained [4]. The 13C chemi-
cal shift tensors of the isopropyl cation were calculated at the GIAO-MP2/tzp/dz
and GIAO-B3LYP/tzp/dz levels [27]. The principal component d11 (coincident with
the C–H bond along the C2 axis of symmetry) was calculated to be 545 ppm, but the
experimental value measured by CP MAS-NMR was only 497 ppm. The authors
have considered the inclusion of counterions (FHF– and SbF6

–) to model the effect
of the medium, but only modest improvements were obtained. The chemical shift
tensors of the isopropyl cation in model ion pairs have also been calculated using
GIAO-B3LYP//MP2/6-311G(d,p) and various basis sets [28].

The tert-butyl cation structure (7) with Cs symmetry is better suited for hypercon-
jugation than the C3h form and is thus energetically slightly favored [29]. The IGLO/
DZ//MPZ(full)/6-31G(d,p) calculated 13C chemical shifts deviate by +11 ppm for the
central carbon (exp. 335.2 ppm) and –1.3 ppm (averaged) for the CH3-groups (exp.
45.6 ppm).
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The 13C chemical shift for the central carbon of the protio-tert-butyl dication (8) has
been calculated as 327.5 ppm (IGLO/II//MP2/6-31G(d)) [30]. This value is shielded
compared to the experimental and calculated shift of 7. This was taken as evidence
that the dication 8, even in strong superacids, is only sparsely populated in the equi-
librium with the tert-butyl cation.
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23.2 Alkyl and Cycloalkyl Cations

The 2-methyl-1-triisopropylsilylpropyl-2-cation (9) is the first experimentally
accessible b-silyl substituted alkyl cation [31, 32]. The GIAO-HF/tzp-dz//MP2/tzp
calculated shifts show fortuitously small differences to the experimental shifts, even
for the formally charged carbon (–7.3 ppm) and for silicon (+8.1 ppm). The large
deviations of the GIAO-MP2 calculated shifts, in particular for those atoms involved
in b-Si-hyperconjugation (Ca –28 ppm, Cb +15 ppm, 29Si +35 ppm) can be rationa-
lized assuming an overestimation of r-delocalization effects. Further computational
studies are in progress to clarify this point.

The 2-butyl cation is the smallest secondary cation that can be stabilized either by
C–C or C–H hyperconjugation. Experimental results give evidence for two equili-
brating isomers [33]. MP2/6-311G(d,p) calculations show that the symmetrically
hydrido-bridged structure 11 is marginally more stable than the partially methyl
bridged structure 10 [34, 35] NMR chemical shifts for 10 and 11 have been calcu-
lated using IGLO-HF, GIAO-HF and GIAO-MP2 methods and various basis sets [4].
As expected the chemical shifts for the C–C-hyperconjugatively stabilized structure
is very sensitive towards the degree of bridging, which depends on the computa-
tional method used.
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HH3C

10 11

H3C CH3
H
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The 2-methyl-2-butyl cation (12) is the smallest tertiary carbocation structurally suit-
able for stabilization through C–C hyperconjugation. A comparison of IGLO/DZ//
MP2/6-31G(d) calculated and measured 13C NMR chemical shifts demonstrates that
the partially methyl bridged isomer is the preferred species [36]. It was demonstrat-
ed that the calculated 13C chemical shifts are highly sensitive towards hyperconjuga-
tional distortion, i.e. the degree of bridging. (ca. 6 ppm degree–1 from 68� to 98�).

The experimental and computational study of the NMR spectra of E-1-cyclopro-
pyl-2-(triisopropylsilyl)ethyl cation (13) (see Fig. 23.1) and its model structure E-1-
cyclopropyl-2-(trimethylsilyl)ethyl cation demonstrates an application of calculations
of 1H and 13C NMR chemical shifts and J(HH) spin spin coupling constants for the
assignment of stereochemistry in this type of carbocation [37].

The 400 MHz 1H NMR spectrum of 13 shows characteristic 3J(HH) coupling con-
stants for the non-equivalent syn and anti oriented b-CH2-hydrogens to the
a-methine-hydrogen. The spin–spin coupling constants were calculated using a
finite perturbation level (FPT) [38], Perdew/III//MP2/6-31G(d), for both the Z- and
the E-isomeric structures. The quite satisfactory agreement (D = 0.1–1 Hz) of the
calculated 3J(HH) coupling constants for Ha Hb, and Hb¢ for the E-isomer with the
observed values, confirm the trans arrangement of Ha and Hb, the syn/anti assign-
ment, and the E-conformation for the experimentally observed carbocation. The bet-
ter agreement between experimental and GIAO-B3LYP/6-311G(d,p)//MP2/6-31G(d)
calculated chemical shifts for the E-isomer (Ha Dd(exp.-calc.) = –0.5 ppm) than for
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the Z-form (Ga Dd = +1.05 ppm) is in accord with the assignment to the E-config-
uration. In particular the large difference calculated for the Cc¢ and Cc† carbons in
the Z-isomer (DdCc¢/Cc†= 21.76 ppm), as compared to a calculated difference of
DdCc¢/Cc†= 2.79 ppm for the E-isomer, is not in accord with the experimental shifts
(DdCc¢/Cc†= 1.92 ppm).

13 

Figure 23.1 400 MHz 1H-NMR spectrum of E-1-cyclopropyl-2-triisopropylsilyl-ethyl cation (13) at
–105 �C in SO2ClF/SO2F2 (taken from Ref. [37b]).

An experimental and calculational NMR investigation of dicyclopropyl substituted
cyclobutylmethyl cation (14) [39] has shown that IGLO/DZ//B3LYP/6-31G(d) calcu-
lated 13C NMR chemical shifts facilitate the assignment of the spectra.

14
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H
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The cyclopentyl cation (15) undergoes a degenerate rearrangement which can be fro-
zen out at cryogenic temperatures in the solid state CPMAS NMR spectrum. MP2/
6-31G(d,p) calculations show that cyclopentyl cation has a twisted conformation (16)
[40] in which the axial hydrogens bend toward the carbocation center because of
pronounced hyperconjugational distortion expected for a secondary carbocation.
IGLO-HF/DZ calculations of the 13C NMR chemical shifts reveal that the chemical
shifts are very sensitive to small changes in geometry and that an MP2/6-31G(d,p)
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optimized geometry is required to obtain chemical shifts which are in agreement
with the experimental data [4]. Earlier IGLO-HF/DZ calculations assuming a planar
(C2v) structure [2] or a symmetrically hydrido-bridged (Cs) structure 17 [41] lead to
larger differences.

The nonamethylcyclopentyl cation (18) also undergoes a fast dynamic equilibrium
process caused by circumambulatory trans-migrating methyl groups which lead to
fast averaging of all quaternary carbons and dynamic line broadening of the methyl
signals [42] B3LYP/6-31G(d) calculations show the structure to be a trivalent carboca-
tion type with onset of bridging by the axial-oriented b-methyl groups because of
hyperconjugative distortion. GIAO-DFT calculated 13C NMR chemical shifts,
empirically scaled using a linear correlation, [24] gave good agreement between the
calculated averaged chemical shift for the ring carbons (108.5 ppm) and the experi-
mental value (110.1 ppm).

18

H
H

CH3

CH3

19 20

The two chair conformations of tertiary methylcyclohexyl cation 19 and 20 are in
rapid equilibrium. The two conformations are two isomers where the formally
vacant p-orbital is either equatorially (19) or axially (20) oriented, interacting in 19
with the b-C–C bonds or, in 20, with the b-C–H bonds, respectively. Experimental
dynamic NMR measurements showed the C–C hyperconjugative isomer 19 to be
marginally (1–3 kJ mol–1) more stable [43]. The interpretation of the experimental
data was confirmed by calculation of 13C NMR chemical shifts of 19 and 20 [44]. The
calculated shifts, in particular for those carbons involved in the hyperconjugative
stabilization of the positive charge, are critically dependent on the level of theory
used. For example, the b-carbon shift for the C–C hyperconjugatively stabilized iso-
mer 19 calculated using IGLO-HF or GIAO-HF methods deviates from experiment
by –20 ppm whereas GIAO-MP2 methods with dzp/dz (59.8 ppm) or tzp/dz basis
sets (62.2 ppm), show good agreement with the experimental estimate of 60 ppm.
Similarly, for the (2-propyl)-cyclohexyl cation b-C–C and b-C–H r-bond hyperconju-
gatively stabilized isomers 21 and 22 have been characterized by experimental and
computational NMR investigations [45].

H
H

CH3

CH3

H3C

CH3

21 22

23.2 Alkyl and Cycloalkyl Cations 377



The experimentally observed 1H and 13C chemical shifts of the l-hydrido-bridged
[46] cyclooctyl cation (23) were reproduced reasonably well by IGLO-HF NMR chem-
ical shift calculations for MP2/6-31G(d) geometries (Cs symmetry) except for a large
deviation of the l-hydrido bridged hydrogen (calc. –10.5 ppm, IGLO/II//MP2/6-
31G(d)), exp. –7.7 ppm) [47]. CSGT-DFT NMR calculations on HF geometries have
been performed for cyclooctyl (23), cyclononyl (24) and cyclodecyl (25) cations and
overall somewhat better agreement compared to previous IGLO-HF calculations was
obtained [48]. The chemical shift for the highly shielded l-hydrogen in 23 was calcu-
lated to be –8.9 ppm. The shift for the bridgehead carbons deviates however by
about +10 ppm, demonstrating again that HF and DFT levels are not appropriate to
model geometries and chemical shifts for hydrido-bridged carbocations [4, 49] If
electron correlation is taken into account using the GIAO-MP2 method, much better
results are obtained including the shifts for the bridgehead carbons [50].

HHH

23 24 25

H H

26 27

A distinct upfield shift of the bridging hydrogen was also calculated for the in-bicy-
clo[4.4.4]tetradecyl cation (26) [51] using GIAO-HF methods, but the large discrep-
ancy of about 6.5 ppm between theoretical and experimental d 1H values could not
satisfactorily be explained at that time. A series of NMR calculations have been per-
formed for 26, where the l-hydrogen was displaced in-plane and out-of-plane rela-
tive to the symmetric Born–Oppenheimer surface minimum [52]. The chemical
shift of the l-hydrogen did not change much. It was shown however, that electron
correlation effects, for both the geometry optimization and the NMR calculations
(GIAO-B3LYP/6-31G(d)//B3LYP/6-31G(d)), are required to reproduce the large
upfield chemical shift of the bridging hydrogen. A large highfield shift (–12 ppm)
for the l-hydrogen was predicted for the experimentally elusive l-hydrogen-bridged
bicyclo[3.3.3]undecyl cation (27).

CSGT-DFT NMR calculations were also performed for some other types of cyclic
and acyclic hydrido-bridged cations and dications [53]. Again, some discrepancies
between experimental and theoretical results are apparent. For the triply-l-hydrido-
bridged carbodication 28, a model for a 4c–2e bonding unit, which is not a mini-
mum on the energy surface, a high-field bridging hydrogen (–9 ppm) and a low field
shift for the bridgehead carbons (223 ppm) were calculated [54].

The unusual carbocation structure 29, a linear 5-center 4-electron C–H–C–H–C
array can be derived from three anthracenes “joined up” around a C–H–C–H–C core
[55]. The GIAO-DFT computed 1H and 13C NMR shifts chemical for the bridging
hydrogens (2.9 ppm) and carbons (112 and 182 ppm) of the 5-center array differ con-
siderably from those found in typical 3-center 2-electron systems.
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23.3
Bicyclic and Polycyclic Carbocations

The structure of the 2-norbornyl cation has been a focal point of controversy in phys-
ical organic chemistry. Experimental NMR spectroscopy and computational meth-
ods have been the most prominent tools, favoring the hypercoordinated symmetric
bridged structure 30, a protonated nortricyclane [56]. The tricoordinated 2-norbornyl
cation 31 is not a local minimum on the energy surface [57].
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GIAO-MP2/TZP//MP2/6-31G(d) calculation of 13C NMR chemical shifts
(127.0 ppm C1, C2; 40.5 ppm C3, C7; 41.5 ppm C4; 23.5 ppm C5; 24.0 ppm C6) are,
within +4 ppm, in agreement with the experimental chemical shifts measured at
–158 �C (124.8 ppm C1, C2; 36.6 ppm C3, C7; 37.9 ppm C4; 20.2 ppm C5; 21.3 ppm
C6) [4]. Similar 13C NMR and 1H NMR chemical shifts have been calculated using
GIAO-MP2/DZP//MP2/DZP. The spin–spin coupling constants calculated for the
same MP2/DZP geometry using an EOM-CCSD method [23] are in accord with the
experimentally measured ones. The 1J(C6C1) and the 1J(C6C2) coupling constants
of –5.6 Hz (which are not experimentally available) are particularly diagnostic for
the nortricyclane framework of the hypercoordinated 2-norbornyl cation. The usual
1J13C13C coupling constants are in the range 10–40 Hz and these small negative cou-
pling constants are characteristic for small-ring bicyclic molecules and are often at-
tributed to interference between one-bond and two-bond couplings in this type of
small ring system [58].

NMR chemical shifts of 2-norbornyl cation related model structures, some with
partly restricted geometries, have been calculated using the CSGT-B3LYP method
[59]. As expected for r-electron delocalized systems, the chemical shift for carbons
C1, C2, and C6 involved in the hypercoordinative bonding was found to be very sen-
sitive toward small geometrical changes and to vary greatly, whereas the shifts of
carbons C3, C4, C5, and C7 are similar to the results obtained with more appropri-
ate electron correlation methods such as GIAO-MP2.
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2-methyl-2-norbornyl (32) and 1,2-dimethyl-2-norbornyl (33) cations have partially
bridged structures. The IGLO-HF/DZ and the SOS-DFPT-IGLO/II calculated NMR
chemical shifts using B3LYP/6-31G(d) optimized geometries agree well with the
experimental values for both 32 and 33 [4]. A strong dependence of calculated chem-
ical shifts on the extent of bridging was found for the camphenyl cation (34) using
GIAO-DFT calculations [60]. For a B3LYP optimized geometry the 13C NMR chemi-
cal shift for the C2 (C+) carbon was 23 ppm too deshielded. Using the MP2 opti-
mized structure the shift was 44 ppm too shielded, whereas the GIAO-B3LYP/
6-31G(d)//MP4/6-31G(d) data gave the best agreement (266.8 ppm) with the experi-
mental shift (261.9 ppm).

32 33 34

R2Si

35

Silanorbornylcations 35 were characterized by experimental and computational
13C and 29Si NMR chemical shifts. 29Si NMR chemical shift calculations at the
B3LYP/6-311G(3d,p)//MP2/6-311G(d,p) level are in good agreement with the experi-
mental data (Dd= –3.8 to – 2.7 ppm). The calculated 13C NMR chemical shifts devi-
ate between +8.3 and 14.6 ppm [61].

Bridged cyclobutyl cations (bicyclobutonium ions) 36 have a pentacoordinated
c-carbon. Recent computational investigations, including IGLO-HF/DZ calcula-
tions, of the parent [C4H7]+ cation show that the bicyclobutonium structure is pre-
ferred and the corresponding cyclopropylmethyl cation structure is a minor isomer
marginally higher in energy. Experimental NMR spectra [62] are complicated
because low barrier rearrangement processes give rise to averaged peaks. Two struc-
turally different isomers are in fast equilibrium and each isomer undergoes a rapid
threefold degenerate averaging process (Scheme 23.2, R = H). Analysis of the tem-
perature dependence of solution NMR [63] and solid state CPMAS NMR spectra [64]
and comparison with IGLO-HF and GIAO-MP2 computed chemical shifts of the
two isomers confirm the evidence for the presence of two species [4].
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γ α
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H
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Scheme 23.2
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The 1-methylbicyclobutonium ion and the 1-(trimethylsilyl)bicyclobutonium ion
also undergo fast threefold methylene rearrangements (Scheme 23.2, R = CH3 or
Si(CH3)3). However, in contrast to the parent cation, the corresponding isomeric
cyclopropylmethyl cation structures do not contribute to the averaged chemical
shifts.

At the MP2/6-31G(d) level of theory the 1-silylcyclobutyl cation [1-SiH3–C4H6]+,
which serves as a model compound for [1-Si(CH3)3–C4H6]+, has a hypercoordinated
puckered 1-silylbicyclobutonium structure (37), which is about 2.8 kcal mol–1 lower
in energy than the (1¢-silylcyclopropyl)methyl cation (38), which is a transition state
[11, 65]. 13C-NMR chemical shifts calculated (GIAO-MP2/tzpdz) for the MP2/6-
31G(d) geometry of model cation 37 (Cb/b¢: 79.6 ppm; Cc: –14.5 ppm; => av. Cb/Cb¢/
Cc chemical shift: 48.2 ppm; Ca: 133.9 ppm) are in good agreement with the experi-
mental values for the 1-trimethylsilyl substituted bicyclobutonium ion (Cb/Cb¢/Cc

av.: 48.9 ppm; Ca: 137.4 ppm), whereas the chemical shifts calculated for 38 are not
in accord with experiment.
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3-endo-Trialkylsilylbicyclobutonium ions 39 could be characterized by 1D- and 2D-
NMR spectroscopy as static bicyclobutonium ions. The endo conformation was con-
firmed by comparison with calculated 13C chemical shifts (GIAO-MP2/tzpdz) of
model structures 3-endo- and 3-exo-SiH3 substituted bicyclobutonium ions. The
assignment was also confirmed by FPT (Perdew/III) calculation of the transannular
3J(HaHc) spin spin coupling constant, which is 5.5 Hz measured experimentally
and 5.9 Hz calculated for the endo-silyl isomer 39, but is only 1.2 Hz calculated for
the exo-silyl isomer 40 [65].

Similarly to the 2-norbornyl cation, the comparison of calculated (IGLO/DZ//
MP2/6-31G(d)) and experimental 13C NMR chemical shifts enables one to differenti-
ate between the hypercoordinated 41 and the trivalent form 42 of the bicyclo[2.1.1.]-
hexyl cation [66]. The experimental (157.8 ppm) and calculated (158.5 ppm) values
for C1 and C2 (averaged signal) are nearly identical for the symmetrically bridged
structure 41, but do not correspond to the IGLO-HF/DZ chemical shift for classical
structure 42 (207.4 ppm). On the basis of the calculated energies and the IGLO-HF
results, it was concluded that the bicyclo[2.1.1.]hexyl cation prefers the symmetrical-
ly bridged to the trivalent structure.
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A series of hypercoordinated square-pyramidal carbocations were optimized at
the MP2/6-31G(d) level and the 13C NMR chemical shifts of the cations were calcu-
lated using IGLO-HF and GIAO-MP2 methods [67]. The parent square-pyramidal
ion 43, and the monomethyl-substituted analogs 44 and 45 with apical (45) and
basal (46) substitution have not been observed experimentally. Good agreement be-
tween the calculated and experimental 13C NMR chemical shifts was obtained for
the 1,2-dimethyl-substituted analog 46 and the trimethyl-substituted analog 47.

43 44 45 46 47

The GIAO-MP2/dzp/dz calculated shift of the apical carbon (–17.3) for the bishomo
square-pyramidal cations 48 agrees well with the experimental value of –17.2 ppm.
The first chemical application of the IGLO-HF method has been the correct descrip-
tion of the unexpectedly small 13C chemical shifts of the 1,3-dehydroadamantane-
5,7-diyl-dication 49 [68].

48

2+

49

23.4
Vinyl Cations

The parent vinyl cation has a hydrido-bridged structure 50 which is favored over the
linear structure 51 both experimentally (6 kcal mol–1) and computationally (3.8 kcal
mol–1 at CCSD(T)) [69]. The chemical shifts were originally calculated using the
IGLO-HF/DZ method [2]. The hydrido-bridged form 50 was characterized by an
upfield shift (–2.6 ppm) for the bridging hydrogen, while the 13C chemical shift for
symmetrically bridged carbons was 104.3 ppm.
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Experimental NMR spectra were reported for the a-cyclopropyl-cyclo-propylidene-
methyl cation 52, the only vinyl cation lacking p- or heteroatom stabilization which
is accessible in superacid solution. Calculated chemical shifts at GIAO-HF levels
showed large correlation errors of up to 45 ppm. GIAO-MP2 calculations using a tzp
basis for carbon and dz for hydrogen yield reasonable results for all positions except
the lowfield signal of the formally positively charged carbon, which is calculated
22 ppm shielded compared to the experimental shift [70]. The conspicuously selec-
tively poor performance of the shift calculation for Ca at the MP2 level disappears
when electron correlation effects are treated adequately. High-level coupled-cluster
calculations (which were the first chemical application of these techniques) gave
excellent agreement [15]. At the GIAO-CCSD(T) level, deviations between experi-
ment and theory for the a-carbon are reduced to 1 ppm. The congruence of calcu-
lated and observed 13C shifts suggests that the geometry adopted in superacid solu-
tion is similar to the gas-phase prediction. The effects of electron correlation, basis
sets, and geometry on calculated NMR spectra of vinyl cations has subsequently also
been studied in detail [71] for the parent vinyl cation in its linear form 51, the cyclo-
propylidene-methyl cation (53), the a-cyclopropylvinyl cation (54), and the a-methyl-
vinyl cation (55).
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The allyl-resonance stabilized E- and Z-pent-1,3-dienyl-2-cations (56 and 57) are
the smallest vinyl cations ever observed in superacid solutions [16]. A challenging
task of quantum chemistry was to assign the NMR spectrum which exhibits pairs of
signals which differ only by a few ppm to the chemical shifts for the carbon atoms
of the E- and Z-isomers. HF-SCF NMR chemical shift calculations give poor agree-
ment with experiment (the deviations are in the 40 ppm range). The basic HF-SCF
treatment as well as DFT approaches [72] do not provide an adequate treatment,
whereas inclusion of electron correlation, even at the modest MP2 level, improves
the situation dramatically. MP2, CCSD and CCSD(T) levels calculations are in good
agreement with experiment and allow an unequivocal assignment of the Z- and
E-isomers. The mean deviation between experimental and calculated NMR chemical
shifts at the CCSD(T) level is 1.8 and 2.0 ppm for Z- and E-isomers, respectively. It
is noteworthy, but most likely fortuitous, that the lower level MP2 calculations give
marginally better results. These results clearly demonstrate the degree of accuracy
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provided by state-of-the-art coupled-cluster calculations of NMR chemical shifts,
which allow unequivocal assignment of NMR signals that differ by only a few ppm.
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A b-silyl stabilized vinyl cation, the 1-bis(trimethylsilyl)methyl-2-bis(trimethyl-
silyl)ethenyl ion (58) was investigated by dynamic 13C NMR spectroscopy [73]. The
rotation around the C+–CH(SiMe3)2 bond is controlled by strong hyperconjugation
with the b-silyl groups. IGLO-HF/II calculations for model cations account for the
strong shielding effect and confirm nicely the dihedral dependence of the b–silyl
effect.

C C C
(H3C)3Si

(H3C)3Si

58

Si(CH3)3
H

Si(CH3)3

23.5
p-Stabilized Carbocations

Quantum chemical calculations at the MP4/6-31G(d)//HF/6-31G(d) level predict
the puckered structures 59 of the cyclobutadienyl (R = H) and the tetramethylcyclo-
butadienyl (R = CH3) dications to be more stable than the planar forms [74]. The
IGLO-HF/DZ (209 and 18.7 ppm, respectively) and experimental (209.7 and
18.8 ppm) chemical shifts for the puckered geometry of the tetramethylcyclobutadi-
enyl dication are nearly identical.

R

R

R

R

2+

59

Arenium cations were the first carbocations investigated by correlated GIAO-MP2
NMR chemical shift calculations. A good agreement between experimental 13C
NMR chemical shifts of the 2,4-cyclohexadienyl cation 60 and the calculated values
at the GIAO-MP2/tzp/dz//MP2/6-31G(d) level was obtained [8] whereas earlier
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IGLO-HF/dz calculations for 60 and 61 deviated significantly from experiment [75].
On the basis of the observed 13C NMR chemical shifts, the total chemical shift dif-
ference criteria, IGLO-HF/DZ chemical shift calculations, and comparison with the
model spiro[2.5]oct-4-yl cation (62), it was concluded that the phenonium ion 61 is a
spirocyclopropylbenzenium ion [76]. A linear correlation between calculated NPA
charges and 13C NMR chemical shifts was found for 60 and some methyl- and tri-
fluoromethyl substituted homologues [77]. (Note, however, that interpretation of
chemical shifts in terms of atomic charges is not generally appropriate, cf. Chap-
ter 18 by Kaupp.)

H H

60 61 62

IGLO-HF 29Si NMR studies of silylated arenium ions 63 and 64 and comparison
with experimental data have been reported [78, 79]. The results indicate that the for-
mation of long-lived trimethyl substituted silyl cations, in the presence of aromatic
solvents, as claimed by Lambert et al. [78, 79], is not feasible under these conditions.
Persistent silicenium ions require sterically more shielding substituents at silicon or
hypercoordinative stabilization [81–83].

H SiR3 H SiR3

CH3

63 64

Me2Si SiMe2
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13C and 29Si NMR chemical shifts were calculated for a series of disilylated arenium
ions 65 at the DFT level of theory. The calculations predict consistently the unsatu-
rated carbon atoms to be too deshielded by 8–15 ppm. Applying an empirical correc-
tion, the deviation between experiment and theory was reduced to –0.4 to –9.0 ppm,
and the 13C NMR chemical shift of the highly diagnostic Cipso is reproduced by the
calculations (Dd= –3.8 to –2.7 ppm) [84].

Below –120 �C the interconversion of the anti (66) and syn (67) 1-p-anisyl-2-triiso-
propylsilyl-ethyl-cation is slow on the NMR timescale [85]. Two sets of four lines are
observed, one for the C2 and C6 ortho and C3 and C5 meta carbons in the anti iso-
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mer, and another set with lower intensity for the C2¢ and C6¢ ortho and C3¢ and C5¢
meta carbons in the syn isomer. At higher temperatures kinetic line broadening and
coalescence is observed. NMR chemical shift calculations were performed for the
B3LYP/6-31G(d) optimized anti and syn isomeric structures of the analogous 1-p-ani-
syl-2-SiH3 substituted ethyl cation which are close models for the experimentally ob-
served cations. B3LYP/6-31G(d) calculated NMR chemical shifts for both the anti
and syn isomer generally show deviations of more than 10 ppm and up to about
20 ppm for the SiR3 substituted b-carbon (calc. R = H, exp. R = CH(Me2)) compared
to the experimental values. The deviations from experiment are smaller (< 8 ppm)
when the 6-31G(d,p) basis set is used. SOS-DFPT-IGLO/III using the Perdew-
Wang91 density functional yields the smallest deviations < 6 ppm (excluding the
b-carbon chemical shift). The calculated differences between the chemical shifts for
the two isomers allow, however, unequivocal assignment of the experimental signals
at the lowest level of the calculations.
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Substituted benzylic mono- and dications (68 and 69) were investigated by 1H and
13C NMR spectroscopy and IGLO-DFT calculations [86]. The results suggest that chi-
noid type structures are the predominant resonance contributors for 68. The IGLO/
DZ//3-21G calculated 13C NMR chemical shifts of benzylic monocations 68 correlate
reasonably well with the experimentally obtained data. The 13C NMR chemical shifts
of the carbocation centers (CH2 carbon) are calculated 10.6–12.5 ppm too
deshielded. Similar results were obtained for benzylic dications 69.
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CH2

NMR chemical shifts of arenium ions derived from various classes of polycyclic aro-
matic hydrocarbons have been calculated using GIAO-DFT methods [87]. Generally,
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for these arenium ions, the calculated 1H NMR chemical shifts are overestimated
whereas the 13C NMR chemical shifts are in many cases underestimated.

In conjunction with the evaluation of ring current effects (NICS), (see Chapter 24
by Chen et al.), calculations of 1H and 13C NMR chemical shifts for a series of fluor-
enylidene dications were performed [88].

For some homoaromatic carbocations the magnetic criteria have been calculated
[89, 90]. IGLO-HF and GIAO-MP2 calculated 13C-NMR chemical shifts for bisho-
moaromatic 7-norbornenyl 70 and 7-norbornadienyl cation 71 have also been
reported [91].

7170

The cyclobutenyl cation (72) and the homotropylium cation, C8H9
+ (73), are both

prototypes of homoaromatic systems. 72 is one of the first examples demonstrating
that electron correlation is required both for geometry and NMR shift calculations
[9]. The IGLO-HF/6-31G(d,p) calculated 13C NMR chemical shifts of the planar
form 74 clearly deviate from the experimental values (mean deviation D = 45.6 ppm),
which alternate in the seven-membered ring between 122 and 194 ppm, whereas
those of the non-planar form 73 are in good agreement with the experiment (mean
deviation D = 6.2 ppm) [92].

CH2

72 73 74

DFT-calculated 13C NMR chemical shifts for the pentamethylcyclopentadienyl cation
and the (CH3)5-cyclopentenyl cation 77 provide conclusive evidence that the alleged
synthesis and isolation of the potentially antiaromatic (CH3)5-cyclopentadienyl cat-
ion was not achieved [93]. Instead the allyl cation 77 was obtained. The reported
experimental 13C NMR data (d13Cexp: d= 250/243, 153, 60) are in agreement with
this structure, but differ significantly from the calculated 13C NMR chemical shift
for both Jahn–Teller distorted valence isomers of 75 and 76.
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Carbocations have been generated in zeolites and were characterized by CPMAS 13C
NMR spectroscopy and accompanying quantum chemical calculations [94]. 13C iso-
tropic shifts calculated at the GIAO-MP2/tzp/dz level for the 1,3-dimethylcyclopen-
tenyl (78) and 1,2,3-trimethylcyclopentenyl cations (79) [95] are in agreement with
experimental spectra of the carbocations in the zeolite [96]. In both cases the calcu-
lated values are downfield of the experimental shifts (by ~ 5 ppm). It was suggested
that the presence of the zeolite and motional averaging has some effect on the
chemical shifts.

78 79
80

The heptamethylcyclopentenyl cation 80 was also characterized on zeolite [97]. 13C
NMR chemical shifts were calculated at the GIAO-MP2 using DFT geometries. Dis-
crepancy levels of up to 17 ppm were suggested to result from geometrical distor-
tions due to the zeolite cage. Other carbocations on zeolites, such as arenium [98]
and 1,3-arylsubstituted allyl cations [99] have also been investigated by experimental
and computational NMR methods.

23.6
Heteroatom Stabilized Carbocations

The experimental 13C-NMR chemical shift of the simplest member of the acylium
ions, the formyl cation HCO+ was reported as d= 139.5 ppm (85 atm) which com-
pares well with the GIAO-MP2 calculated shift of d= 136 ppm [100, 101]. The analo-
gous fluoroformyl cation FCO+ and protonated fluoroformic acid [FC(OH)2]+ were
characterized experimentally [102] (d13C = 117.5 ppm and d13C = 157.8 ppm, respec-
tively) as well as computationally (d13C= 118.6 ppm and d= 170.6 ppm, respectively)
[103].
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A systematic study of experimental and calculated 13C and 17O NMR chemical
shifts of oxonium, carboxonium [104], trifluoromethyl- [105] and trimethylsilyl- [106]
substituted carboxonium ions and the corresponding acyl cations [107, 108] showed
GIAO-MP2 to be superior to the IGLO-HF and GIAO-HF methods. Whereas for 13C
shifts tzp/dz basis sets are sufficient, qz2p/qz2p basis sets are required for an accu-
rate prediction of 17O chemical shifts.

The principal components of the 13C chemical shift tensors for some acylium cat-
ions were determined by slow speed MAS NMR and quantum chemical methods
[109]. A good agreement between the theoretical prediction and the experimental
shift components of the acylium ions was found, which does not require inclusion
of Lewis acid counteranions in the theoretical model, as was suggested for the iso-
propyl cation [27].

The 13C and 19F chemical shifts of a number of fluorocarbocations [110] and other
halomethyl cations and their protonated forms have been studied experimentally
and computationally [111]. It was shown by spin–orbit corrected IGLO-DFT calcula-
tions that for halomethyl cation CX3 ( X = F, Cl, Br, I) the experimentally observed
decrease in the 13C chemical shifts with increasing atomic number of X is due to
spin–orbit coupling [112]. Previous explanations for this example of a �normal halo-
gen dependence’ via electronegativity arguments were based on fortuitous empirical
correlations. Comparison between IGLO-DFT, GIAO-HF and GIAO-MP2 results for
these systems also demonstrates an increasing importance of electron correlation
along the same series.

The 13C, 15N and 17O NMR chemical shifts of some substituted methyl cations
and the corresponding protonated dications were calculated by the GIAO-MP2
method on MP2/6-31G(d) geometries [113].

The o-, m- and p-phenylene bis(1,3-dioxolanium) dications 81 and the related
tris(1,3-dioxolanium) trication have been prepared and the calculated 13C and 17O
NMR chemical shifts (GIAO-DFT) closely match the experimental values [114]. The
calculated 13C chemical shift of the carbonyl carbon of monoprotonated benzalde-
hyde [115, 116] for the E-form 82 (205.5 ppm) and that for the Z-form 83
(207.4 ppm) agree well with the experimental shifts of 203.5 and 205.9 ppm, respec-
tively. Protonation of a-substituted cinnamic acids such as 84 was studied by 13C
NMR spectroscopy and IGLO-HF computations [117].

O
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O
H

82 83

O

O

OO

81

HO

OH

84
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Protonated deltic acid (85) and related compounds [118, 119], as well as protonated
urea 86 (X = O) [120] and thiourea 86 (X = S) [121] have been investigated by 13C
NMR spectroscopy and quantum chemical calculations [122]. GIAO-MP2 NMR
results for DFT optimized geometries and comparison with experimental data were
used to study the site of protonation of dimethyl sulfoxide [123]. The calculated 13C
chemical shift of O-protonated DMSO 87 (40.0 ppm) matches with the experimental
value of 34.3 ppm. The calculated 13C chemical shift of S-protonated DMSO 88 is
3 ppm deshielded compared to that calculated for 87.

OH

OHHO

85

XH

H2N NH2

86

H3C CH3

S
O

H

H3C CH3

S
OH

87 88

NMR chemical shifts of protonated carbonic acid 89 and 90 were investigated
experimentally and computationally using IGLO-HF/II and MP2/6-31G(d) geome-
tries [124]. The data indicate that in strong acidic solution H2CO3 may be in equilib-
rium with protonated carbonic acid. The structures of carbamic acid and its O- and
N-protonated forms 91 and 92 were calculated at the MP2/6-31G(d) level [124]. The
calculated 13C and 15N NMR chemical shifts, using the IGLO-HF and GIAO-MP2
methods, however, deviate substantially from the experimental results. This is in
contrast with the previously reported results on protonated guanidines 93 and 94
[125] where GIAO-MP2 calculated 13C and 15N NMR chemical shifts were found to
be in agreement with experiment. 13C and 15N NMR chemical shifts were calculated
for protonated diazomethane (CH3N”N)+ and the cyanodiazonium ion (N”CN”N)+

[126]. For the C-protonated diazomethane, which is more stable than the N-protonat-
ed species, the IGLO-HF calculated 13C chemical shift of 54.1 ppm agrees with the
experimental value of 44.5 ppm. 15N NMR chemical shifts were calculated as 237.9
and 379.9 ppm.
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The 1H, 6Li and 13C NMR chemical shifts of the cyclopropenium cation and its
lithium derivatives are calculated at both the GIAO-DFT and GIAO-HF levels using
B3LYP optimized geometries [127]. It was shown that lithium is even more effective
than the amino group in stabilizing the ethyl, vinyl, allenyl and cyclopropenium cat-
ions [128].

23.7
Conclusions

Calculation of NMR parameters such as chemical shift and spin–spin coupling con-
stants have evolved into an important tool in carbocation chemistry, as well as in
related fields such as silylenium ion and borane chemistry, which are not considered
in this chapter. Computational NMR methods have provided detailed information
on structures and stabilization modes of carbocations and deeper insights into in-
triguing questions and longstanding controversies in carbocation chemistry. The
everlasting need for better tools and methods to explore the field has triggered the
further development of NMR computational methods. Carbocation chemistry thus
serves as a forerunner for a close integration of experimental and computational ap-
proaches in all areas of chemistry.
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24.1
Introduction

Few concepts are as frequently used in the current chemical literature as aromaticity
[1]. The traditional criteria for aromaticity include chemical behavior (lower reactiv-
ity), structural features (planarity and equal bond length tendencies), energetic (sta-
bility), and spectroscopic properties (UV, proton chemical shifts, magnetic suscepti-
bility exaltation). A new magnetic criterion, nucleus-independent chemical shifts
(NICS) [2], has proven to be a simple and efficient aromaticity probe, and is being
employed with increasing frequency since its introduction in 1996, as shown by
more than 490 citations till December 2003. Using this easily computable quantity,
various long-standing chemical questions have been solved, and novel aromatics
have been identified. Along with its ever wider application, the NICS method has
also been enhanced and refined. This chapter gives an overview of NICS as well as
the related aromatic ring-current shielding (ARCS) [3] method.

24.2
An Overview of Aromaticity Indices Based on Magnetic Shielding

Calculations of NMR chemical shifts at various levels of theory have become a stan-
dard tool in chemistry [4]. Because of the sensitivity to the electronic structure in
their environment, magnetically active nuclei can be used to probe the near-by
shielding influences. This is one of the reasons why NMR spectroscopy rivals X-ray
diffraction as the best experimental method for characterizing molecular structure
[5].

Schleyer et al. introduced nucleus-independent chemical shifts (NICS) in 1996
[2]. NICS indices are the negative value of the magnetic shielding computed at cho-
sen points in the vicinity of molecules. They are typically computed at ring centers,
at points above, and even on grids in and around the molecule. Significantly nega-
tive NICS values in interior positions of rings or cages indicate the presence of
induced diatropic ring currents, interpreted as “aromaticity,” whereas positive values
denote paratropic ring currents and “anti-aromaticity”.
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Li+ was the first computational aromaticity probe to sense electron-delocalization
before the development of NICS [6], which led to the development of the NICS
method. Because lithium bonding is primarily ionic and electrostatic, experimental
Li chemical shifts generally show little variation. The exceptions involve aromatic (or
anti-aromatic) compounds where Li+ binds ca. 2 � above p faces. At such distances,
the shieldings (deshieldings) are still 5–10 ppm or more. However, the utility of Li+

as a computational aromaticity probe was limited due to its influence on the studied
system: unlike NICS, Li+ cannot be placed in the center of arene rings. However, it
could be computed, for example, in the center of fullerenes, and the first theoretical
study of the magnetic properties of 3He@C60 included Li+@C60 data [7]. Shifts of
chemically inert 3He and NICS values at fullerene centers are in very good agree-
ment [8], and serve as an effective tool for characterizing fullerene structures (see
also Chapter 25). Other possibilities to evaluate NICS experimentally include 1H
shifts of methane at places on top of aromatic rings, where the shielding cone of the
ring strongly influences the chemical shift of the probe atom [9].

Being based directly on cyclic electron delocalization, the essence of aromaticity,
NICS has the advantage over many other aromaticity criteria, in the sense of not
requiring reference standards, increment schemes, or calibrating (homodesmotic)
equations for evaluation. Actually, NICS can be related to the energetic, geometric,
and other magnetic criteria of aromaticity [10]. However, NICS values do not depend
purely on the delocalized electronic system, i.e. the p system, but also on other mag-
netic shielding contributions due to local circulations of electrons in bonds, lone
pairs and atom cores. Thus, NICS approaches being an “absolute” measure of cyclic
electron delocalization only when the radii of the systems are relative large, and
hence the local shielding effects are negligible. For planar or nearly planar mole-
cules, these complicating influences are reduced above ring centers. As the p orbit-
als have their maximum density in this area, NICS(1) values (i.e., at points 1 �
above the ring center) were recommended as being better measures of p effects
than NICS(0) (i.e. at the ring center) [11].

The distribution of NICS values on grids around molecules has been studied in
various cases [11b] and provides insight on diatropic and paratropic regions, as is
illustrated for C4H4 and C6H6 in Fig. 24.1.

The shape of the magnetic shielding function also provides information about
electron delocalization and molecular aromaticity [12]. Klod and Kleinpeter [12] de-
duced anisotropic effects by evaluating NICS in a three-dimensional grid. The direc-
tion and the size of the anisotropy effect of double or triple bonds, or of aromatic
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Figure 24.1 NICS grid of benzene and cyclobutadiene.
The red and green colors denote negative and positive
NICS values, respectively.
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rings, can be obtained by plotting iso-chemical-shielding surfaces (ICSS), which
actually are isosurfaces of NICS values (see Fig. 24.2).

A NICS-related method, the aromatic ring-current shielding (ACRS), was intro-
duced in 1999 by Jus�lius and Sundholm [3]. In the ARCS method, the long-range
part of the shielding function (e.g. 3–20 � from the ring) is used to provide informa-
tion about the induced ring current. A simple relation between the long-range be-
havior of the isotropic magnetic shielding function r(z) and the current susceptibili-
ty with respect to the applied magnetic field can be derived from Biot–Savart’s law
by assuming that the wire carrying the current is circular and infinitely thin. The
ARCS expression relating the long-range part of the magnetic shielding function to
the ring-current susceptibility and to the size of the aromatic pathway is then

rðzÞ ¼ �
l

0
2

@Iring

@Bext

R
2

ðz2 þ R
2Þ3=2

ð24:1Þ

where r(z) is the shielding function, z is the perpendicular distance from the center
of the current loop, l0 is the vacuum permeability, ¶Iring/¶Bext is the current suscep-
tibility, Bext is the external magnetic field, and R is the radius of the current loop.
The strength of the ring-current susceptibility can be defined as the ARCS aromati-
city index. The current susceptibility can be obtained by calculating the shielding
function at many NICS points along the z-axis and fitting them to Eq. (24.1). For
planar molecules, the current is assumed to circulate in the molecular plane,
whereas for non-planar homoaromatic molecules, the symmetry axis (z axis) is the
one with the largest moment of inertia [3g]. The shielding contributions due to local
currents around the nuclei and in the chemical bonds have small loop radii and
decline fast with the distance from the molecule. For nonaromatic molecules, the
shielding practically vanishes outside the electron density. As the effective current
radius of aromatic rings is significantly larger, the long-range shielding is mainly
due to electron delocalization i.e. the strength of the induced ring current. The size
of the current loop and the ring-current susceptibility can be deduced from a loga-
rithmic fit as shown in Fig. 24.3.

The center of the current loop used in the ARCS fit can be estimated from a plot
of the ARCS function [3g]. For planar molecules, the ring center is the obvious
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Figure 24.2 Comparison of the calculated 0.5 ppm shielding
surface for annelated aromatic ring systems: (a) benzene,
(b) naphthalene, (c) anthracene, (d) tetracene, (e) pentacene.
View in the plane of the molecules. (Reproduced from Ref. [12a],
by permission of The Royal Society of Chemistry.)
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ARCS origin, while for non-planar molecules, the choice of origin is somewhat arbi-
trary. However, the ARCS indices are found to be rather independent of the precise
location of the ARCS origin.

The molecular aromaticity can be studied in more detail by employing orbital
decomposition of the shieldings inherent in the IGLO (individual gauge for local-
ized orbitals) method. Disturbing effects from the r contribution can be removed by
“dissected NICS” methods [11], in which only the part attributed to the p system is
employed to characterize the aromaticity. The total shielding can be dissected into
individual contributions from each localized molecular orbital (LMO) associated
with bonds, lone-pairs and core electrons [13]. The LMOs can be constructed in sev-
eral ways. The procedure proposed by Pipek and Mezey [14] has several advantages,
which are important for such LMO-NICS computations. It separates r and p sys-
tems by means of orbital symmetry when applied to planar molecules. Statistical
analyses have indicated the p sums, �NICSp, at the ring centers of related series of
molecules to be an even better measure of aromaticity than NICS(0); NICS(1) also is
often better than NICS(0) [10d]. The r contributions, dissected in LMOs and corre-
sponding to individual bonds, are also important for the interpretation. In many
cases, NICS(1)p values are quite similar to NICS(1)total, which reinforces the validity
of the NICS(1) index.

However, the original LMO-NICS implementation necessarily has the limitations
of the localization scheme. NICSp can also be obtained using other orbital represen-
tations such as natural bond orbitals (NBO) [15] and canonical orbitals [16]. In this
approach, some individually selected orbitals are transformed to a localized set of
orbitals. MO-NICS, a generalization of this method, distinguishes NICS contribu-
tions of the individual molecular orbitals. The GIAO (gauge-including atomic-orbit-
als) method [17] is applied and individual orbital contributions to the shielding ten-
sor are given instead of LMOs or groups of orbitals [18]. NICSp indices can also be
calculated using this method.

MO-NICS is based on the present implementations of the uncoupled form of cur-
rent-density functional theory [19], and is restricted to �pure’ DFT calculations (i.e.
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Figure 24.3 The ARCS fit for benzene. The long-range magnetic
shielding function r(z) (in ppm) was calculated at the second
order Møller–Plesset perturbation theory level.
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hybrid functionals cannot be used). The shielding tensor can then be written as a
sum of orbital contributions, each of which can be very important for the interpreta-
tion. In annulenes, the lowest-energy p orbital gives the largest contribution to
NICS. In the case of antiaromatic D2h C4H4 the p contributions of the two orbitals
nearly cancel (Fig. 24.4). In agreement with intuition and London–H�ckel suscept-
ibilities [20], the character and magnitude of the MO-NICS contribution depends on
the number of nodes along the ring. The r system is highly diatropic for low-energy
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Figure 24.4 MO-NICS values of valence orbitals of D6h C6H6

(top) and antiaromatic D2h C4H4 (bottom). MO-NICS are given
in ppm, the energy scale is in Hartrees. p orbital information is
given in gray.



orbitals, but becomes highly paratropic for high-energy orbitals, since these contain
many nodes around the ring not passing through atoms (see Fig. 24.4).

The ab initio ring-current [21] model was developed by Lazzeretti et al. starting in
1982 [22]. This model has been used frequently for plotting the ring current density,
usually at one Bohr (a0) above the ring plane. Steiner and Fowler extended this
approach to molecular orbital dependent contributions [23]. The “anisotropy of the
current-induced density” (ACID) [24] is a related method for visualizing the delocal-
ization in aromatic and other molecules.

24.2.1
Comparison of NICS-Based Methods

Table 24.1 compares the performance of the NICS, NICSp, MO-NICS and ARCS
methods for a series of small molecules. The methods and their results are nicely
complementary: All aromatic compounds exhibit negative NICS. However, accord-
ing to NICS(0), the transition-metal complex Cr(CO)3C6H6 is found to be more aro-
matic than benzene, and ARCS calculations on Cr(CO)3C6H6 show that despite the
fact that no satisfactory ARCS fit can be obtained for the whole range, the shielding
at about 25 � is significantly smaller than for a free benzene molecule, indicating
that the large NICS indices are not due to induced ring currents. The NICSp index
shows that the p systems of these two molecules are very similar. NICS, NICSp and
ARCS agree that C5H5

– is more and C7H7
+ is less aromatic than benzene. The

ARCS method attributes this to the current radius, i.e, the ring size, which is small-
er for C5H5

– than for C7H7
+. MO-NICS shows that lowest-energy r and p orbitals

give diatropic contributions. The p contributions are dominated by the lowest-ener-
gy orbitals NICSp0, (i.e. the p orbitals without nodes in the xy-plane) in agreement
with H�ckel and London–H�ckel computations [20]. These largest contributions to
NICS arise from a nearly isotropic shielding tensor, whereas the contributions of
the frontier orbitals are determined by the zz-component of the shielding tensor.
This agrees with current density plots, which suggest that only the frontier orbitals
exhibit a measurable ring current density [23]. NICS(1) is capable of removing r and
other complicating effects. For the transition metal-containing molecule, the falloff
of the p contributions is much faster than for benzene itself. The homotropylium
cation C8H9

+ is another non-planar molecule. The ARCS method shows that this
molecule has a stronger diatropic ring current than even benzene. NICS confirms
this observation. However, NICSp and MO-NICS show that the aromaticity is mainly
caused by the r framework of this molecule. NICSp is nearly zero, and the MO con-
tributions of the p-like orbitals are very small. It is interesting to note that the
NICSp0 orbital is paratropic. All p orbitals of this molecule have higher MO energies
than the r orbitals, which is different than for example in annulenes. As this non-
planar molecule does not have clearly separated r and p MOs, the dissection into r
and p contributions is only qualitative. The mixing of the p contributions with the r
bonds contributes to the strongly diatropic character.
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In summary, we note the advantages of having different metrics, as no one of
them provides all the information which can be deduced from the consistent picture
given by all together.

24.3
Applications

The early theory of aromaticity was dominated by H�ckel’s rule stating that planar
ring systems with 4n + 2 p electrons are aromatic. This rule governs strictly only the
aromaticity of two-dimensional systems. However, it can be extended to systems
that deviate only modestly from planarity such as homoaromatic molecules, and
even to some systems which are clearly “three dimensional” [25].

24.3.1
M�bius Aromaticity

In 1964 Heilbronner [26] predicted that singlet [4n]annulenes would be aromatic
systems in twisted conformations where the p orbitals lie on the surface of a M�bius
strip (Fig. 24.5). However, M�bius annulenes conforming to Heilbronner’s original
idea were not reported until 1998, when Schleyer et al. [27] first deduced that the
most stable conformation of the known cyclic C9H9

+ 8p cation has C2 symmetry (1,
Fig. 24.6). This species sustains a diatropic ring current, quantified as a negative
NICS value, and has a geometry consistent with significant M�bius aromaticity.
Employing the NICS tool, Rzepa et al. [28] found that replacing a two-electron C=C
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Table 24.1 The molecular radius Rmol (in �), NICS, NICSp, MO-NICS (r and p contributions with 0 and 1
nodes along the ring, respectively, see Fig. 24.4). ARCS parameters include the ratio between ring current
and molecular radius (RI/Rmol) and ARCS susceptibilities (¶I/¶B in nA T–1).

NICS(0) NICS(1) ARCS

Rmol NICS NICSp NICSr0 NICSr1 NICSp0 NICSp1 NICS NICSp RI/Rmol @I
@Bext

nA
T

� �

C6H6 (D6h) 1.386 –8.9 –20.7 –8.9 –15.2 –3.6 –5.1 –10.6 –9.7 0.88 8.0
C4H4 (D2h) 1.033 +21.5 +0.9 –17.8 –23.8 –2.6 +25.2 +13.3 +14.8 b b

Cr(CO)3C6H6 (C3v) 1.407 –24.2 –21.0 –12.0 –7.4 b b

C5H5
– (D5h) 1.204 –15.0 –22.1 –12.6 –18.9 –3.8 –3.4 –11.0 –6.6 0.64 18.1

C7H7
+ (D7h) 1.609 –6.7 –17.5 –6.1 –11.2 –3.6 –5.5 –9.5 –9.7 1.01 6.0

C8H9
+ (Cs) 1.718 –10.9 +1.3a –6.7a –4.2/–4.0a +4.6 –3.2/–0.1a –14.0 +0.5 0.61 14.7

Examples are taken from Ref. [11] and [3g]. All values at the IGLO-PW91/
IGLOIII level, except MO-NICS at GIAO-PW91/IGLO-III level of theory, and
ARCS for homotropylium C8H9

+ was studied at CHF/SVP, MO-NICS and
NICS(1) calculations are carried out at the same level as for the other mole-
cules.

a) For C8H9
+, a clear classification of r and p contributions is impossible due to

strong mixing of the contributions.
b) No ARCS fit possible.



double bond in a planar 4n + 2 H�ckel aromatic ring with the four-electron allene
unit (C=C=C) (as in 2) induces modest 4n M�bius aromaticity and C2-derived chiral-
ity in a variety of ring conjugated systems. Moreover, M�bius heteropines 3 [29] and
carbeno[8]heteroannulenes 4 [30] with 8p electrons have also been confirmed as aro-
matic species. Most recently, Schleyer et al. [31] predicted M�bius local minima of
[12]-, [16]- and [20]annulene; the aromaticity of these [4n]annulenes was demonstrat-
ed by NICS.

24.3.2
Aromaticity of Triplet States

Aromaticity is not limited to singlet states. According to the H�ckel MO theory, pla-
nar 4n p-electron annulenes in Dnh symmetry have degenerate ground states and
should be non-aromatic. However, Baird concluded in 1972 that the rules for aroma-
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Figure 24.5 Schematic representation
of the M�bius type overlapping p orbitals.

Figure 24.6 B3LYP/6-311+G** optimized structure of 1
and its NICS values.

Scheme 24.1



ticity (4n+2) and antiaromaticity (4n) of annulenes are exactly reversed for the lowest
triplet state [32]: the triplet 4n p-electron annulenes should be regarded as being
aromatic rather than antiaromatic. This was confirmed by the comprehensive ab
initio investigations on triplet C4H4, C5H5

+, C6H6
2+, C7H7

–, C8H8, and C9H9
+. [33]

The triplet aromaticity in these annulenes with 4n p-electrons is not only document-
ed by their negative NICS values, but also by structural, energetic and magnetic cri-
teria such as planarity of near planarity, equalization of bond lengths, low-energy
triplet states, appreciable aromatic stabilization energy, downfield 1H NMR chemical
shifts (when the paramagnetic effects of unpaired electrons are not included in the
computations, see Chapter 20 by Moon and Patchkovskii for a full treatment), and
significant diamagnetic susceptibility exaltations.

The triplet states of the M�bius conformations of annulenes can also be aromatic
when 4n+2 electrons participate in the electron delocalization. Rzepa et al. [30a] pro-
posed the first formal example 5 in 2002.

24.3.3
Spherical Aromaticity

An important NICS application is the verification of the Hirsch 2(N+1)2 electron-
counting rule for spherical aromaticity, proposed as the counterpart of the H�ckel
4n+2 rule for planar systems [34]. The 2(N+1)2 rule was initially applied to Ih-sym-
metrical fullerenes, i.e. C20

2+, C60
10+ and C80

8+ that are exceptionally aromatic due to
the complete filling of the electronic shell [35]. This rule also holds for other highly
symmetrical systems belonging to Td, Oh, and related point groups, e.g. inorganic
clusters including the six- and twelve vertex closo-boranes, Zintl ions [36], and a few
hydrogen and lithium clusters [35]. More importantly, a series of spherical homoaro-
matic systems have been designed on the basis of this rule, expanding the classical
concept of homoaromaticity into three dimensions [37]. A more comprehensive
review [38] on this topic has just appeared.

The p system of fullerenes covers the entire molecule, and is electronically impor-
tant as HOMO and LUMO orbitals have p character. NICS computations give the
local aromaticity of the p system in a given ring, and the endohedral NICS values
give the shielding of the cage. Such NICS computations have been performed by
B�hl for various fullerene cages [8]. These computations show that the pentagons of
C60 are paratropic, while the hexagons have diatropic NICS values. Other fullerenes
have also been studied, and in all cases the pentagons have been found to be much
more strongly paratropic than the hexagons of the same cage. The shielding inside
the fullerenes was related to projected ring currents on the fullerene surface in a
similar way as in the ARCS method, and it was shown that the endohedral shielding
originates from the induced currents in the surrounding carbon shell [8].

Integration of Eq. (24.1) also shows that the shielding is constant inside a spheri-
cal, infinitely thin and magnetically susceptible shell. ARCS functions calculated
along the symmetry axes through the five- and six-membered rings of C60 are
shown in Fig. 24.7. The shielding is almost constant inside the fullerene. The large
change in the ARCS functions at the fullerene surface is due to the induced ring
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currents in the carbon network. The sign change of the ARCS functions shows that
the current in the five-membered rings is mainly paratropic and that the six-mem-
bered rings sustain diatropic currents [39]. As seen in Fig. 24.7, it is not easy to
deduce an accurate value for the current susceptibility from the ARCS functions.
However, the absolute value of the shielding at the maximum (and minimum) of
the ARCS functions is about half the corresponding value for benzene, indicating
that the current susceptibility for C60 is about half that of benzene.

24.3.4
Aromaticity of Pericyclic Reaction Transition Structures

As early as 1938, Evans and Warhurst recognized stabilization due to aromatic delo-
calization of the cyclic transition state of the Diels–Alder reaction of butadiene and
ethylene [40]. Delocalization of the p electrons of the transition state (TS) was found
to decrease the energy of the TS, thereby lowering its activation energy [41]. Employ-
ing NICS and other aromaticity probes, Jiao and Schleyer [42] confirmed the aroma-
ticity of not only the Diels–Alder transition but also of many other thermally allowed
pericyclic reactions, including acetylene trimerization to benzene and isomerization
from diademane to triquinacene. Moreover, the in-plane aromatic transition states
in 1,3-dipolar cycloaddition reactions have been analyzed in detail [43].

Geerlings et al. investigated the effect of the aromaticity on the path of the Diels–
Alder reactions of various quinodimethanes with ethylene [44]. A progressive gain
in aromaticity of both rings occurs during the reaction. The increase of aromaticity
along the IRC is fully supported by NICS computations. However, more detailed
MO-NICS analysis showed that the r system influences the diatropic character of
the TS to a large extent, and the transformation of the peripheral ring can be
described correctly using 13C and 1H data and NICSp, while NICS remains constant
from TS to product [45]. The lowest barrier pathway and the most exothermic reac-
tions are dictated by the high degree of aromaticity, in support of Evans’s prescient
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Figure 24.7 The magnetic shielding function (in ppm)
along the symmetry axes through the five- and six-member
rings of C60.



proposition. The same conclusions pertain to the Diels–Alder reactions between qui-
nodimethanes with C60 [46].

24.3.5
r-Aromaticity and r-Antiaromaticity

Electron delocalization also exists in r-systems. The r-aromaticity of cyclopropane is
now well established; the aromatic character of three-membered rings (3MR) in
many compounds has been verified by NICS computations [47]. Most recently,
LMO- and MO-NICS analyses of hydrocarbon rings and cage systems [48] have dem-
onstrated the contrasting diatropic character of 3MR and 5MR on the one hand, and
the paratropic 4MR behavior on the other. The archetypal aromatic shielding
r-framework of cyclopropane is magnified in tetrahedrane and other 3MR-contain-
ing cages. However, cyclobutane and related molecules with 4MRs (particularly
cubane) have strongly deshielding CC(r) bonds (i.e. r-antiaromatic). Such electronic
effects influence the strain energies: tetrahedrane is less strained and cubane more
strained than expected on the basis of their angle deviations from tetrahedral.

The aromatic H3
+ is the archetypal 4n+2 r-electron system, but larger, hypotheti-

cal Dnh symmetrical hydrogen rings also have been characterized as aromatic [49].
Experimental and theoretical evidence for a r-aromatic bimetallic cluster Au5Zn+

has been presented [50]. The delocalization of the six r-electrons in its planar geom-
etry is consistent with its higher stability and abundance in gas phase experiments.

24.4
Outlook

Since its introduction in 1996, the NICS concept using computed magnetic shield-
ings as an aromaticity index has been refined and enhanced considerably. NICS is
being used more and more widely, to characterize the aromaticity and antiaromati-
city of not only rings, but also clusters, transition states, transition metal complexes
etc.

The large flora of related methods to measure the molecular aromaticity from
magnetic shieldings yields qualitatively the same aromaticity indices. The present
indices highlight different aspects of magnetic aromaticity, such as the role of the r
and p systems, bond contributions, or projected ring currents. However, as the
quantitative degree of aromaticity obtained using different approaches still differs
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Figure 24.8 The sketch of the most
stable isomer of Au5Zn+ (C2v).



significantly, there is still a need for a more explicit way of determining the molecu-
lar aromaticity. Further developments, such as a method for explicit determination
of induced ring currents using GIAO [51] and improvements and extensions of the
NICS concept are in progress.

Acknowledgment

We thank the Deutsche Forschungsgemeinschaft (HE 3543/1), University of Geor-
gia, the US National Science Foundation (Grant CHE-0209857), The Academy of
Finland, and the Fonds der Chemischen Industrie for funding. ZC thanks Prof.
Andreas Hirsch and Prof. Walter Thiel for support.

24 Aromaticity Indices from Magnetic Shieldings406

References

1 See reviews: a) V. I. Minkin, M. N. Glukhovt-
sev, B. Y. Simkin, Aromaticity and Antiaromati-
city, John Wiley & Sons, New York 1994;
b) P. v. R. Schleyer, H. Jiao, Pure Appl. Chem.
1996, 68, 209; c) D. Lloyd, J. Chem. Inf. Com-
put. Sci. 1996, 36, 442; d) T. M. Krygowski,
M. K. Cyranski, Z. Czarnocki et al., Tetra-
hedron 2000, 56, 1783; e) P. v. R. Schleyer
(guest editor) Chem. Rev. Special Issue on Aro-
maticity, May 2001.

2 P. v. R. Schleyer, C. Maerker, A. Dransfeld et
al., J. Am. Chem. Soc. 1996, 118, 6317.

3 a) J. Jus�lius, D. Sundholm, Phys. Chem.
Chem. Phys. 1999, 1, 3429; b) J. Jus�lius,
D. Sundholm, Phys. Chem. Chem. Phys. 2000,
2, 2145; c) J. Jus�lius, D. Sundholm, J. Org.
Chem. 2000, 65, 5233; d) J. Jus�lius, D. Sund-
holm, Phys. Chem. Chem. Phys. 2001, 3, 2433;
e) J. Jus�lius, M. Straka, D. Sundholm, J. Phys.
Chem. A 2001, 105, 9939; (f) R. J. F. Berger,
M. A. Schmidt, J. Jus�lius et al., Z. Naturforsch.
B 2001, 56, 979; (g) J. Jus�lius, M. Patzschke,
D. Sundholm, Theochem. 2003, 622, 123;
(h) J. Jus�lius, M.Sc. Thesis, Department of
Chemistry, University of Helsinki, 2000.

4 (a) M. B�hl, M. Kaupp, O. L. Malkina et al.,
J. Comput. Chem. 1999, 20, 91; (b) Z. Schrecken-
bach, T. Ziegler, Theor. Chem. Acc. 1998, 99,
71; (c) B. Wang, U. Fleischer, J. F. Hinton et
al., J. Comput. Chem. 2001, 22, 1887.

5 H. G�nther, NMR Spectroscopy: Basic Princip-
les, Concepts, and Applications in Chemistry, 2nd
edition, Wiley and Sons, New York 1995.

6 a) L. A. Paquette, W. Bauer, M. R. Slivik et al.,
J. Am. Chem. Soc. 1990, 112, 8776; b) M. B�hl,

N. J. R. van Eikema Hommes, P. v. R. Schleyer
et al., J. Am. Chem. Soc. 1991, 113, 2459.

7 M. B�hl, W. Thiel, H. Jiao, P. v. R. Schleyer et
al., J. Am. Chem. Soc. 1994, 116, 6005.

8 a) M. B�hl, Chem. Eur. J. 1998, 4, 734;
b) M. B�hl, A. Hirsch, Chem. Rev. 2001, 101,
1153; c) G. Van. Lier, P. W. Fowler, F. De Proft
et al., J. Phys. Chem. A 2002, 106, 5128.

9 R. V. Williams, J. R. Armantrout, B. Twamley
et al., J. Am. Chem. Soc. 2002, 124, 13495.

10 a) L. Nyulaszi, P. v. R. Schleyer, J. Am. Chem.
Soc. 1999, 121, 6872; b) I. Alkorta, J. Elguero,
New. J. Chem. 1999, 23, 951; c) T. M. Krygow-
ski, M. K. Cyranski, Chem. Rev. 2001, 101,
1385; d) M. K. Cyranski, T. M. Krygowski,
A. R. Katritzky et al., J. Org. Chem. 2002, 67,
1333.

11 a) P. v. R. Schleyer, H. Jiao, N. J. R. van
Eikema Hommes et al., J. Am. Chem. Soc.
1997, 119, 12669; b) P. v. R. Schleyer,
M. Manoharan, Z. X. Wang et al., Org. Lett.
2001, 3, 2465.

12 a) S. Klod, E. Kleinpeter, J. Chem. Soc., Perkin
Trans. 2, 2001, 1893; (b) S. Klod, A. Koch,
E. Kleinpeter, J. Chem. Soc., Perkin Trans. 2
2002, 1506.

13 W. Kutzelnigg, Isr. J. Chem. 1980, 19, 193.
14 J. Pipek, P. G. Mezey, J. Chem. Phys. 1989, 90,

4916.
15 J. A. Bohmann, F. Weinhold, T. C. Farrar,

J. Chem. Phys. 1997, 107, 1173.
16 C. Corminboeuf, T. Heine, J. Weber, Phys.

Chem. Chem. Phys. 2003, 5, 246.
17 R. Ditchfield, Mol. Phys. 1974, 27, 789.



References 407

18 T. Heine, P. v. R. Schleyer, C. Corminboeuf et
al., J. Phys. Chem. A 2003, 107, 6470.

19 a) W. Bieger, G. Seifert, H. Eschrig et al.,
Chem. Phys. Lett. 1985, 115, 275; b) K. Fried-
rich, G. Seifert, G. Grossmann, Z. Phys. D: At.
Mol. Clusters 1990, 17, 45.

20 D. W. Davies, The Theory of the Electric and
Magnetic Properties of Molecules, Wiley, London
1967.

21 a) P. Lazzeretti, Prog. NMR Spectrosc. 2000, 36,
1; b) J. A. N. F. Gomes, R. B. Mallion, Chem.
Rev. 2001, 101, 1349.

22 P. Lazzeretti, E. Rossi, R. Zanasi, J. Chem.
Phys. 1982, 77, 3129.

23 a) E. Steiner, P. W. Fowler, Chem. Commun.
2001, 2220; b) E. Steiner, P. W. Fowler, J. Phys.
Chem. A 2001, 105, 9553; c) C. Corminboeuf,
T. Heine, G. Seifert et al., Phys. Chem. Chem.
Phys. 2004, 6 (Advance article).

24 R. Herges, D. Geuenich, J. Phys. Chem. A
2001, 105, 3214.

25 E. D. Jemmis, P. v. R. Schleyer. J. Am. Chem.
Soc. 1982, 104, 4781.

26 E. Heilbronner, Tetrahedron Lett. 1964, 1923.
27 M. Mauksch, V. Gogonea, H. Jiao et al., Angew.

Chem. Int. Ed. Engl. 1998, 37, 2395.
28 a) S. Mart�n-Santamar�a, H. S. Rzepa, Chem.

Commun. 2000, 1089 ; b) S. Mart�n-Santama-
r�a, H. S. Rzepa, J. Chem. Soc., Perkin Trans. 2
2000, 2372.

29 W. L. Karney, C. J. Kastrup, S. P. Oldfield et
al., J. Chem. Soc., Perkin Trans. 2 2002, 388.

30 a) C. J. Kastrup, S. P. Oldfield, H. S. Rzepa,
Chem. Commun. 2002, 642; b) C. J. Kastrup,
S. P. Oldfield, H. S. Rzepa, J. Chem. Soc.,
Dalton Trans. 2002, 2421.

31 C. Castro, C. M. Isborn, W. L. Karney et al.,
Org. Lett. 2002, 4, 3431.

32 N. C. Baird, J. Am. Chem. Soc. 1972, 94, 4941.
33 V. Gogonea, P. v. R. Schleyer, P. R. Schreiner,

Angew. Chem. Int. Ed. Engl. 1998, 37, 1945.

34 A. Hirsch, Z. Chen, H. Jiao, Angew. Chem. Int.
Ed. Engl. 2000, 39, 3915.

35 Z. Chen, H. Jiao, A. Hirsch et al., J. Mol.
Model. 2001, 7, 161.

36 A. Hirsch, Z. Chen, H. Jiao, Angew. Chem. Int.
Ed. Engl. 2001, 40, 2834.

37 Z. Chen, H. Jiao, A. Hirsch et al., Angew.
Chem. Int. Ed. Engl. 2002, 41, 4309.

38 Z. Chen, H. Jiao, A. Hirsch, From Synthesis to
Optoelectronic Applications, in Fullerenes, eds.
D. M. Guldi, N. Martin, Kluwer, Dordrecht
2002, pp. 121–135.

39 a) A. Pasquarello, M. Schl�ter, R. C. Haddon,
Science 1992, 257, 1660; b) R. Zanazi, P. W.
Fowler, Chem. Phys. Lett. 1995, 238, 270.

40 M. G. Evans, E. Warhurst, Trans. Faraday Soc.
1938, 34, 614.

41 M. G. Evans, Trans. Faraday Soc. 1939, 35, 824.
42 H. Jiao, P. v. R. Schleyer, J. Phys. Org. Chem.

1998, 11, 655.
43 a) B. Lecea, I. Morao, F. P. Cossio, J. Org.

Chem. 1997, 62, 7033; b) F. P. Cossio,
I. Morao, H. Jiao et al., J. Am. Chem. Soc. 1999,
121, 6737.

44 M. Manoharan, F. De Proft, P. Geerlings,
J. Org. Chem. 2000, 65, 7971.

45 C. Corminboeuf, T. Heine, J. Weber, Org. Lett.
2003, 5, 1127.

46 M. Manoharan, F. De Proft, P. Geerlings,
J. Org. Chem. 2000, 65, 6132.

47 a) P. R. Sauers, Tetrahedron 1998, 54, 337;
b) K. Exner, P. v. R. Schleyer, J. Phys. Chem. A
2001, 105, 3407.

48 D. Moran, M. Manoharan, T. Heine,
P. v. R. Schleyer, Org. Lett. 2003, 5, 23.

49 H. Jiao, P. v. R. Schleyer, M. N. Glukhovtsev,
J. Phys. Chem. 1996, 100, 2299.

50 H. Tanaka, S. Neukermans, E. Janssens et al.,
J. Am. Chem. Soc. 2003, 125, 2862.

51 J. Jus�lius, D. Sundholm, J. Gauss, in prepara-
tion.





25.1
Introduction

13C NMR measurements have always been extremely important in fullerene [1]
chemistry. In the beginning, these molecules were detected in mass spectra only,
and the structure for the first fullerene was a matter of much speculation. Cage
structures have been suggested, and rationalised by the isolated-pentagon rule (IPR)
[2, 3]: C60 is the first fullerene cage, containing only pentagons and hexagons, where
all pentagons can be separated (for detailed discussion, see Ref. [4]). The first proof
for the C60 structure was possible after the development of the Kr�tschmer–Huff-
man technique [5], which allowed the synthesis of larger quantities of fullerene
material. In the same work, C60 was characterised for the first time using infrared
spectroscopy, which showed a four-line spectrum, characteristic for the truncated
icosahedron structure Ih C60.

However, even more convincing was its 13C NMR spectrum [6]. This spectrum
contained a single peak at dTMS = 142.7 ppm (NMR chemical shift with respect to
tetramethylsilane), as expected for the highly symmetrical Ih structure in which all
carbons are identical. This result eliminated planar graphite fragments and fuller-
enes of lower symmetry as possible structures for C60. A sixty-membered polyalkyne
ring would also be expected to exhibit one 13C NMR signal, but the observed chemi-
cal shift position (142.7 ppm), ~15 ppm upfield from benzene, was inconsistent with
this possibility: Alkyne carbons generally resonate between 50 and 100 ppm. Since
that time, 13C NMR, along with mass spectroscopy, has been the standard method
for fullerene characterisation.

There was an immediate need for theoretical analysis of the experimental data, as
direct structure analysis was generally not yet possible, especially for the higher ful-
lerenes. In most cases, only 13C NMR and mass spectroscopic data were available.
Therefore, an important contribution from theoretical chemistry was the topological
analysis of fullerene geometries [4, 7]. Using, for example, the spiral code [4], all
possible fullerene isomer candidates of a given Cn could be created, their point
group symmetries determined, and the number and intensities of 13C NMR signals
of each isomer provided. This information was sufficient for the structure determi-
nation of all experimentally synthesised IPR fullerene cages up to C78 and for C82.
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Topological analysis also showed that the number of isomers rises exponentially
with the size of the cages [4]. Direct assignment of structures from topology
becomes already impossible for C80 and for all fullerenes Cn n ‡ 84, as several iso-
mers with the same symmetry patterns as the experimental one are possible for
these structures. Another outcome of the spiral code is a nomenclature for number-
ing fullerene isomers which has been accepted by the IUPAC [4], for example 60:1
denotes the Ih C60 molecule, as it is the first (and only) spiral for IPR C60.

However, direct simulation of the 13C NMR patterns, also for the lower IPR fuller-
enes, has been welcomed. In the early 1990s computations on fullerenes were, and
still are, challenging tasks for quantum chemists. Fullerenes are large molecules.
Even though their geometry can be optimised accurately at semi-empirical or tight-
binding levels (see, for example, Ref. [8] for an overview), 13C NMR calculations at
decent accuracy were, except for cases of appreciable symmetry, impossible. In the
new and exciting field of fullerene chemistry, 13C NMR characterisation became the
standard method in experiment. Quantum chemistry already had all the means of
treating these systems except fast enough computers. This situation changed in the
late 1990s, when implementations of computational methods further improved and
computational equipment became elaborate enough to perform 13C NMR calcula-
tions at reasonable accuracy and computational effort.

In 2002, Meier et al. summarised the need for quantitative 13C NMR calculations
[9]: �NMR chemical shifts contain a great deal of information about the electronic
structure of molecules. The primary tool for establishing structure in fullerene
chemistry is 13C NMR. However, 13C NMR is often only used to establish the sym-
metry of a new fullerene derivative due to complexity of the spectra and the inher-
ently low sensitivity of the method. The poor understanding of chemical shift disper-
sion in fullerenes prevents the effective use of the additional information present in
the absolute chemical shifts’.

In the following, a technical introduction for efficient computation of NMR pa-
rameters of fullerenes and their derivatives is given. Then, quantum chemical com-
putations of NMR parameters of fullerenes, endohedral fullerenes, isomeric fuller-
ene addition compounds and dimer-like fullerenes are briefly reviewed, with the
restriction of computations to those which supported structure assignment. Some
parts, i.e. the computation of nucleus-independent chemical shifts (NICS), semi-
empirical computations and endohedral 3He chemical shifts, are discussed in Chap-
ters 9 by Heine and Seifert and 24 by Chen et al.

25.2
Efficient Computation of NMR Parameters of Fullerenes and Their Derivatives

The first step for the computation of NMR parameters of fullerenes is to get infor-
mation on the topology of the cages. Usually, a series of isomers are compatible
with experimental 13C NMR patterns, and in general all of these isomers have to be
considered. The two most-widely used tools for creation of topological coordinates
and their analysis are the spiral code, which is printed as hardcopy in �An Atlas of
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Fullerenes’ [4], and the CaGe program, a complete algorithm for the generation of
cages and other molecules, which can be downloaded from the world-wide-web [7].
Both programs allow one to restrict to IPR cages, to screen symmetries, and to
obtain Cartesian coordinates of the generated structures. Fullerenes are usually
labelled by the IUPAC convention, which is the spiral nomenclature [4]. Unfortu-
nately, this nomenclature is not included in the CaGe program. When screening
fullerenes by symmetry, the possibility of Jahn–Teller distortions needs to be consid-
ered, i.e. higher point groups can break down to smaller ones and also have to be
considered as possible structural candidates.

In a next step, the geometry needs to be optimised. Most quantum mechanical
methods, including semi-empirical Hamiltonians (for a review, see Ref. [10]), den-
sity-functional based tight-binding [11], DFT and ab inito methods give results in
very good agreement with experimental data (for an overview, see, e.g. Ref. [8]). On
the other hand, simple force fields failed in many cases to produce reasonable geom-
etries [12].

The same holds for relative energies. No major discrepancies have been found for
higher fullerenes (see the same works as above). However, it has been found that
correlation is important for smaller fullerenes (see, e.g. Ref. [13]), and for the correct
binding energy of fullerene dimers [14, 15]. Even though the structures have been
found to be reasonable for most semiempirical Hamiltonians and LDA-DFT, the
binding energies are often overestimated.

13C NMR computations have been carried out with several methods, including
the most-widely used gauge-including atomic orbitals (GIAO) [16] and individual-
gauge for local orbital (IGLO) [17] approaches. The shielding constants depend
strongly on the quality of the basis set [18, 19]; however, a large part of the error is
systematic and disappears when computing chemical shifts taking C60 as a refer-
ence compound. Individual errors have been found for the most upfield signals
with a value of ~2 ppm for chemical shifts at the GIAO-B3LYP/6-31G* level, which
is a large value when taking into account that the whole span of the 13C NMR scale
is ~20 ppm in most cases [20]. The role of solvent effects has not been investigated
yet, but the non-polar standard solvents are not expected to have a high and non-
systematic contribution.

It was shown that computations at lower computational level can be very useful,
and often sufficient for structure determination: Approximate schemes like IGLO-
DFTB [21] and coupled Hartree–Fock (CHF) calculations with limited basis sets [22,
23] correctly reproduce characteristic features of the patterns (see below), and
GIAO-MNDO was found to give good results for NICS at fullerene centres (see Ref.
[10] and Chapter 9).

25.3
Classical IPR Fullerenes

Classical fullerenes are those with only pentagonal and hexagonal rings. So far, all
experimental fullerenes are classical fullerenes, and all of them have been charac-
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terised by mass spectrometry and, after extraction of the soot and HPLC separation,
13C NMR spectroscopy. This technique has been applied to C60, C70, C76, C78, C80,
C82 and C84 (see Ref. [24] and references therein). In many cases a selection of iso-
mers have been synthesised experimentally, with varying ratio. For example, in C78

three isomers have been isolated, and for C84 the major components of the fraction
contain two isomers. More elaborate experimental techniques allow one to isolate
minor isomers. For example, nine minor isomers of C84 have been isolated and
characterised by various groups (see references in Refs. [25, 26]). Isolation of even
larger fullerenes beyond C90 is possible, and their characterisation are in progress.

The first 13C NMR quantum calculations for highly symmetric C60 were pub-
lished by Fowler et al. in 1990 and 1991, at the coupled Hartree–Fock (CHF) level
with different basis sets, ranging from STO-3G up to 6-31G* [18, 19]. They extrapo-
lated the shielding constant of C60 to the basis set limit and found the principal
components of the shielding tensor to be 179, 10 and –51 ppm [27]. The mean dif-
fers from the experimental shift by less than 4 ppm, but the tensor components
showed larger deviations from the solid-state experiment [28, 29]. It was demonstrat-
ed that the shielding value for C60 at the CHF level has not yet converged at the 6-
31G* basis set.

13C NMR spectra of C70 were studied by H�ser et al. as early as 1992 at the GIAO-
CHF/DZP level [30]. B�hl et al. showed that DFT-NMR computations (GIAO-
B88PW91/TZP//BP86/TZP) perform significantly better than CHF for C70 and
other systems [31]. Heine et al. used an approximative tight-binding method [21]
(see Chapter 9), which reproduced the 13C NMR shifts of the major fullerenes C60–
C84 at reasonable accuracy. Sun and Kertesz [20, 32] employed the GIAO-B3LYP/6-
31G* level of computation to study these fullerenes. At present, this is the most
accurate study with largest individual errors of ~2 ppm.

In all these studies chemical shifts were computed using C60 as a reference and
assigning dTMS(C60) to its experimental chemical shift. A systematic error of at least
5 ppm is removed in this procedure [20, 21].

13C NMR computations led to the assignment of a series of higher fullerenes.
Already in 1993 the main fraction of C84 was identified by the span of the 13C NMR
spectrum by Schneider et al. [33]. The patterns of the lower isomers of C84 have
been predicted employing IGLO-DFTB [34] and final assignment of seven isomers
could be achieved after simulating all patterns at the GIAO-B3LYP/6-31G* level [25].

The application of DFT-NMR computation led to the determination of a series of
further fullerene isomers, namely the isomer of C82 [35], isomers of C86 [36] and C88

[37]. Structural assignment of fullerenes will become harder, but computationally
feasible, for the higher fullerenes, and such studies are presently in progress [38].

Fullerene hexaanions of different sizes and shapes have been studied recently
both by experiment and by theory [39]. Even though electrons were added to the
cages they became deshielded. The existence of the anions was confirmed with the
simulations of the barycentres of the patterns.

Schneider et al. [33] suggested to compare 13C NMR chemical shifts of fullerenes
with the local pyramidalisation of the carbon atoms, given by Haddon’s p orbital
axis vector (POAV) [40]. They found a poor correlation between these two quantities,
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which excluded simple geometrical approaches to address 13C NMR chemical shifts
in an inexpensive way. This correlation was refined to include the chemical environ-
ment, i.e. pyrene, pyracylene and coronene sites, as suggested originally by Dieder-
ich and Whetten [41]. Again, different sites give shifts in different regions of the
carbon NMR scale, but an accurate assignment was found to be impossible [21, 34,
20, 25] (see Fig. 25.1); sound quantum-chemical computations are necessary for cor-
rect assignments of fullerene isomers.

25.4
13C NMR Spectra of Isomeric Fullerene Addition Compounds

Fullerenes react readily with halogens, hydrogen, oxygen and other elements, to
form exohedral addition compounds with characteristic addition patterns. Such
compounds can be created from all fullerenes and, in all known cases, the cage
structure is not destroyed in these reactions. The structures of the addition patterns
are determined by steric hindrance of the additional atoms and by the stability of the
modified p system. The structures of fullerene addition compounds, for example
the benzyne adduct of C70, indicate the aromatic character of fullerenes [42]. The
aromatic character of fullerenes was investigated using magnetic criteria like
nucleus independent chemical shifts in a series of computations which are reviewed
in Chapters 9 and 24.
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Structure determination and characterisation of these molecules was usually sup-
ported by two facts: (i) the underlying cage is known and (ii) the NMR pattern has
been recorded. In addition, the 2D-NMR measurements often contributed to the
structure determination and to the assignment of 13C NMR signals to specific car-
bon atoms (see Ref. [9] and references therein). Fullerene addition compounds
include sp2 and sp3 carbons and hence a much wider 13C NMR shift range.

Quantum chemical computations of NMR chemical shifts of these compounds
have been performed only on a few occasions to confirm the assignment of chemical
shifts to atomic sites [9], but several studies of endohedral 3He chemical shifts have
been performed (see Section 25.5) for their characterisation. However, 13C NMR
computations are straight forward for such molecules if a relatively small set of iso-
mer candidates has to be considered.

The situation is different for smaller fullerenes (below the C60 threshold). They
are highly reactive and form fullerene hydrides and oxyhydrides during production,
which means that the underlying cage is unknown. The most-widely studied exam-
ple is C36Hx, x = 4, 6, which has been detected in the mass spectrum by several
groups [43, 44, 45], but not yet fully characterized. The number of candidates for
such systems is very large: If one takes only those cages with minimum number of
pentagon adjacencies, 36:14 and 36:15, into account [4, 46, 13], ~250,000 isomer can-
didates for C36H4 and C36H6 are possible [47]. The 13C NMR patterns of the 21 most
stable candidates out of a complete scan of these isomers have been proposed and
will assist in experimental assignment of the basis cage [48]. These 13C NMR calcu-
lations gave very rich patterns, exhibiting isomer-dependent sp3 peaks and an
enlarged sp2 region, ranging from dTMS ~110 to ~220 ppm. Parts of the patterns are
characteristic for certain structural elements in the addition patterns themselves, as
is shown in Fig. 25.2.

25.5
Endohedral Fullerenes

For the discussion of magnetic properties, endohedral fullerenes can be separated
into three categories: (i) fullerenes with chemically inert endohedral atoms or mole-
cules, as He and other noble gases, (ii) closed-shell fullerenes with active endohedral
atoms or molecules, as for example transition metals, transition metals dimers and
transition metal compounds Sc3N, Sc2 and others, or even with lanthanides or acti-
nides, and (iii) open-shell isomers (including open-shell endohedral atoms or mole-
cules) which are not interesting for NMR investigations, but provide interesting
EPR parameters like g-tensors and hyperfine coupling constants. In this chapter,
only categories (i) and parts of (ii) are discussed, as theoretical investigations on
magnetic properties of molecules from category (iii) are in their infancy (see Chap-
ter 20 by Moon and Patchkovskii).

The fundamental difference between categories (i) and (ii) is the influence of the
endohedral species on the fullerene cage itself. Chemically inert molecules are
trapped into the fullerene cage without having considerable influence on its struc-
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ture. Thus, these species can be created for all �standard’ fullerenes. 3He labelling
and NMR technique provide a valuable characterization method for fullerenes, even
though it is less informative than the 13C NMR pattern. However, the presence of a
single shift as a finger print of one fullerene, or even a fullerene addition or substi-
tution compound, is very attractive, and this method was therefore applied in experi-
ment and theory to a series of fullerenes [26, 49–52], and fullerene derivatives [53–
55]. 3He was used to address the shielding inside a fullerene, and fullerene anions
have been found to provide a shielding of as much as –48.7 ppm with respect to free
3He in solution [56]. However, the relatively small span of 3He NMR shifts in IPR
fullerene cages limits the applicability of this method for characterisation, and com-
parison to theoretical computations suffers the same intrinsic inaccuracies as
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Figure 25.2 Interrelations between local structure and chemical
shift. The 13C NMR chemical shift regions for carbon sites in the
different possible structural motifs of 36:14 and 36:15 are shown
schematically.



13C NMR chemical shifts. However, 3He labelling and NMR might be a valuable
tool to identify fullerenes with the same symmetry but different endohedral shifts
[26]. 3He NMR is also a probe of the shielding inside the cage and is also discussed
in Chapter 24.

On the other hand, molecules with valencies, often with large electronegativity,
have been used as endohedral molecules. Experimentally, both the chemical shifts
of the endohedral molecule and the chemical shift of the cage can be accessed.

NMR measurements and computations of these species meet the difficulty that
the NMR time scale is very long, of the order of ns or even ms. Therefore, the NMR
is a time-average of the structure over the whole measurement, and a static compu-
tation is not sufficient to reproduce the pattern. An example is Sc3NC80 [57]. The Ih

C80 molecule (80:1) was found to be one of the less stable isomer candidates. How-
ever, in the presence of Sc in the carbon rods and N2 in the atmosphere of the arc
discharge chamber Sc3N@C80 is formed. The NMR spectrum is of Ih symmetry,
even though the symmetry of the system must be lower. This can only be explained
by a nearly-free rotation of the Sc3N molecule inside the fullerene, which leads to an
averaged Ih NMR pattern. Indeed, molecular dynamics simulations demonstrated
that Sc3N is rotating [58]. The NMR pattern of such fullerenes should be reproduc-
ible by averaging snapshots of molecular dynamics simulations, as has been done
earlier [60]. Such computations are feasible, but very expensive, at present.

25.6
Fullerene Dimers and Dimer-like Compounds

A major characteristic of fullerene dimer-like compounds is the presence of sp3 car-
bon atoms. Structural identification is strongly supported by the fact that two
regions, sp3 and sp2, can be compared, and often computations of quite low level are
sufficient for this purpose. The number of sp2 and sp3 carbon atoms per molecule is
essential information for structure determination and can be taken immediately
from the experimental 13C NMR pattern.

(C60)2, was produced in quantities which allow X-ray spectroscopy and very clean
13C NMR characterisation [61], and can therefore be taken as an ideal benchmark
for calculations on this type of compound. The 13C NMR pattern shows one signal
corresponding to four sp3-hybridized carbon atoms, indicating a cyclobutadiene
[2+2] bridge between the fullerenes. For (C70)2 (Fig. 25.3a) [62, 63], five stable isomer
candidates are possible due to different bond types and orientations of C70. Stability
calculations showed that only two isomers are reasonable candidates, and that they
are isoenergetic. They have a cyclobutadiene bridge between the closest-to-cap posi-
tions of the C70 monomers, and the symmetry of the 13C NMR pattern was compat-
ible with both candidates. However, the two candidates produce different 13C NMR
spectra, and its simulation has led to the identification of the cage [15].
An interesting odd-numbered fullerene, C119 (Fig. 25.3c), was created when C60 was
treated with ozone [64]. Corresponding observations were made for a mixture of C60

and C70, which can form C129 and C139. The mechanism of these reactions was stud-
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ied, and it was suggested that one carbon atom was removed from one C60 forming
CO and a C59 radical, which reacts immediately with another C60 to form C119 [65].
The proposed mechanism leads to the most stable isomer of C119 candidates [66],
and the 13C NMR pattern was compatible with its point group symmetry (C2h).
However, there have been other, contradictory, propositions for the structure of C119

[67], and several isomer candidates exhibit C2h symmetry. The final confirmation of
the C119 structure and reaction mechanism was achieved by 13C NMR experiment
[68] and simulation at the IGLO-DFTB level [69].

The unsymmetrical bisfullerene C121 (Fig. 25.3c) was made, separated, charac-
terised by vibrational and 13C NMR spectroscopy, and compared with quantum cal-
culations of structure, stability and 13C NMR patterns [22, 70]. Computations were
performed for all possible isomers of these species which can be created by two C60

linked by an additional carbon at the GIAO-HF/6-31G(d)//B3LYP/6-31G(d) level.
Similar studies have been performed on C122H4 (Fig. 25.3d), where two C60 are

bridged by intercage bonds and extra-bonding CH2 bridging moieties [23]. In both
cases, there are several possibilities for the intercage bonds, some of them differ in
symmetry or in the number of sp3 carbon atoms, but can be unambiguously
assigned by the simulation of the 13C NMR pattern.

For the large bridged fullerene dimers, theoretical simulations have been per-
formed on a pragmatic, quite low level of theory. However, these computations pro-
vide sufficient information for the assignment of these molecules, especially as the
sp3 regions are remarkably distinct. The sp2 area differs strongly from experiment
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Figure 25.3 Structures of experimental fullerene dimers and
dimer-like compounds as discussed in the text, a) (C70)2,
b) C119, c) C121 and d) C122H4.



and only minor information, such as the span and the barycentre, can be deduced
from this part of the simulation.

25.7
Solid State NMR of Fullerenes

So far, solid state NMR has played only a minor role in fullerene science due to its
poor resolution and the necessity for crystalline material. The first solid state NMR
investigations were performed by Tycko et al. [71] and Yannoni et al. [29] on C60

powder. The shielding constant of these measurements agreed with measurements
in solution [6, 28]. The first ab initio NMR calculations for gas-phase C60 at the CHF
level of Fowler et al. [27] reproduced the solid-state chemical shift within 4 ppm, but
its tensor components disagreed by more than 20 ppm.

Recent developments of fullerene solids constructed from smaller fullerenes [43,
72] and modern magic-angle spinning (MAS) NMR techniques indicate that solid
state NMR may play a more important role in the future.

For the hypothetical C36 solid this technique of characterisation puts doubts on
the existence of this species [43]: Solids, formed from smaller fullerenes, should
always have sp3 linking atoms between the cages. 13C NMR signals of these atoms
are in the typical sp3 range of the pattern, as for example demonstrated for C60

dimer, or even for C36 dimer and C36H6 [21, 48, 61]. However, no sp3 signals have
been found in the powder spectrum of the alleged C36 solid [43].

Nevertheless, solid state 13C NMR gives the sp2:sp3 ratio of the solid, which is
important complementary information to TEM and electron diffraction measure-
ments which are usually employed for information on fullerene polymers. Compu-
tational tools for the treatment of chemical shifts in infinite, periodic systems are
available (see Chapter 16 by Mauri and Pickard).

25.8
Summary and Perspectives

NMR computational tools, especially at the DFT level, are nowadays implemented
in most standard quantum chemistry codes and allow the simulation of 13C NMR
spectra of fullerenes and their derivatives with reasonable accuracy and at moderate
computational cost. An accuracy of ~2 ppm for individual sites and better can be
achieved in these computations. The signals of the high-field region suffer from the
highest inaccuracies. The achieved accuracy was sufficient for the assignment of the
fullerenes C60 to C86. However, with increasing fullerene size the number of possi-
ble isomers will increase, and higher accuracy is necessary.

For the assignment of 13C NMR signals to carbon atoms the same conclusion
holds as above: For C60Hx the spectra can be assigned at a moderate computational
level, but demands are already strongly increased for C70. Simulations of higher
accuracy will be appreciated in this field of theory. For endohedral fullerenes
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dynamic averaging of a series of structures will be necessary for the accurate simula-
tion of their 13C NMR patterns. Experiences of 13C NMR computations with fuller-
enes will be useful in other areas of chemistry, for example for dendrimers and
supermolecules.
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26.1
Introduction

Transition metal complexes are ubiquitous in chemistry. For example, in almost
every complex organic synthesis, one or more steps are mediated or catalyzed at a
transition metal center. The study and development of such reagents are thus impor-
tant research areas in modern chemistry. As with most new substances scrutinized
by chemists, NMR and EPR spectroscopy are among the most important means of
characterization for diamagnetic and paramagnetic transition metal complexes,
respectively. Theoretical and computational contributions to NMR properties will be
the topic of this account, whereas EPR applications to transition metal compounds
will be covered elsewhere in this book (see Chapters 32 and 36 by Patchkovskii and
Schreckenbach, and by Neese, respectively). Only NMR properties of diamagnetic
species will be considered here; for NMR of paramagnetic compounds, see the cor-
responding Chapter 20 by Moon and Patchkovskii.

Reflecting the importance of NMR spectroscopy in chemistry, developments and
applications of theoretical methods for the calculation of the salient parameters are
reviewed regularly (for recent reviews see e.g. Refs. [1–5]). In some of these reviews,
applications to transition metal compounds have been covered explicitly, and this
aspect�s state of the art has been summarized in the late 1990s [1–3]. The present
account will emphasize more recent developments and applications, that is, from
1999 onwards.

Density functional theory (DFT) presents itself more than ever as the computa-
tional tool of choice to study geometries, energies, and properties of transition metal
complexes [6, 7]. Note the following quote from the foreword by Davidson in the
Special Edition: “Computational Transition Metal Chemistry” [6], “Computational
transition metal chemistry today is almost synonymous with DFT for medium-sized
molecules”.

The finding that DFT-based methods are capable of reliably describing chemical
shifts of transition metal complexes [8, 9], many of which pose excruciating prob-
lems to more traditional ab initio methods, has certainly contributed to the popular-
ity of DFT. Consequently, the vast majority of examples cited in the present account
are based on computations using this method. The particular choice of these exam-
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ples is intended to be illustrative rather than exhaustive. This chapter is organized
as follows: First, chemical shifts of ligands in the coordination sphere of transition
metals are treated, followed by the chemical shifts of the metals themselves. Calcula-
tions of spin–spin coupling constants involving transition metal nuclei are pre-
sented thereafter. Finally, a few miscellaneous NMR-related applications are men-
tioned, and a brief summary concludes this chapter.

26.2
Ligand Chemical Shifts

26.2.1
Methodological Aspects

The quest for more accurate DFT-based chemical shifts contributes to the need for
more accurate density functionals. Newly developed functionals are now often
assessed in terms of their performance for computing ligand (and metal) chemical
shifts [10]. Contrary to what is frequently found for the metal shifts (see below),
“pure” GGA (generalized gradient approximation) functionals often afford ligand
shifts similar in quality or even superior to those obtained with hybrid functionals.
A highly parametrized GGA functional (termed HCTH) has shown promise in that
area [10b]. As with the underlying density functionals, the effect of fundamental
modifications to them, for instance the self-interaction correction [11a] is being
tested by computations of ligand shifts, such as d(31P) in a transition metal complex
[11b].

Current development of methods for chemical shift computations is mainly cen-
tered around appropriate description of relativistic effects when heavier nuclei are
involved. Ligand shifts are an important testing ground in that area, in particular in
complexes of 5d or f-block metals. How to include a major part of the relativistic
effects on the ligand shifts has been known, almost from the onset, namely by
means of relativistically adjusted effective core potentials (ECPs) on the heavy metal
[9]. Further developments include other quasi-relativistic approaches such as DFT-
ZORA (zero-order regular approximation) [12] and inclusion of spin–orbit coupling
[13] (for more details the reader is referred to Chapter 6 by van W�llen, Chapter 13
by Vaara et al., and Chapter 14 by Autschbach). Such relativistic effects have recently
been shown to be important for d(13C) of some third-row transition metal carbonyls
[14] and 17O, 19F, and 1H chemical shifts of uranium compounds [15].

26.2.2
Isotropic and Anisotropic Ligand Chemical Shifts

With the implementation of DFT-NMR methods in popular quantum-chemical pro-
grams, chemical shift computations are now routinely possible. In many cases,
experimental studies that report ligand chemical shifts in solution are being aug-
mented by DFT computations of this property. Recent studies on isotropic d(13C)
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and d(1H) values of Ru [16], Nb [17], Pt [18], and Os [19] complexes may serve as
representative examples. The implicit assumption is that when there is good accord
between measured and computed shifts, the underlying molecular structure and
assignments of the peaks are likely to be correct (see also below). In this context it
may be noted that, in some cases, substituent effects on ligand shifts can also be
reproduced at the Hartree–Fock level, for instance ring-current effects on d(1H) of
metalloporphyrins [20] or d(13C) in a thiol adsorbed on small gold clusters [21].

Accurate description of the principal shielding tensor components is usually
more demanding than that of isotropic shifts (see Chapter 27 by Wasylishen). One
reason is that in the solid state, where measurements of shift tensors are usually
carried out, intermolecular interactions tend to be more important than for solutes
tumbling rapidly in a solvent. This is particularly true for ionic species, where larger
fragments of the crystal, encompassing several cations and anions, have to be
included in the NMR computation, a recent example being the computation of the
13C chemical shift tensors in cadmium acetate [22]. Ligand shift tensors of neutral
complexes, on the other hand, can also be well described using single molecules,
that is, neglecting such intermolecular interactions. Good accord between theory
and experiment has been achieved, for instance for 13C, 15N, and 17O tensor compo-
nents in iron porphyrins [23, 24], and for 13C and 31P tensors in metal carbonyl [25,
26] and ethylene complexes [27]. In the latter study, the calculations were also help-
ful in establishing the orientation of the principal axis system.

Breakdown of the computed shielding tensor into contributions from individual
coupled pairs of MOs can often be useful for the rationalization of observed trends
in ligand chemical shifts (see e.g. Refs. [28, 29] and Chapter 18 by Kaupp).

26.2.3
Structural Applications

Magnetic shieldings have been said to be “sensitive to everything” [15a]. For the
experimental chemist, the prime interest is usually in the sensitivity towards struc-
tural details, such as configuration, conformation, or particular values of geometri-
cal parameters. The combination of chemical shifts measured for a compound of
uncertain structure with those computed for several alternative candidates for the
latter can afford a powerful structural tool [30]: those isomers that give poor agree-
ment between theoretical and experimental d values can safely be excluded. In the
following, several such theoretical structure refinements of transition metal com-
plexes are highlighted.

Cationic zirconocene complexes bearing pendant aromatic groups, designed to
model interactions between active olefin-polymerizing catalysts and aromatic sol-
vents, have been suggested to possess an agostic interaction between Zr and a
phenylic H-atom (as in 1a, Chart 26.1). However, DFT calculations indicated that 1a
corresponds to a transition state for phenyl group rotation, rather than to a mini-
mum. The lowest minimum (1b) shows g1-coordination of the benzene moiety to
the Zr center. While the 1H and 13C chemical shifts of 1b can be reconciled with
experimental data, those of 1a cannot [31]. Agostic metal–hydrogen interactions
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have been found in [PdBr{P(t-Bu)2(Adamantyl)}(C6H5)] complexes, and chemical
shift calculations have been used to rationalize why these interactions do not show
up in the 1H NMR spectra [32].

An older X-ray crystallographic structure determination of [Mo(1,3-butadiene)3]
had afforded C–C distances indicative of almost undisturbed, coordinated olefins (as
in 2a, Chart 26.1). Redetermination of the structure with correction for previously
undetected disorder in the crystal has yielded essentially equal C–C distances, as
expected for significant metallacyclopentene character (viz. 2b). The newly refined
structure not only compares favorably to the DFT-optimized equilibrium geometry,
but yields, when used as input in the NMR computation, d(13C) values in much
better accord with experiment than those computed for the old X-ray-derived coordi-
nates, for which deviations up to 20 ppm occur [33].

Theoretical 1H and 13C chemical shifts have been used to propose plausible struc-
tures for the reaction products between dimethylzirconocene and methylaluminox-
ane [34]. These results are an important step towards the identification and charac-
terization of the dormant and active catalytic species involved in homogeneous ole-
fin polymerization with these types of systems.

26.3
Metal Chemical Shifts

26.3.1
Nonrelativistic Computations

Metal shift calculations on nonrelativistic levels are only sensible for the 3d and 4d
series. In the latter case, relativistic effects on absolute shieldings can be noticeable,
but are usually similar for most compounds, so that they cancel to a large extent in
the relative chemical shifts, d. In many cases, the influence of the exchange-correla-
tion functional on the d values exceeds that of other sources, including relativity.
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Hybrid functionals very often give results superior to those obtained with pure
GGAs [35], and the reasons for the different performance of the different families of
functionals have been analyzed [36]. As with the ligand shifts mentioned above,
computed metal chemical shifts are being used to assess newly developed density
functionals [10a].

A sizeable set of transition metal shifts has now been computed at a very uniform
level of theory (i.e. B3LYP for GGA geometries), with the more recent extensions of
this set encompassing 99Ru [37], 55Mn [38], and 49Ti [39]. The overall performance of
this particular combination of DFT methods is illustrated in Fig. 26.1. Except for
d(95Mo) [40], substituent effects on the metal shifts are captured very well, with an
accuracy for each metal of typically a few percent of the respective chemical shift
range. The reasons for the deviations for d(95Mo) have not been analyzed yet; in this
case, pure GGA functionals perform much better [40].

For d(59Co) in metalloporphyrins and in aza-crown ether complexes, not only iso-
tropic shifts, but also the principal tensor components are well described with the
B3LYP functional [41, 42]. There have been attempts to compute metal chemical
shifts using an ECP on the metal in the NMR calculation; despite the lack of theoret-
ical justification for such a procedure, reasonably good correlations between calcu-
lated and experimental d(183W) and d(99Ru) values have been obtained [43]. With
scale factors for the calculated shifts of the order of 10–20, however, the usefulness
of this approach remains unclear.

A combination of experimental and theoretical 103Rh chemical shifts has been
used to discriminate between two coordination modes of a hemilabile ligand [44].

26.3 Metal Chemical Shifts 425

Figure 26.1 Plot of computed (B3LYP with gauge including
atomic orbitals for GGA geometries) vs. experimental transition
metal chemical shifts (data from Refs. [2, 35, 37–40]). The ideal
line with slope 1 is shown (no fit); note that larger deviations
occur only for 95Mo [40].



Model calculations have shown that in Rh complexes with bidentate ligands,
d(103Rh) is governed by the Rh–ligand bond distance and not by the bite angle, as
hitherto believed [45]. Plausible structures for vanadate–peptide complexes have
been supported by reasonably good accord between computed and reported d(51V)
data [46]. DFT-derived 57Fe chemical shifts have been used in the assessment of
binding modes of CO, NO, and O2 ligands in iron–porphyrin complexes, which
serve as heme model compounds [47].

Following empirical precedence, theoretical metal shifts have been correlated
with stabilities (i.e., computed reaction energies for ligand displacements) [48] or
with reactivities (i.e., computed activation barriers for the key step in a catalytic
cycle) [49–5051]. Even though limited to specific families of compounds, such NMR/
reactivity correlations could be useful in optimizing and designing new homoge-
neous catalytic systems.

More recently, a computational protocol based on molecular dynamics simula-
tions has been applied to model thermal and solvent effects on transition metal
chemical shifts (see Chapter 11 by Huber and Searles and Chapter 10 by Ruud).
Variations of the order of a few dozen ppm, that is, small effects for a transition
metal nucleus, have been noted for aqueous inorganic vanadate complexes [52] and
for permanganate ion [53]. For d(57Fe) of the highly charged [Fe(CN)6]4–, however,
much larger effects are found, exceeding 1000 ppm, due to the exceptional sensitiv-
ity of the iron shielding toward the metal–ligand bond distance, which is strongly
affected by thermal averaging and by the interaction with the solvent, water [54].
The MD-derived, averaged shifts in water are in good agreement with experiment,
suggesting that such simulations mimicking the actual conditions of the NMR
experiment could be used to improve the accuracy of theoretical transition metal
shifts in general.

26.3.2
Relativistic Computations

From the 5d series onwards, a proper treatment of relativistic effects (see Section
26.2.1) is also mandatory for the metal chemical shifts. When the leading terms,
including spin–orbit coupling, are included, general trends in the d values can be
described at the Hartree–Fock level [55]. Relativistic DFT methods are promising for
more quantitative agreement, and indeed, very good accord between experimental
and DFT-ZORA chemical shifts has been obtained for 183W [56, 57] and 195Pt [58].
The latter nucleus is of particular importance due to its excellent experimental acces-
sibility. For a set of Pt compounds covering a shift range of ca. 3500 ppm, the root
mean square deviation between DFT and experimental d values was found to be of
the order of 300 ppm [58]. Remaining sources of error are probably shortcomings of
the underlying density functional and the neglect of solvation effects (see spin–spin
couplings below). Analysis of the theoretical results has afforded valuable insights
into the mechanisms governing the trends in d(195Pt): the latter emerges as a deli-
cate balance between effects arising from spin–orbit contributions following Fermi
contact mechanisms and the paramagnetic part of the magnetic shielding, which is
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determined by the energetic separation and the degree of “orbital similarity” (i.e.,
overlap) of magnetically coupled pairs of occupied and virtual MOs [58].

The full 95Mo shielding tensor of a piano stool complex, measured in the solid,
has also been successfully reproduced at the DFT-ZORA level [25]. For the 235U
nucleus, where no experiments are available yet, a very large chemical shift range
exceeding 20,000 ppm has been predicted computationally [15b]. For an analysis of
the so-called normal vs. inverse halogen dependence of transition metal shifts, see
Chapter 18 by Kaupp.

26.4
Spin–Spin Coupling Constants

Accurate nonempirical calculations of indirect spin–spin coupling constants, J (or,
more specifically, of the reduced coupling constants, K), are still a challenge for the-
ory, due to the high sensitivity of the results toward the approximations concerning
the level of electron correlation and, for heavier nuclei, treatment of relativistic
effects (see Chapters 14 and 15 by Autschbach and Ziegler, and by Malkina, respec-
tively). That DFT-based methods can treat J values in transition metal complexes
with about the same accuracy as those in main-group compounds, has been shown
already in an early implementation [59]. Further validations involving a sizeable
number of M–C, M–N, M–F, and M–P metal–ligand couplings have been given sub-
sequently [60, 61]. The degree of accuracy that can be achieved with the DFT-ZORA
method is illustrated in Fig. 26.2.
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Figure 26.2 Plot of computed (ZORA = relati-
vistic DFT-ZORA; nrel = non-relativistic) vs.
experimental one-bond reduced spin–spin cou-
pling constants 1K involving W, Pt, and Hg

(and Pb) nuclei (from Ref. [61]). The ideal line
with slope 1 is shown (no fit). (Reprinted with
permission from the American Institute of Phy-
sics).



For Hg and Pt complexes with, respectively, linear and planar coordination about
the metal, agreement between theoretical and observed Hg–C and Pt–P couplings
(including some of the outliers in Fig. 26.2) is improved when a limited number of
solvent molecules (CHCl3 or DMSO) are explicitly included in the computation [62].
The same has been found for 1J(Pt,Tl) in [(NC)5Pt-Tl(CN)]– (3) upon adding four
water molecules to the coordinatively unsaturated Tl center [63], or for the very large
1J(Hg,Hg) coupling in crown-ether complexes of Hg2

2+, where the full coordination
sphere (including one solvent molecule) has to be included [64].

The main applications of theoretical J (or K) values of transition metal complexes
have, so far, concentrated on interpretations of observed magnitudes or trends by
identifying and analyzing the molecular orbitals contributing to the coupling. Stud-
ies of this type comprise the connection between the trans influence and J values
[60b] and an unusual spin–spin coupling pattern in 3 [63]. A qualitative pictorial
rationalization has been given [65] of why the 1J(Pt,Pt) values in related dinuclear
complexes 4 and 5 differ by an order of magnitude (Chart 26.2): Contributions from
Pt–Pt and axial Pt–ligand r-bonds to 1J(Pt,Pt) are both large, but have opposite
signs; with the strongly interacting CO ligand both contributions are comparable in
magnitude, thus resulting in the smaller net value for 1J(Pt,Pt) in 4 [65].

DFT-ZORA 1J(Ag,C) coupling constants have been used to assign 13C NMR sig-
nals observed in solid silver cyanide to [_NC–Ag–CN_] and [_CN–Ag–CN_]
sites in the polymeric chains [66].

26.5
Miscellaneous

A serious limitation in NMR spectroscopy of transition metal nuclei with spin I > 1�2

(i.e. the vast majority) is excessive line broadening due to quadrupolar relaxation. If
that mechanism dominates relaxation, the NMR line width should be affected by
the electric field gradient (EFG) at the metal. In keeping with this expectation,
trends in 91Zr [67], 99Ru [37] and 59Co line widths [68] have been rationalized in
terms of variations in the computed EFGs. Quantitative prediction of line widths is
difficult, however, because other factors are also crucial, such as reorientational mo-
bility, and because accurate calculations of EFGs can be computationally quite
demanding (see Chapter 17 by Schwerdtfeger et al. and Ref. [69] for recent applica-
tions to transition metal nuclei).

428 26 NMR of Transition Metal Compounds

4

Pt PtOC CO

C

C
OC

CO

O

2+

5

Pt PtCl Cl

Cl

C
OC

Cl

2−

O O

551 Hz 5250 Hz

Chart 26.2.



NMR chemical shift calculations as probes for aromaticity (see Chapter 24 by
Chen et al.) have been applied to some transition metal complexes, namely Ni
dithiolenes [70], Fe and Cr piano stool complexes [71], and tris(ethylene)nickel [72].

26.6
Conclusion and Outlook

The computation of NMR parameters has come of age, and applications to transi-
tion metal compounds with it. The palette of these applications ranges from guiding
assignments and interpretations of experimental signals to furnishing quite detailed
structural information. On the road to theoretical NMR spectra of transition metal
complexes, DFT methods are currently without serious competition. Many computa-
tions of metal and ligand chemical shifts are now routinely possible and the treat-
ment of relativistic effects and spin–spin coupling constants has blossomed recently.
The growing body of experience with DFT-derived NMR parameters conveys the
impression of very good overall performance and a certain reliability of these meth-
ods. Occasionally, however, larger errors can occur, and every new problem at hand
usually entails the need for reassessment and validation of the methods. It can be
envisaged that further theoretical developments, most notably in constructing and
improving exchange-correlation functionals and, for heavier nuclei, refinement of
relativistic approaches, will lead to increased accuracy of the calculated properties.
The same is to be expected by mimicking the actual experimental conditions more
realistically in the calculations, namely by taking thermal and solvent effects expli-
citly into account. With the concomitant, ever broader scope of possible applications
in sight, the future of NMR calculations of transition metal compounds continues to
be a promising one.
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27.1
Introduction

Nuclear magnetic resonance (NMR) spectroscopy is arguably the most important
general technique available for investigating molecular structure. What are the
“observables” measured in an NMR experiment and how are these related to molec-
ular structure? The purpose of this chapter is to briefly describe the most important
parameters measured in an NMR experiment and to illustrate how modern compu-
tational chemistry is helping scientists to better understand the relationship be-
tween these parameters and molecular structure. Although most of the examples
discussed here are from research carried out in my laboratory, I will also provide
some key references to recent reviews of the experimental NMR literature.

Most NMR measurements are performed on samples that are either liquids or
solutes dissolved in isotropic solvents [1–8]. In such media, molecules tumble rapid-
ly and NMR experiments typically yield isotropic chemical shifts and so-called “sca-
lar” spin–spin coupling constants. However, since the early 1950s, it has been recog-
nized that second-rank tensors are required to fully characterize these NMR param-
eters [9–13]. In order to characterize parameters described by second-rank tensors
experimentally, it is generally necessary to investigate the NMR spectra of molecules
dissolved in partially ordered media (e.g., liquid-crystal solvents; see Ref. [14]) or in
the solid state [15–18]. A general second-rank tensor is represented by a 3 � 3 matrix
consisting of nine elements. Such a tensor may be written as a sum of a symmetric
tensor with up to six unique elements and an antisymmetric tensor with up to three
unique elements. To a very good approximation, NMR spectra are not influenced by
that part of an interaction described by the first-rank antisymmetric tensor [15]. The
frame of reference in which the symmetric part of the tensor is diagonal is known
as the principal axis system (PAS). In the PAS, a second-rank tensor may be speci-
fied by its three principal components (the diagonal elements of the tensor) and
three Euler angles describing the orientation of the PAS within an external frame.
For an excellent general discussion of magnetic second-rank tensor quantities an
early paper by Schneider is recommended [19]. Also, for an introduction to tensors,
the text “Physical Properties of Crystals – Their Representation by Tensors and
Matrices” by Nye is highly recommended [20].

433

27

Characterization of NMR Tensors via Experiment and Theory

Roderick E. Wasylishen

Calculation of NMR and EPR Parameters. Theory and Applications.
Edited by Martin Kaupp, Michael B�hl, Vladimir G. Malkin
Copyright � 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-30779-6
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This chapter is divided into three further sections. In the first, we describe how
magnetic shielding tensors of a typical spin-1/2 nucleus, 31P, are characterized in
the solid state. The second deals with the measurement of spin–spin coupling ten-
sors, specifically indirect spin–spin coupling tensors. The last section deals with
NMR spectra of quadrupolar nuclei. The NMR spectra of these nuclei are generally
dominated by the nuclear quadrupolar interaction which reflects the electric-field
gradient (EFG) at the nucleus [21]. In each of the sections, an effort will be made to
illustrate some of the important contributions of modern quantum chemistry com-
putations. Although we emphasize the role that solid-state NMR is playing in char-
acterizing shielding, spin–spin coupling and EFG tensors, it should be noted that
other experimental techniques are also important. For example, NMR studies in liq-
uid-crystal solvents [14], molecular beam and high-resolution microwave investiga-
tions (see Ref. [22] and references therein) and nuclear quadrupole resonance spec-
troscopy [21] are also used to characterize “NMR” tensors.

27.2
Magnetic Shielding and Chemical Shifts

27.2.1
Definitions and Conventions

In a typical NMR experiment involving solute molecules dissolved in an isotropic
solvent one can, in principle, determine the isotropic chemical shift of each chemi-
cally distinct nucleus, N, in the sample. The chemical shift of nucleus N is defined
by Eq. (27.1),

disoðNÞsample
¼

mðNÞ
sample

� mref

mref

ð27:1Þ

where m(N)sample and mref are the NMR resonance frequencies of the sample and a
standard reference that contains the same isotope as the sample, respectively. In the
case of 31P NMR experiments, the accepted reference sample is 85% H3PO4 (aq)
which is defined to have a chemical shift of 0.0 ppm. The isotropic chemical shift is
related to a more fundamental parameter, the isotropic magnetic shielding constant,
by Eq. (27.2),

disoðNÞsample
¼

rref � risoðNÞsample

1� �ref

ð27:2Þ

In the case of phosphorus NMR, it has been established that the absolute shielding
constant of 85% H3PO4 is 328.35 ppm [23]. That is, the 31P nucleus of phosphoric
acid is shielded by 328.35 ppm relative to a bare phosphorus nucleus. For isotopes of
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the first- and second-row elements, rref is typically much less than 10–3; thus Eq.
(27.2) reduces to

disoðNÞsample
@ rref � risoðNÞsample

ð27:3Þ

Chemical shift reference samples for most NMR-active nuclei are compiled in a
recent IUPAC document which has been published in numerous journals (for
example see Ref. [24]). Absolute magnetic shielding constants are generally derived
from accurate nuclear spin–rotation tensors measured using high-resolution micro-
wave or molecular beam techniques (see Refs. [22, 25, 26]). In establishing an abso-
lute shielding scale for phosphorus, the absolute magnetic shielding of 31P in PH3

was derived from the 31P nuclear spin–rotation tensor in this same compound. The
procedure for converting experimental spin–rotation tensors to magnetic shielding
tensors involves careful consideration of rovibrational averaging effects as well as
bulk magnetic susceptibility effects [27, 28]. Absolute magnetic shielding scales are
available for numerous nuclei; however, it should be noted that in the case of heavier
nuclei, where relativistic effects are important, the precise relationship between
nuclear spin–rotation tensors and magnetic shielding tensors has not been estab-
lished.

In the case of a solid sample where overall molecular tumbling does not occur,
the magnetic shielding experienced by any nucleus, N, in the sample is generally
dependent upon the orientation of the molecule in the applied magnetic field. For
example, the phosphorus nuclei of solid tris(p-tolyl)phosphine reside on a crystallo-
graphic C3-axis (space group R3; see Ref. [29]); hence the phosphorus magnetic
shielding tensor must be axially symmetric. In such cases the orientation of the
magnetic shielding tensor is completely specified. Experimentally, for a polycrystal-
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Figure 27.1 a) Example of an axially symmetric chemical shift
tensor powder pattern. In this case the 31P NMR spectrum of a
stationary powder sample of tris(p-tolyl)phosphine.
b) Example of a non-axially symmetric chemical shift powder
pattern. In this case the 31P NMR spectrum of a stationary pow-
der sample of (DBP)Cr(CO)5. Adapted from Ref. [31].
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line sample one observes a characteristic powder pattern with the unique compo-
nent of the chemical shift tensor, d||, corresponding to the unique symmetry axis of
the molecule being parallel to the applied magnetic field (see Fig. 27.1a, also Ref.
[30]). In the case of tris(p-tolyl)phosphine, d|| = –35 ppm and d^= 2.0 ppm.

In the more general case where the nuclear site symmetry is insufficient to
ensure an axially symmetric magnetic shielding tensor, one generally observes a
non-axially symmetric powder pattern from which one can readily extract the three
principal components of the chemical shift tensor. For example, consider the 31P
NMR spectrum of a polycrystalline sample of (phenyldibenzophosphole)chromium
pentacarbonyl, (DBP)Cr(CO)5, (see Fig. 27.1b, adapted from Ref. [31]). In this case,
d11 = 127 ppm, d22 = 41 ppm and d33 = – 28 ppm. The breadth of the powder pattern
is often called the span, X, which is defined as (d33 – d11), while the shape of the
powder pattern is denoted by the skew, k, which is 3(d22 – diso)/X, where diso= (d11

+ d22 + d33)/3. For the phosphorus chemical shift tensor of (DBP)Cr(CO)5,
diso= 46.8 ppm, X = 155 ppm and k= – 0.04. In labelling the principal axes of the
phosphorus chemical shift tensor we have adhered to the so-called Maryland con-
vention, defining d11 ‡ d22 ‡ d33 (see Ref. [32]). Another popular convention labels
the axes such that: |d33 – diso| ‡ |d11 – diso| ‡ |d22 – diso| and defines the shielding
anisotropy, D = d33 – (d11 + d22)/2, and the asymmetry, g= (d22 – d11)/(d33 – diso).
Unfortunately, other definitions for anisotropy and asymmetry are also used, so
when reading the literature it is essential to know what convention is being used.
For an interesting debate concerning the conventions for tensor quantities used in
NMR, see Harris [33] and Jameson [34].

Although one can obtain the three principal components of the CS tensor from
NMR investigations of polycrystalline samples, information about the orientation of
the CS tensor is not as readily available from such studies. If the nucleus of interest
is spin–spin coupled via the dipolar interaction to a neighbouring nucleus, it is fre-
quently possible to obtain some information about the orientation of the CS tensor
[35]. However, if a “large” single crystal of the sample of interest can be grown,
NMR investigations of the single crystal as a function of crystal orientation in the
applied magnetic field will yield the most comprehensive characterization of mag-
netic shielding tensors [36, 37]. In cases where ambiguities arise, modern calcula-
tions can be of critical importance in helping experimentalists choose the correct
orientation.

27.2.2
The Synergy of Theory and Experiment in Characterizing Chemical Shift Tensors:
Two Examples

In the case of polycrystalline solids, NMR studies of isolated spin-pairs often provide
information about the orientation of CS tensors. For example, the 31P NMR spec-
trum of the ruthenium carbonyl phosphido cluster, Ru2(CO)6(m2-PPh2)2, exhibits a
powder pattern with some splittings that result from the 31P,31P dipolar interaction
(see Fig. 3 of Ref. [38]). Qualitatively, the magnitude of these splittings allows one to
obtain information about the orientation of the phosphorus CS-tensor with respect
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to the 31P–31P “vector” [38]. Analysis of the powder spectrum leads to two possible
orientations of d11, the least shielded component of the CS tensor (see Fig. 27.2).
Calculations using both RHF and DFT methods with a variety of basis sets consis-
tently support the assignment which indicates that d11 is above the internuclear
31P–31P vector. Furthermore, the calculations allow one to systematically investigate
how the phosphorus magnetic shielding tensor depends on subtle variations in mo-
lecular structure (for example, small systematic variations in the Ru–P–Ru bond
angle).

Several years ago, an experimental solid-state 31P NMR study of analogous phos-
phido-bridging iron complexes led Carty and co-workers [39] to propose that the
principal components of the phosphorus shielding tensor were exceedingly sensitive
to the Fe–P–Fe bond angle. In particular, for compounds of the type Fe2(CO)6(m2-
X)(m2-PPh2), d11 was found to increase by more than 250 ppm as the Fe–P–Fe angle
increases from 69� to 76�. Of course, in such an experimental study, isolating the
effect of geometry variations from electronic effects due to changing the substituent
X is impossible. Calculations for X = Cl support the trend observed but indicate that
d11 increases by approximately 100 ppm as the Fe–P–Fe angle increases from 69� to
76� [40]. Even for relatively large phosphido complexes it appears that present day
computational methods are sufficiently reliable to make qualitative predictions on
how magnetic shielding tensors depend on molecular geometry.

Isotropic 31P NMR chemical shifts of the phosphinidene moiety, formally RP2–, in
transition metal complexes are often very large (i.e., the phosphorus nucleus is very
deshielded). For example, the isotropic 31P chemical shift of nido-Ru4(CO)13(m3-PPh)
is 414 ppm [41]. Phosphorus-31 NMR spectra of a polycrystalline sample indicate
that the principal components of the CS tensor are: d11 = 890 ppm, d22 = 298 ppm
and d33 = 53 ppm [41]. What is the orientation of this highly anisotropic CS tensor?
At the time we first asked this question (around 1990) we had little idea what to
expect, so a single crystal was grown and examined by single-crystal NMR. The crys-
tal belonged to the space group P212121 and contained four molecules per unit cell.
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Ref. [38] results in two possible orientations of
the phosphorus chemical shift tensor for
Ru2(CO)6(m2-PPh2)2. In both cases the compo-
nent corresponding to greatest shielding,

d33, is perpendicular to the plane of the page.
The two assignments differ in that d11 may
either be 25� above or below the 31P–31P inter-
nuclear vector. Adapted from Ref. [38].



After analysing the single-crystal NMR results, we were left with four possible ways
to assign the chemical shift tensor to the four magnetically distinct sites. This is an
inherent problem of single-crystal NMR investigations for systems containing more
than one magnetically distinct site [41]. Fortunately, the orientation dependence of
the 1H,31P-dipolar interactions differed sufficiently for the four possible assign-
ments and we were able to propose the assignment shown in Fig. 27.3 with a high-
degree of confidence. Our proposed orientation was rationalized using extended
H�ckel molecular orbital calculations. More recent calculations [40, 42] confirm the
orientation shown in Fig. 27.3. Kaupp discusses the interpretation of NMR chemical
shifts in Chapter 18.

Although the two examples provided above have involved solid-state NMR mea-
surements of phosphorus chemical shift tensors, considerable research has been
carried out on other NMR-active nuclei. Duncan [43] has provided a useful compila-
tion of experimental chemical shift tensor data prior to 1994. An annual survey of
the literature prepared by Jameson and de Dios [44] is highly recommended. Several
chapters in this text deal with the calculation of NMR chemical shifts (e.g., see
Chapters 6, 8, 14, and 26).

As already mentioned, to a very good approximation NMR spectra are indepen-
dent of antisymmetric tensor components. Recently Wi and Frydman [45] reported
the first direct evidence that antisymmetric magnetic shielding tensor components
influence NMR spectra. Their example involved 59Co NMR spectra of solid cobalt
(III)-tris(acetylacetonate).

Finally, it is important to mention that in comparing experimental magnetic
shielding data with results from computational chemistry, one has always to be
aware of intermolecular effects. Grant and co-workers [46, 47] have recently
described an embedded ion method to account for intermolecular effects in “ionic”
solids. Molecular dynamics simulations have been performed to deal with ions dis-
solved in aqueous solution (see Refs. [48] and [49] and references therein). In estab-
lishing the reliability of modern computational methods, there is an obvious need
for accurate gas-phase NMR data (see e.g., Refs. [22, 26, 50, 51], also Chapter 8 by
Gauss and Stanton).
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Figure 27.3 Orientation of the phosphorus chemical shift tensor for nido-
Ru4(CO)13(m3-PPh), as determined by single-crystal NMR. See Ref. [41] for
details.



27.3
Nuclear Spin–Spin Coupling

There are two fundamental mechanisms by which one nuclear spin interacts with
another: the direct magnetic dipole–dipole interaction and the indirect spin–spin in-
teraction. The direct dipolar interaction is a “through-space” interaction analogous
to the classical dipolar coupling between two bar magnets. Hence, the magnitude of
the direct dipolar coupling depends on the magnetic moments of the two nuclear
spins and on the inverse cube of their separation. On the other hand, the indirect
spin–spin coupling does not depend on internuclear separation in any simple way
but may be thought of as a two-stage process whereby one nucleus perturbs “neigh-
boring” electrons and these electrons in turn produce a small magnetic field at the
other nucleus. Ramsey described three fundamental mechanisms by which the
magnetic moment of the first nucleus, N, interacts with the electrons [11]. First, it
may interact with the field produced by the orbital motion of the surrounding elec-
trons; second, it may interact via the dipole–dipole interaction and finally via a con-
tact coupling. Obtaining reliable first-principles calculations of indirect spin–spin
coupling tensors (denoted J) in all but the simplest molecules has until recently
been a challenge. It is also fair to add that the experimental characterization of
J-tensors is difficult. In contrast, it is generally relatively straightforward to measure
the magnitude of isotropic indirect spin–spin coupling constants, Jiso (i.e., one-third
the trace of the J tensor).

Here, we will provide a brief discussion illustrating why it is difficult to character-
ize J-tensors experimentally. In spite of these difficulties, molecular beam, liquid-
crystal and solid-state NMR techniques have yielded some reliable J-tensor data. We
will also provide examples that illustrate how modern quantum chemical computa-
tions provide a better understanding of indirect spin–spin coupling tensors and how
they act as a guide to the experimentalist. Introductory discussions of direct and in-
direct spin–spin coupling tensors may be found in the Encyclopedia of Nuclear Mag-
netic Resonance Spectroscopy [52, 53]. We have recently published a comprehensive
review of indirect spin–spin coupling tensors, the interested reader should consult
this resource for an overview and references to the original literature [54]. The calcu-
lation of indirect spin–spin coupling constants is discussed in several chapters of
the present text (see e.g., Chapters 7, 15, and 19).

27.3.1
Inseparability of RDD and DJ

The spin–spin coupling Hamiltonian describing an isolated pair of nuclear spins N
and M may be represented by

H ¼ hIN � ðDþ JÞ � IM ð27:4Þ

where h is Planck�s constant, IN and IM represent the nuclear spin angular momen-
tum operators, D is the direct spin–spin coupling tensor and J is the indirect spin–
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spin coupling tensor. While D is a traceless symmetric second-rank tensor, J is a
general second-rank tensor with a non-zero trace. It is convenient to separate the
isotropic portion of the indirect spin–spin coupling tensor from the traceless aniso-
tropic portion, JT,

H ¼ hJ
iso

IN � IM þ hIN � ðDþ J
T
Þ � IM ð27:5Þ

Here, the antisymmetric portion of J is ignored. The isotropic nuclear spin–spin
coupling constant is often called the scalar spin–spin coupling constant and may be
either positive or negative. In the simplest case of a heteronuclear diatomic mole-
cule, for example 127I–19F, where the PAS is defined by the C¥ symmetry axis of the
molecule, both the anisotropic D and JT tensors take on a very simple form,

D ¼ RDD

1 0 0
0 1 0
0 0 �2

2
4

3
5 ð27:6Þ

J
T
¼ �

DJ

3

1 0 0
0 1 0
0 0 �2

2
4

3
5 ð27:7Þ

where the direct dipolar coupling constant, RDD, defined by Eq. (27.8), depends on
the inverse cube of the internuclear separation, rNM:

R
DD
¼

l
0

4p
�h

2p
c

N
c

M
r�3

NM

D E
ð27:8Þ

and, in the case of axial symmetry, the anisotropy in the indirect spin–spin coupling
tensor, DJ, is J|| – J^. Both RDD and DJ are in frequency units, Hz, l0 is the perme-
ability constant, " is Planck’s constant divided by 2p, and cN and cM are the magne-
togyric ratios of nuclei N and M, respectively. Equation (27.5) can be expressed as
follows:

HNM ¼ hJiso IN IM þ hReff IN

1 0 0
0 1 0
0 0 �2

2
4

3
5IM ð27:9Þ

where the effective dipolar coupling constant, Reff, is RDD – DJ/3. Equation (27.9) is
general in that it demonstrates that one cannot measure RDD and DJ separately.
However, if one knows rNM and can measure Reff, then values of DJ can be obtained.
In the following section, an example will be provided. Notice that in isotropic liquids
where molecules rapidly tumble, the last term of Eq. (27.9) is zero (that is to say, the
observed NMR spectrum to a first approximation will be independent of Reff). Simi-
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larly, for solids, it is easy to show that under conditions of rapid magic-angle spin-
ning, the observed NMR spectrum will not be influenced directly by Reff.

The inseparability of RDD and DJ is often overlooked in the NMR literature. It is
common practice in the literature to simply assume that the anisotropy in the indi-
rect spin–spin coupling is negligible. While this may be a reasonable assumption
for spin-pairs that only involve first-row nuclei, protons in particular, it is certainly
not valid when heavier nuclei are involved (see e.g., Refs. [22, 54] and references
therein). For example, in the case of the diatomic molecule, 127I–19F, Jiso= –5856 Hz
and (DJ/R DD) = –179% [55].

27.3.2
Characterization of DJ(77Se, 31P) for Trimethylphosphine Selenide

McFarlane and Rycroft [56, 57] used double resonance NMR experiments to deter-
mine the sign of 1J(77Se, 31P)iso for trimethylphosphine selenide. They concluded
that the sign is negative and that the magnitude of this isotropic indirect spin–spin
coupling constant is approximately 700 Hz. In 1980, Cogne et al. described the
results of a 13C and 31P NMR study of (13CH3)3PSe dissolved in a nematic liquid
crystal solvent [58]. When the data are analysed assuming the J(77Se, 31P) tensor is
isotropic, an unrealistically long Se–P separation is obtained, rSe,P = 2.33 – 0.06 �.
Using the experimental Se–P bond length from X-ray diffraction, 2.11 �, allowed
the authors to calculate the direct dipolar coupling constant and estimate the aniso-
tropy in the indirect spin–spin coupling constant, DJ = 680 – 180 Hz [59]. In the orig-
inal paper, DJ was reported as –680 Hz [58]; however, in a later review by two of the
co-authors the sign was given as positive without comment (see Ref. [59]). For a de-
tailed discussion of the procedure used to analyze the spectra, vibrational correc-
tions, assumptions, etc., the reader should consult Ref. [58]. It is interesting to note
that early relativistically parametrized extended H�ckel calculations by Pyykk� and
Wiesenfeld [60] predicted DJ(77Se, 31P) = +265 Hz.

More recently, Grossmann and co-workers [61] carried out both 31P and 77Se
NMR studies on polycrystalline samples of trimethylphosphine selenide. They found
DJ(77Se, 31P) values of +640 – 260 Hz and +550 – 140 Hz from analyses of 31P and
77Se NMR spectra, respectively. The value of Jiso in the solid state was found to be
–656 Hz. Using the X-ray structure, density functional calculations using the
deMon-NMR code yielded DJ(77Se, 31P) and J(77Se, 31P)iso values of +705 Hz and
–820 Hz, respectively [61]. Similarly, using the ADF program and carrying out
ZORA DFT calculations with the functionals described in Ref. [55], we obtain values
of +610 Hz and –667 Hz, respectively, for these same parameters [62]. In summary,
it appears that experiment and theory agree that the J(77Se, 31P) tensor for phos-
phine selenides exhibits significant anisotropy. While the example discussed here
involves two spin–1/2 nuclei, it is important to recognize that in the solid state,
quadrupolar nuclei have relatively long relaxation times so NMR techniques may be
applied to spin-pairs consisting of one or two quadrupolar nuclei (see for example,
Refs. [63–69]). In concluding this section on the measurement of anisotropies in
indirect spin–spin coupling tensors, it is important to mention that librations of the
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N–M vector in the solid state will lead to a reduced value of Reff and that uncertain-
ties in (Reff – RDD) are multiplied by a factor of 3 when one finally evaluates the
uncertainty in DJ. Unfortunately there is no simple procedure for incorporating cor-
rections due to motion in the solid state. In contrast, rovibrational corrections of
high-resolution hyperfine parameters obtained from diatomic molecules in the gas
phase are relatively straightforward [22, 26, 27, 28, 54, 70]. Of course one can also
calculate rovibrationally averaged parameters using quantum chemistry computa-
tions [71]. See Chapter 10 by Ruden and Ruud for an excellent discussion of rovibra-
tional corrections to NMR parameters.

27.3.3
Miscellaneous Applications of Computational Studies of J Tensors

In interpreting indirect spin–spin coupling data, researchers have commonly con-
sidered only the Fermi-contact mechanism. It appears that modern quantum chem-
istry computational techniques are sufficiently reliable to test this assumption.
Furthermore, such calculations can provide convincing evidence about the absolute
sign of indirect spin-spin coupling constants. For example, many years ago, an
empirical correlation of diso(19F) versus 1Jiso(129Xe, 19F) led Gillespie and Schrobil-
gen [72] to conclude that the sign of 1J(129Xe, Fax) for XeF5

+ was opposite to that of
most other 1J(129Xe, 19F) values. From a recent review of the experimental NMR lit-
erature [73], it was concluded that most 1J(129Xe, 19F) values are negative, with
1J(129Xe, 19Fax) for XeF5

+ being an exception. Recent relativistic density-functional
calculations on XeF5

+ confirm that indeed 1J(129Xe,19Fax) is positive, +2190 Hz, and
opposite to that of 1J(129Xe,19F) in most other xenon fluorides [74]. In fact, the calcu-
lations indicate that 1J(129Xe, 19Feq), for an isolated XeF5

+ is negative, that is,
–398 Hz. It is remarkable that in the sample molecule, two different one-bond
129Xe, 19F spin–spin coupling constants have opposite signs.

One of the most exciting observations involving indirect spin–spin coupling con-
stants in the past decade was the report of significant 2hJ(15N, 15N) values (several
Hz) across hydrogen bonds in biological macromolecules by Grzesiek and co-work-
ers [75] (see Chapter 22 by DelBene). One of the advantages of computational chem-
istry is that one can construct models to investigate, for example, how such coupling
constants depend on distance or a particular angle. In the case of the methylenei-
mine dimer, with angle N–H_N equal to 180�, we found 2hJ(15N, 15N)iso= 9640
exp(–2.73 rNN), with rNN in � (see Ref. [76] for details).

Finally, while experiments to characterize the anti-symmetric components of the
J-tensor have been proposed [54, 77], it appears that such experiments have been
unsuccessful to date. Undoubtedly computational results may be useful in suggest-
ing systems to investigate [78].
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27.4
NMR Spectra of Quadrupolar Nuclei in Solids

More than 80% of the NMR accessible nuclei are quadrupolar nuclei (spin I ‡ 1)
and, with few exceptions, most of these have half-integer spin (that is, spin 3/2, 5/2,
7/2 or 9/2) [24]. For such nuclei, the +1�2 to –1�2 NMR transition is not perturbed by
the first-order quadrupolar interaction [79]. This feature of non-integer quadrupolar
nuclei makes it possible to study a wide range of quadrupolar nuclei in the solid
state, particularly if the nuclear quadrupolar coupling constant, CQ, is of the order
of 10 MHz or less. With the availability of ultra-high magnetic fields [80, 81], NMR
studies of these nuclei are being facilitated, in part, because the second-order quad-
rupolar broadening of the central transition depends on the inverse of the applied
magnetic field strength. With the application of high applied fields, it is necessary
for experimentalists to consider both the magnetic shielding tensor and the electric
field gradient tensor at the nucleus being investigated (see e.g., Refs. [82, 83]).

The electric-field gradient tensor, V, is a traceless second-rank tensor [21, 79]. In
its PAS, it is characterized by the largest component, VZZ, and asymmetry para-
meter, g= (VXX – VYY)/VZZ, where |VZZ | ‡ |VYY| ‡ |VXX |. The nuclear quadrupolar
coupling constant is defined by Eq. (27.10),

CQ ¼ eQVZZ=h ¼ e
2
qZZ Q=h ð27:10Þ

where e is the charge of an electron, Q is the nuclear quadrupole moment, h is
Planck’s constant and Vii= eqii. To fully characterize the nuclear EFG tensor, or the
quadrupolar interaction tensor, one requires CQ, g and the three Euler angles that
define the orientation of the PAS of the EFG tensor with respect to the molecular
frame.

Several excellent reviews concerning solid-state NMR studies of quadrupolar
nuclei are available, (see for example, Refs. [84–87]); here we present an example
from our laboratory that illustrates the strategy that may be used to investigate such
nuclei. The study involved a 11B NMR investigation of solid trimesitylborane and
triphenyl borate [88]. Under conditions of rapid magic-angle spinning (MAS) the
11B NMR spectra depend only on the values of CQ, g and diso (note that such spectra
of effectively isolated spins do not depend on the sign of CQ). Analysis of the MAS
spectra indicated CQ values of 4.75 MHz for the borane and 2.32 MHz for the borate.
For both compounds, g= 0.0, indicating that the EFG tensor is axially symmetric, as
expected from the local symmetry. The isotropic chemical shifts are significantly dif-
ferent, 77.4 ppm and 17.9 ppm, respectively, for the borane and borate. In the
absence of MAS, the 11B NMR spectra of the central transition depend on the boron
chemical shift tensor, the EFG tensor at boron and the relative orientation of these
two tensors. The 11B NMR spectrum of trimesitylborane calculated at a field of
17.63 T assuming isotropic magnetic shielding is shown in Fig. 27.4.

In order to fit the experimental spectrum, a span of 121 ppm was required. Con-
versely, the span of the boron magnetic shielding tensor for the triphenyl borate was
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found to be less than 10 ppm. This study represents the first definitive experimental
characterization of a boron shielding tensor [88]. Employing RHF and DFT calcula-
tions the different spans of the boron shielding tensors were rationalized. Further-
more, the calculations qualitatively reproduced the experimental EFG tensors. We
have employed this same basic procedure to characterize some of the first measured
magnetic shielding tensors for several other quadrupolar nuclei. In cases where the
local symmetry does not fix the orientation of at least one of the principal compo-
nents of the shielding and EFG tensors, variable-field measurements are essential
and, in general, single-crystal NMR investigations are recommended.

In closing, it is important to note that even though the EFG is a first-order prop-
erty, it is sometimes difficult to calculate reliable EFGs even for isolated molecules.
For example, we have found that standard-reference ab initio calculations are un-
reliable for the nitrogen EFGs of nitrous oxide, N2O. Similarly the calculation of an
accurate EFG at the 27Al nucleus of aluminum hydride appears challenging [89].
Finally, in the solid state one often has to consider lattice effects (that is, long-range
effects) because the EFG does not readily converge. See Chapter 17 by Schwerdt-
feger et al. for a discussion concerning the calculation of nuclear quadrupolar cou-
pling constants.

27.5
Conclusions

I hope that this chapter has given the reader some sense of the tremendous
advances in both experimental NMR and the computation of NMR parameters from
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Figure 27.4 11B NMR spectrum of a stationary
powder sample of trimesitylborane (top) along
with the best-fit simulation (middle). The spec-
trum at the bottom is calculated assuming only
the quadrupolar interaction (CQ = 4.75 MHz and
g = 0.0) contributes to the lineshape. In

order to achieve agreement between the experi-
mental and calculated spectra, it is necessary
to include anisotropic magnetic shielding (i.e.,
a span of approximately 121 ppm is required).
See Ref. [88] for details.



first principles. While most of the examples presented here are from our own
research, I have attempted to refer to a number of recent reviews where the excellent
work of many others is discussed. We have found “Nuclear Magnetic Resonance – a
Specialist Periodic Report”, published annually by the Royal Society of Chemistry, to
be a valuable resource to the NMR literature. The contents of the present text pro-
vide a testimony to the success of modern computational methods in calculating
NMR tensors.
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28.1
Introduction

Zeolites are porous open-framework solids, built from corner-sharing SiO4/AlO4
–

tetrahedra. These crystalline aluminosilicates contain regular arrangements of cages
and mono-, bi- or tri-dimensional channels (Fig. 28.1). The empty volume (cages
and channels) in these materials may reach 50% of the entire volume. This explains
why, after dehydration, a large variety of gaseous organic or inorganic molecules
may fill the intra-crystalline volume and adsorb on the large available internal sur-
face (from 100 to 1000 m2 g–1). Sorption in zeolites, also called molecular sieves
because of this property, gives rise to commercial applications, such as drying of
organics, separation of gas mixtures, removal of waste compounds from water, etc.
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Figure 28.1 Zeolite b (4 unit cells) with Si/Al = 13; yellow sticks
represent Si, green balls Al, red balls O, blue balls Na+.



28 Calculations of Nuclear Magnetic Resonance Parameters in Zeolites

The zeolite framework bears a net negative charge equal to the number of Al
atoms, which is balanced by the total positive charge of exchangeable cations Mn+,
also called extra-framework cations. The global formula for a zeolite is Mx/n (AlO2)x

(SiO2)y · mH2O, with y ‡ x. According to the so-called Loewenstein rule [1], two Al
tetrahedra cannot be next neighbours. Natural and synthetic zeolites, which repre-
sent more than 160 structures, display a wide range of possible Si/Al (y/x) ratios,
with much larger values (more Si) for the synthetic ones. Moreover, other elements,
such as Ga, Ge, B, Fe, P etc., can be substituted into the framework.

Despite the fact that the Si/Al ratio is controlled by synthesis, the distribution of
Al in the framework is not known (except for Si/Al= 1). Indeed, the scattering fac-
tors of Si and Al are too similar in X-ray diffraction and only average coordination
and geometries can be obtained from experimental techniques. In the same way, the
distribution of the extra-framework cations is not known, except if their occupation
in a specific site is 100%. Indeed, although the occupancies of the various cationic
sites are obtained from X-ray or neutron diffractions, the actual positions of the cat-
ions, which are located at partially occupied sites, are not defined.

Apart from sorbing properties, and cation exchange, zeolites are well-known for
their broad spectrum of catalytic properties. When the organic or alkali metal cat-
ions used in the synthesis are exchanged with protons by hydrothermal treatment,
acid catalysts are obtained, which are used in numerous industrial applications,
such as cracking, hydrocracking, isomerization of hydrocarbons, etc. When alkali
metal cations are exchanged with transition metal ions, the zeolites act as oxido-
reductive catalysts, mainly used in environmental chemistry.

The development of high resolution solid-state NMR techniques, such as magic
angle spinning (MAS), has been of great importance in many domains of zeolite
chemistry : (i) 29Si, 27Al, 23Na MAS NMR for the characterization of solids (structure,
Si/Al ordering, assignment of crystallographically non-equivalent sites, substitution
by other elements); (ii) 1H MAS NMR for the study of Brønsted sites (use of probe
molecules); 1H, 13C, 15N MAS NMR in situ spectra for insight into catalytic reac-
tions [2–4].

29Si, 27Al, 23Na, 17O, 31P elements of zeolitic frameworks have been studied by
MAS NMR. 29Si spectra have been particularly rich in information thanks to the
wide range of 29Si chemical shifts, which are very sensitive to the local geometry and
electronic structure of the nearest neighbours [5–7]. 29Si signals produced by crystal-
lographically non-equivalent silicons can be obtained, as demonstrated in the pio-
neering work on a highly siliceous silicalite [8, 9] showing up to 20 well-resolved
lines for the 24 sites. The study of 27Al NMR spectra is less easy, due to its quadru-
polar nucleus, leading to broadening and shifting of the signals. These effects, com-
bined with the weaker sensitivity of 27Al chemical shifts to the environment (com-
pared with Si) have hindered quantitative structural studies of the Al sites. However,
27Al NMR studies have been used to analyse dealumination and realumination pro-
cesses [10], as well as Al coordination [11]. More recently, measurements of 27Al
quadrupole coupling constants [12–15], which are directly related to the electric field
gradient at the Al nuclei, have provided information about the local structure around
the Al tetrahedra, in particular in acidic zeolites (see Section 28.4). In spite of their

450



28.2 Theoretical Methods

narrow range of variation, a very large amount of studies have been devoted to 1H
NMR shifts of the bridged (Si–OH–Al) acidic hydroxy groups (see Section 28.4).

Despite the remarkable sensitivity of NMR techniques to very small changes in
atomic positions (changes in Al content, temperature effects, adsorption of mole-
cules etc.), they have two main limitations in the study of structures and reactions:
(i) the timescale of NMR prevents the characterization of transition states or short-
lived intermediates; (ii) the difficulty in using chemical shifts to determine specific
structures unequivocally.

Moreover, the structural information contained in the values of the shielding ten-
sor components is missing for zeolite framework elements. The small size of the
zeolite crystals is probably the reason why the principal components of 29Si shield-
ing tensors are not measured, as is done for solid silicates [16–18]. Actually, these
components are obtained for 13C or 15N nuclei of guest molecules in strong interac-
tion with the zeolite cavities, eventually protonated long-lived organic cations such
as substituted acetonitrile [19], acetone [20, 21], arenes [22, 23], halopropanes [24,
25]. In these in situ experiments, the information about the shielding tensor aniso-
tropy is extracted from the intensity of spinning sidebands of the isotropic signal
[26].

Theoretical calculations in synergy with NMR experiments can help to overcome
the methodological limits. Models of active sites are built and comparison of their
magnetic properties with experiment leads to helpful information about the struc-
tures [23–26].

Quantum mechanical (QM) calculations of NMR parameters in zeolites have
appeared in the last decade. Indeed, modelling NMR shifts of large systems
(50–100 atoms) has become more and more feasible, due to the development of fast-
er methods and computers. Success in simulating NMR properties of zeolites has
interesting consequences: (i) the assignment of MAS NMR signals to crystallogra-
phically distinct Si or Al sites; (ii) the correlation between observed changes in the
NMR spectra and structural modifications, including zeolite–adsorbent interactions;
(iii) the easier prediction of in situ reaction mechanisms.

The remainder of this chapter is organized into four sections. First, a brief sum-
mary of QM methods used to calculate NMR properties will be reported in Section
28.2. Then, Section 28.3 will be devoted to calculations of NMR chemical shifts of
framework elements, in relation with structure characterization. Section 28.4 will
deal with the NMR studies of Brønsted sites and Section 28.5 reports NMR calcula-
tions of guest organic molecules.

28.2
Theoretical Methods

Ab initio calculations of NMR shielding constants are presently performed in the
framework of two main theories: Hartree–Fock (HF), by far the earlier, and density
functional theory (DFT), which was developed later.
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28 Calculations of Nuclear Magnetic Resonance Parameters in Zeolites

The ab initio theoretical predictions of NMR properties started with the early work
of Ditchfield [31], who proposed the GIAO method, later implemented in Hartree–
Fock (CPHF) [32–34] and post-Hartree–Fock (MP2) calculations [35, 36]. Although
this method has been applied to predict chemical shifts of organic compounds, its
application to zeolites has begun only recently. CPHF-GIAO is presently the most
commonly used method to calculate chemical shifts in zeolites. GIAO-MP2 is gener-
ally chosen for molecules in zeolites. The programs TURBOMOLE, TURBONMR
[32, 34] and GAUSSIAN [37] propose adequate modules.

Studies performed with CPHF-GIAO have used double zeta plus polarization
(DZP) bases for 29Si and TZP for 1H, 17O and 27Al, 13C and 15N [38].

The sum-over-states density functional perturbation theory (SOS-DFPT) approach
has been proposed by Malkin et al. [39], associated with individual gauge for local-
ized orbitals (IGLO) [40]. This method has proven its validity for a broad range of
compounds, including organics, zeolites (vide infra), metal complexes, etc. deMon
programs generate data for the associated magnetic properties program [41, 42].

Very recently, a new method based on DFT has been developed to calculate NMR
shieldings within periodic boundary conditions and a pseudopotential approach [43,
44]. The gauge-including projector augmented wave (GIPAW) method, derived from
the work of Bl�chl [45], is used to reconstruct the all-electron induced current from
the pseudo-wavefunctions [44]. This methodology is available in the PARATEC code
[46].

The programs mentioned above can also evaluate electric field gradients at the
nucleus, and thus quadrupolar coupling constants (Cq) for nuclei with spin values
larger than 1�2, such as 17O, 27Al, 23Na, etc.

From experimental and theoretical studies, it appears that NMR can be consid-
ered as a local property in zeolitic systems. Indeed, as reported in Section 28.3, the
experimental 29Si spectra of various zeolites have been reproduced using clusters
including 2–3 shells of neighbours around the studied nucleus, oxygens being the
first shell, silicons the second, etc. Moreover, experimentalists have evaluated, for a
long time, the Al bulk composition of a zeolite using a formula which relates the
NMR 29Si peaks areas of the SiO4(nAl) (n= 0 to 4) units to the global Si/Al ratio [47,
48]. This means that the composition in Si/Al of the second shell of neighbours
determines the 29Si MAS NMR chemical shifts (assuming that there are no
Al–O–Al linkages, according to the L�wenstein rule). These results show that, in
these solids, the response of the density to the external magnetic field remains cen-
tered around the nuclei.

Periodic plane-wave based codes are now starting to be used for the evaluation of
chemical shifts of zeolites. This methodology will certainly be more extensively used
in the near future. However, the large size of most unit-cells of aluminated zeolites,
associated with the randomness of the Al distribution, will remain limitations for
such calculations in zeolites with a substantial Al content.
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28.3
NMR of Framework Elements: Structure Characterization

Following the development of MAS NMR, extensive studies of the composition and
structure of zeolite frameworks have appeared. The assignment of 29Si NMR spectra
of zeolites was based essentially on empirical formulae derived from the relations
between geometry and observed chemical shifts [48–52]. The analysis of the
deshielding effects, due to the presence of Al neighbours, has led to linear relation-
ships between 29Si chemical shifts and the number of Al [53]. These empirical pre-
dictions have been very useful in determining the distribution of Al in the frame-
work (number of Al neighbours per Si) in faujasites at different Si/Al ratios [48].
However, their use is more problematic when signals from non-equivalent Si atoms
in Si(nAl) units overlap.

These empirical correlations can now be replaced by quantum mechanical calcu-
lations, with a similar or better precision, but with the advantage of a direct assign-
ment of the spectra. Calculations of 29Si, 27Al and 17O shielding constants of frame-
work zeolite elements have been performed with the aim of assigning the different
NMR signals to specific sites.

A good prediction of the NMR spectra of framework elements necessitates having
a good framework structure and giving a precise evaluation of the NMR shifts of the
nonequivalent sites. In fact, these studies demonstrate how NMR signals are
strongly dependent on the local geometries, even on very small variations of bond
lengths and angles.

Bussemer et al. [54] have reported the calculated 29Si spectra (CPHF-GIAO meth-
od) of all-silica ZSM-5, ZSM-18, ZSM-12, theta-1 and faujasite, based on evaluations
involving 29 clusters to represent all the crystallographic sites of these zeolites. They
demonstrate that the size of the model clusters necessary to obtain converged NMR
29Si chemical shifts is reached when three shells of neighbours surround the stud-
ied nucleus.

Moreover, they compare the chemical shifts calculated using the experimental ge-
ometries with those calculated using structures predicted from lattice energy mini-
mization based on inter-atomic potential functions [55] and with chemical shifts
established using empirical formulae [56]. Comparison between observed and pre-
dicted values shows that chemical shifts calculated with experimental geometries
display a regular low-field shift of about 4 ppm with respect to experimental values,
whereas those calculated with predicted geometries are shifted by about –0.5 ppm
(2.78 ppm of average deviation). The difference of 4.5 ppm between both sets of pre-
dicted chemical shifts is comparable with the difference of 29Si chemical shifts of
a-quartz evaluated using clusters with three and with four shells of neighbours, or
with four and five shells. This demonstrates that the precision of the structural pa-
rameters is critical for quantitative evaluation of the NMR shifts.

The locality of the 29Si NMR shielding in zeolites could be the reason why the
MAS NMR spectrum of zeolite-b can be deconvoluted into nine distinct signals, in
spite of the stacking disorder of this solid. This spectrum has been calculated using
the SOS-DFPT method and the signals assigned to the various crystallographic sites
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[57]. In this work, as well as in the study of the zeolite mazzite [58], the calculated
and experimental chemical shifts are shown to obey a linear relationship with
respect to the average <Si–O–Si> bond angle at each site. A quantitative prediction
of the 29Si chemical shifts (1 ppm) is obtained using the average value calculated
with four octamer models (2 Si sites per model).

Moreover, as shown in Fig. 28.2, different frameworks such as mazzite and zeo-
lite-b follow the same linear relation between d and the <Si–O–Si> bond angles. Fig-
ure 28.2 allows one also to compare SOS-DFPT (IGLO) and CPHF (GIAO) results
obtained with the same clusters representing zeolite-b, namely one site- (1T) and
two site- (2T) models [59]. Both methods reproduce the same trend for 29Si d versus
the average <Si–O–Si> bond angles. The absolute values for 1T models obtained
with the CPHF method display a slightly larger downfield shift than those obtained
with SOS-DFPT. Moreover, the improvement provided by increasing the cluster size
shown by SOS-DFPT for sites 1, 3 and 8 (including respectively 0, 1 and 2 four-mem-
bered rings) is not really reproduced with CPHF, showing that these two methods
behave differently with the cluster size.

Substitution of Si by Al induces a substantial variation of the local geometry:
Al–O bonds are about 0.1 � larger than Si–O bonds whereas TOT bond angles
decrease. This geometric effect, associated with electronic effects, strongly decreases
the chemical shifts of the next Si neighbours. These variations have been quantita-
tively reproduced and analysed by theoretical calculations of the 29Si and 27Al spectra
of zeolite-b and mazzite [57, 58].
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In conjunction with molecular dynamics energy minimization, NMR calculations
have also been used to propose positions for framework aluminum and Na+ cations
in a Na-Y zeolite, with Si/Al ratio of 2.43 [60].

Replacement of Al by Ga gives only a small decrease in the average <TOT> angle
of the next Si, correlated with a small downfield shift (1 ppm) of the 29Si NMR sig-
nal, reproduced by calculation (CPHF) [61]. In contrast, substitution of Si by B (asso-
ciated with Na+ counterions) does not produce a large change in the TOT angles
around the next Si neighbours but a substantial decrease in the average B–Si dis-
tances [62]. In agreement with experimental results measured in various zeolites,
the chemical shift calculated for a 29Si next to B(Na+) is intermediate between that
of a non-substituted Si and that of a Si next to Al(Na+). The replacement of Na+ by
H+ induces B–O bond breaking and the formation of a silanol [62].

Recently, 17O NMR chemical shifts and quadrupolar parameters have been inves-
tigated for the fully siliceous zeolites faujasite and ferrierite, with different meth-
odologies, such as CPHF-GIAO using four shell clusters [63, 64] and the GIPAW
method with periodic boundary conditions [65]. In the former studies, the faujasite
structure was optimized and two experimental structures of ferrierite were com-
pared, whereas in the latter study, the choice was the opposite, i.e. to optimize the
ferrierite structure and use the experimental faujasite geometry. It appears that the
quality of the NMR spectra and also of the quadrupole coupling constants is superi-
or when calculated with the DFT-based GIPAW method which takes account of the
full solid. However, it must be stressed that the 17O NMR parameters are extremely
sensitive to the geometry, more than the X-Ray diffraction patterns [65]. As sug-
gested by Bull et al. [64], the vibrational amplitudes of the bridging oxygens are larg-
er than those of the silicons and should be introduced in the evaluation of average
oxygen properties. More work is certainly necessary to understand why the geometry
of the full solid is much more important for a good description of the NMR proper-
ties of 17O than for those of 29Si.

28.4
1H NMR: Acidity and Proton Transfer

Zeolites are inorganic solid acids where the framework aluminums are compen-
sated by protons (Brønsted acid sites). The nature of their acid sites, their physico-
chemical properties and catalytic activity have been widely studied [29, 66].

Zeolites have been considered for a long time as superacids supposed to transfer
their protons easily to reactants and generate high-energy cationic species. However,
extensive experimental NMR studies brought evidence that the reaction intermedi-
ates were not unstable cations but rather species covalently bound to the zeolite
framework, leading to rescaling the zeolite acid strength to much lower values [28,
66, 67]. Actually, the acid strength of the sites depends on the geometry, on their
distribution and density. It is a specific property of the zeolite, which correlates with
the presence of a base. NMR experiments and modeling have been used to study the
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proton transfer from the Brønsted sites to the base. Both 1H and 27Al NMR spectra
have been used for this purpose.

Attempts to correlate 1H chemical shifts and deprotonation energies, i.e. the acid
strength of the sites, have been made for faujasite clusters with one and two Al sites
in a four-membered ring (protons at O1 and O3) and for different Al environments
[68]. As expected, the two oxygen sites having different geometries, the related 1H
chemical shifts show a non-negligible difference for an all-silicon environment
(their calculated and experimental difference are 0.5 and 0.7 ppm, respectively). The
presence of other Al in the next shells also induces substantial variations of the 1H
chemical shifts. Interestingly, these models show that there is no relationship be-
tween 1H chemical shifts and site acidity.

The interaction of the Brønsted protons with molecules, such as H2O, NH3,
CH3OH etc. leads to changes in the 1H NMR spectrum, which can be used to evalu-
ate the degree of proton transfer from the Brønsted site to the molecule [69–71].
Indeed, the two structures, i.e. the neutral complex formed by the hydrogen bonded
molecule and the zeolite, or the ion pair formed by the zeolite anion and the proton-
ated base, display different 1H NMR signals. Comparison with experimental chemi-
cal shifts allows one thus to determine to what extent the acidic proton is transferred
to the adsorbed molecule. There is no doubt that NH4

+ is formed by interaction of
one NH3 molecule with the acidic site and the calculated 1H chemical shift of the
NH4

+-zeolite ion pair agrees well with experiment in different zeolites (6.0–7.0 ppm)
[69]. For H2O and CH3OH, theoretical calculations show that the results are depen-
dent on the loading in molecules. For one molecule adsorbed per acidic site, the
difference in chemical shift between the neutral complex and the ion pair is sub-
stantial (about 7 ppm) which rules out, by comparison with experiment, the exis-
tence of protonated forms [69, 70]. At larger loading (2 molecules per site), the ion
pair becomes more stable than the hydrogen bonded system and the difference in
the 1H chemical shifts of both forms is reduced from about 7 ppm (low loading) to
about 2–3 ppm, with an ion pair 1H average signal at 9–10 ppm [71], which corre-
lates with an experimental value of 9.1 ppm [72]. However, experimental results are
not all concordant, and a clear conclusion cannot be drawn for high loadings.

Theoretical 27Al chemical shifts and nuclear quadrupolar coupling constants
(NQCC) have also been used recently to analyse the transfer of the zeolite proton to
an adsorbed base [73, 74]. For nuclei with spin values larger than 1/2, the NQCC
values reflect the importance of the electric field gradient generated at the nucleus
by the surrounding electron distribution. Detailed information on NQCC calcula-
tions can be found in Chapter 17 by Schwerdtfeger, Pernpointner and Nazarewicz.
Large electric field gradients are obtained for zeolite acid sites because of the large
perturbation of the Al coordination due to the presence of the proton (weakening of
the Al–OH bond, strengthening of the three other bonds). Actually, recent calcula-
tions have shown that a linear correlation exists between the calculated NQCC and
Al–O bond orders [73]. Interaction of the zeolite proton with a molecule weakens
the zeolite oxygen–proton bond order, decreasing the NQCC value, which can thus
be used as a measure of the strength of the zeolite acid–base interaction [73]. As a
consequence, 27Al NMR signals are much broader (larger NQCC) for the acidic zeo-
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lite alone, i.e. without any loading, in particular, for dehydrated zeolites. Upon
adsorption of one methanol molecule per acid site a NQCC value of about 8 MHz is
observed, i.e. half the value obtained without methanol. This decrease, which could
be due to the protonation of methanol [73], has been attributed to dynamic effects,
in order to keep consistency with the 1H NMR results mentioned above [29].

Very recently, a combined theoretical and experimental study of 27Al NMR shifts
and line shapes has been performed for CH3NO2, CH3COCH3, pyridine and
P(CH3)3 adsorbed in HZSM-5 [75]. These results have shown that the 27Al chemical
shift is not sensitive to the transfer of the proton to an adsorbed base. In contrast,
the NQCC value is very sensitive, which demonstrates how the MAS NMR line
width of the central (1/2� –1/2) transition is correlated to the occurrences of proton
transfer.

28.5
NMR Studies of Guest Molecules in Zeolites: in situ NMR

Rare gas atoms inside zeolite cavities have been widely used as probes of the struc-
tures of zeolites. In particular, due to its high sensitivity to the environment, 129Xe
NMR spectroscopy has been applied to a large variety of investigations, including
the estimate of the pore sizes and the cation distribution [76]. Theoretical investiga-
tions on model clusters with various numbers and positions of Al have shown that
the rare gas chemical shift (39Ar) is higher for a greater Al content [77].

In the last few years, theoretical calculations have been used in conjunction with
in situ NMR to establish the structures of guest molecules or intermediate species
in zeolites. The strategy employed was to propose possible models from the study of
the experimental spectrum, optimize their structures and calculate their related
NMR spectra. Comparison with experimental NMR values leads then to more ascer-
tained assignments.

Using this methodology, the problem of the existence of carbenium ions in zeo-
lite has been revisited [28, 66, 75], and the differences between zeolites and true
solid superacids, such as AlBr3, have been underlined. In situ 13C MAS NMR spec-
tra of propene-2 in HZSM-5 have been recorded at various temperatures, showing
unambiguously that the isopropyl cation is not formed. Instead, two species are gen-
erated, i.e. a p complex with the acid site and a covalent bonded isopropoxy species,
which is proposed as an intermediate in the 13C 1� 3 scrambling observed for pro-
pene. The calculated 13C chemical shifts of the p complex (119.5, 150.6 and
20.6 ppm) are in agreement with the experimental values (116, 146, 18 ppm) and, in
the isopropoxy species, the 13C chemical shifts of C2 and C3 are strongly decreased
(the C2 signal only, calculated at 94.2 ppm, can be compared with the experimental
value of 88 ppm) [75].

The interaction of CH3CN and HZSM-5 has also been studied, using 1H and 13C
NMR [78] or 13C NMR [79]. The most stable structure was found to be the acetonitri-
le–zeolite hydrogen bonded complex. Since the experimental results were suggest-
ing a progressive proton transfer to acetonitrile with increasing temperatures, con-
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straints were imposed to the models to reduce progressively the distance between
CH3CN and the zeolite, mimicking the effect of higher temperatures [78]. Only acet-
onitrile bent structures could account for the experimental 13C NMR shifts (shifted
about 10 ppm downfield with respect to isolated acetonitrile), whereas the 1H NMR
values for the acidic proton reproduce the experimental trend observed with increas-
ing temperature [78]. The combination of theory and experiment has thus led to a
different view of the acetonitrile protonation, better described as a concerted pro-
cess, where the changes in the structure of the base drive proton transfer along the
reaction coordinate.

Following the same spirit, Nicholas has used coupled theoretical and experimen-
tal approaches to demonstrate the coadsorption effect of nitromethane on the proto-
nation of acetone [30]. The presence of nitromethane interacting with acetone gener-
ates a downfield shift of 1.2 ppm of the zeolite proton chemical shift, which is pre-
dicted to be 1.3 ppm by the calculations.

The behavior of the 13C chemical shift of the carbonyl of acetone also reflects the
cooperative effect of the nitromethane molecule.

Comparison of the reaction of benzene with excess methanol in HZSM-5 and ze-
olite-b showed that two different intermediate carbenium ions were formed in these
zeolites: pentamethylbenzenium ion in the former and heptamethylbenzenium ion
in the latter, these assignments being confirmed by in situ NMR associated with
theoretical calculations of the 13C NMR shifts [80, 81]. These examples demonstrate
how different zeolite topologies can control the substitution pattern of persistent
carbenium ions, which certainly play a role in the methanol to olefin conversion.
Theoretical calculations of 13C and 15N NMR tensors, combined with in situ NMR
with the pulse-quench reactor have also been devoted to the study of the reaction of
acetonitrile with tert-butyl alcohol in HZSM-5, showing the formation of N-tert-butyl-
acetonitrilium as the intermediate species [19]. The presence of this intermediate
cation is ascertained by the good correlation between the theoretical and experimen-
tal values of the principal components of the 13C and 15N shielding tensors. The
GIAO-MP2 method [35] used in this study seems to be more adequate for the treat-
ment of 13C NMR shifts than for those of 15N. The authors suggest that better values
of the 15N chemical shifts could be obtained using extensions of the GIAO method
to MP4 [82] and coupled cluster treatments [83], necessary for a better account of
electron correlation.

The diffusion and adsorption of ethane, propane and isobutane in HZSM-5 and
silicalite have been investigated by classical methods, Monte Carlo and molecular
dynamics, on large clusters containing four unit cells [84]. The interaction of these
molecules with HZSM-5 and their paths to dehydrogenation were then studied on
cluster models cut in the structures using a DFT-based methodology. Alkoxide prod-
ucts were proposed for ethane and propane but not for isobutane which would bet-
ter convert to isobutene. This conclusion is supported by the calculated 13C NMR
shifts of the corresponding alkoxides, which fall in the range 80–100 ppm, as ob-
served for the primary alkanes.
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28.6
Conclusions

In the last decade, NMR predictions in zeolites have started to become a new power-
ful tool, which, in conjunction with experimental MAS NMR techniques, contri-
butes to the characterization of these solids and to the understanding of their behav-
ior with respect to incoming reactants. Obviously, the next necessary step in the the-
oretical contributions will be to take into account the dynamics of the interaction
between the zeolite and the guest molecule or the solvent. Indeed, recent works on
water [85–87] or molecules in water [88] have demonstrated the effect of the solvent
on NMR shielding values. Moreover, ab initio MD studies can provide, in addition, a
correlation between the shielding values and the structures (see also Chapter 11 by
Searles and Huber). In fact, the dynamical aspect of the zeolite–molecule hydrogen
bonding is certainly an important factor in order to get a realistic description of the
structure, reactivity and magnetic properties of these complex systems.
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29.1
Introduction

The history of ab initio quantum chemical studies of hyperfine coupling constants
(HFCCs) goes back to the pioneering work of Meyer in the late 1960s [1]. The signif-
icant deviations of the early Hartree–Fock results from experiment (see Chapter 3 by
Neese and Munzarov�) indicated that an account of electron correlation is manda-
tory for quantitative HFCC calculations. Theoretical predictions of high accuracy
became possible with the development of MCSCF, MRCI and CC methods; compare
Chapter 30 by Engels. However, applications of these post-Hartree–Fock approaches
concentrated mainly on small organic radicals or on other light main group systems.
Larger radicals or transition metal complexes, which have been and still are of sig-
nificant experimental interest, remain computationally too demanding to be treated
at highly correlated ab initio levels of theory.

An alternative has been provided by recent advances in density functional theory
(DFT). DFT includes electron correlation approximately, at moderate computational
cost. Preceded by a number of Xa-computations of HFCCs [2], the development of
gradient-corrected and hybrid DFT schemes in the late 1980s and early 1990s gave
rise to numerous validation and application studies, examined in several excellent
reviews. Malkin and coworkers [3] discussed the use of DFT for parameters of EPR
and NMR spectroscopy, while the review of Barone [4] concentrates on the perfor-
mance of DFT for structure, magnetic properties and reactivities of open-shell sys-
tems. Engels et al. [5] reviewed radical HFCC calculations from the DFT and config-
uration interaction perspectives. A very brief account of hyperfine coupling is pro-
vided also in the DFT monograph of Koch and Holthausen [6], including some
results of an extended, critical validation of DFT and CC approaches for HFCCs of
transition metal complexes [7].

On purely theoretical grounds, it is not obvious which of the gradient corrections
should be the most appropriate to use in HFCC calculations. Thus the choice of a
functional along with a basis set has to be based on its behavior for the given class
of systems. The aim of this chapter is to provide the reader with a feeling for the
performance of representative state-of-the-art density functionals, based on the com-
parison of DFT results with reliable experimental and high-level ab initio data. The
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29 DFT Calculations of EPR Hyperfine Coupling Tensors

discussion is organized by system type but, whenever possible, an attempt is made
to point out the general behavior of a functional across wider sets of compounds, as
well as the physical background of the observed performance.

29.2
Theoretical Background

29.2.1
The Hyperfine Coupling Tensor

The hyperfine coupling parameters describe the interactions of unpaired electrons
with magnetic nuclei. The 3 � 3 hyperfine interaction tensor A can be separated into
its isotropic and anisotropic (dipolar) components. In the first-order approximation,
isotropic hyperfine splittings Aiso(N) are equal to the Fermi-contact term and they
are related to the spin densities ra–b(RN) at the corresponding nuclei by

AisoðNÞ ¼ 4p
3

be bNge gN SZh i�1
r

a�b
N ð29:1Þ

Here be is the Bohr magneton, bN the nuclear magneton, ge the free-electron g-value
(2.002 319 31), gN the nuclear g-value, ÆSZæ the expectation value of the z-component
of total electronic spin, and rN

a–b the spin density at the position of nucleus N (RN).
The components Tkl of the anisotropic tensor are, in the first-order approximation,
given by

Tkl Nð Þ ¼ 1
2

be bN gegN SZh i�1X

l;m

P
a�b
l;m ul r

�5
N r

2
N dkl � 3rN;k rN;l

� ����
���um

D E
ð29:2Þ

where rN = r – RN, and Pl,m
a–b is the spin density matrix. T is always traceless and may

be brought to diagonal form. For magnetic nuclei located on an at least threefold
symmetry axis, it adopts the form (-Adip, -Adip, 2Adip), where Adip is the so-called
dipolar coupling constant.

29.2.2
The Exchange-Correlation Functionals

The principles of DFT were formulated almost 40 years ago by Hohenberg and
Kohn who proved that the full many-particle ground state is a unique functional of
the density (r) that minimizes the total energy [8]. The form of the exact functional
is unknown, however, and the way towards practical applications of DFT has been
opened only by the ingenious idea of Kohn and Sham to construct a noninteracting
reference system having the same density as the real system [9]. By this method, a
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29.2 Theoretical Background

major part of the unknown functional can be expressed exactly, leaving only a small
part of the total energy to be approximated. This so-called exchange-correlation ener-
gy (Exc) contains non-classical contributions to the potential energy, as well as the
difference between the kinetic energy of the noninteracting reference system and
that of the real interacting system. The most basic approximation to Exc is the local
density approximation (LDA)

E
LDA
xc ra ; rb

h i
¼
Z

r rð Þexc raðrÞ; rb
ðrÞ

� �
dr ð29:3Þ

where exc denotes the one-particle exchange-correlation energy in a uniform electron
gas and ra, rb are the spin densities. The most common form of LDA is the Slater
exchange term (S) [10] together with the Vosko, Wilk and Nusair parametrization
(VWN) of the exact uniform electron gas model for the correlation part [11].

To improve upon this rather crude approximation, the most widely used correc-
tions are the so-called generalized gradient approximations (GGA) that employ not
only the density but also its gradient

E
GGA
xc ra ; rb

h i
¼
Z

f raðrÞ; rb
ðrÞ;rra ;rrb

� �
dr ð29:4Þ

The main correlation corrections commonly in use are by Perdew (P86) [12], by Lee,
Yang and Parr (LYP) [13], and by Perdew and Wang (PW91) [14]. Of the corrections
to the exchange energy, the most common forms are those by Perdew and Wang
(PW and PW91) [15,16], and by Becke (B) [17]. From the more recently introduced
exchange functionals, we discuss in the following the modified Perdew–Wang
(mPW) [18] and the Gill 1996 (G96) [19] functionals. Recently, the so-called meta-
GGA functionals have been developed, in which the gradient of the electronic den-
sity is augmented by some additional parameter(s) of inhomogeneity: either the
Laplacian of the density, the local kinetic energy density, or both (for a brief review
and references see Ref. [20]). Another class of functionals, “hybrid functionals”,
introduced by Becke, uses a linear combination of Hartree–Fock, LDA, and B88
exchange contributions. Becke’s so-called three-parameter hybrid functional (B3)
[21] includes ca. 20% of exact HF exchange, while the ”half-and-half” hybrid func-
tional (BH) [22] incorporates as much as 50% exact exchange. More recently, one-
parameter hybrid functionals based on B88 exchange (B1) [23], and the “modified
Perdew–Wang” exchange functional (mPW1) [18] have been introduced. In the fol-
lowing, exchange-correlation potentials vxc will be denoted by the usual combination
of labels for the exchange and correlation functionals, like BP86 or B3LYP. The com-
bination of PW91 exchange and PW91 correlation will be denoted PW91. Finally,
the recently developed hybrid functional due to Adamo and Barone [25] based on
the PBE GGA by Perdew, Burke and Ernzerhof [26] is discussed in the following as
PBE0.
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29.2.3
Basis Sets

Within the standard delta-function formulation, the isotropic HFCCs depend on the
local quality of the wavefunction at the nuclei, suggesting that Slater-type orbitals
(STOs) should be preferred, as they fulfill the correct cusp condition. However, the
majority of studies employ Gaussian-type orbitals (GTOs) based on existing evi-
dence [1] that the cusp problem can be overcome by adding very tight s functions to
standard basis sets (see Chapter 31 by Rassolov and Chipman for another possibility
to improve basis-set convergence). A lucid discussion by Barone [4] compares a
number of GTO sets to a benchmark basis (referred to as EXT) of 18s13p4d3f com-
position for first-row atoms and of 9s4p3d composition for hydrogen. While conven-
tional DZP bases are not sufficiently accurate to generate satisfactory HFCCs [5, 27],
they can give reliable results if uncontracted in the outer core-, inner valence region.
An example is the 5s2p1d basis set (3s1p for hydrogen) of Barone called EPR-II that
provides HFCC results comparable to much more extensive sets, except for isolated
atoms. Larger basis sets have been built with the aim of using the same method to
optimize and determine spectroscopic properties. The conventional TZP basis gives
reasonable but slightly too large isotropic couplings. Of the partially uncontracted
triple-f-polarized basis sets tested, the 7s6p2d (4s2p for hydrogen) set known as
IGLO-III is considered highly suitable for molecular HFCC calculations [5, 27]. It
should be noted, however, that the IGLO-III basis is not saturated with respect to
hydrogen hyperfine couplings. The latter are underestimated for certain radicals. In
contrast, the so-called TZ2P’ basis of Barone for hydrogen improves the results sig-
nificantly [4]. Results of IGLO-III quality are also obtained using the van Duijneveldt
series, contracted and augmented by a double set of polarization functions to
8s5p2d (7s2p for hydrogen) [28]. Finally, the 7s4p2d basis (6s2p for hydrogen)
known as EPR-III has been purposely tailored by Barone for reliable evaluation of
DFT magnetic properties [4].

Basis set studies for transition metal complexes are much less abundant. For
several 3d-metal systems, a large uncontracted 21s15p10d3f basis has been com-
pared to a medium-sized basis in a (15s11p6d)/[9s7p4d] contraction [7]. As found
analogously for main-group compounds, decontraction of the outermost core s-func-
tions on the transition metal influences hyperfine couplings significantly. Due to
systematic error compensation, the 9s7p4d basis simulates the 21s15p10d3f basis
quite well and can be considered a decent medium-sized basis set for use in larger
systems. Examination of the effect of the ligand basis on the isotropic HFCCs indi-
cates that the IGLO-III basis set is rather well converged relative to a larger bench-
mark 8s6p3d1f basis [7].

DFT calculations of HFCCs employing STO basis sets are scarce but provide very
interesting results. Ishii and Shimizu have employed several Slater-type basis sets
along with the LDA and BP86 functionals to calculate isotropic HFCCs in main-
group systems [29–31]. STO bases consisting of 6s5p4d sets for main group atoms
and a 5s3p set for hydrogen along with BP86 yielded most encouraging results and
outperformed conventional GTO basis sets significantly for “difficult” mono- and
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biatomic radicals. Also in the case of the methyl radical (see below), the results of
Belanzoni et al. [32] demonstrated that LDA and BP86 spin densities on C, H com-
puted using STO bases are, in absolute values, larger and closer to experiment than
their counterparts with GTO bases. The origin of the better behavior of the LDA and
BP86 functionals when combined with STOs is as yet unclear. On the one hand, the
GTO basis sets studied are considered converged (see above) and are expected to
simulate the cusp at the point of the nucleus sufficiently well. The STO basis sets
studied were necessarily smaller in size, which might indicate a fortuitous error can-
cellation when combining BP86 along with STOs. On the other hand, only in the
case of STOs is the crucial cusp condition at the nucleus exactly fulfilled. Systems,
whose HFCCs are represented well with STOs cover a relatively wide range of elec-
tronic structures. The different results with STOs vs. GTOs regarding the perfor-
mance of different functionals are certainly worth a deeper theoretical analysis.

In the case of transition metal complexes, different metal and ligand STO basis
sets have been studied on the TiF3 system by Belanzoni, Baerends, and coworkers
[32, 33]. The “best” Ti basis set employed, of triple-f quality augmented with extra
core and diffuse s and p functions, provided BP86 results very close to the above-
mentioned 9s7p4d GTO basis [7]. Likewise, the LDA, PW91 and PW86 functionals
when used with all-electron STO basis sets provide results similar to BP86 (–233 to
–246 MHz) [32].

29.3
The Performance of the Model

29.3.1
Main Group Atoms

Table 29.1 documents the dependence of HFC tensors on vxc and on basis set for
first-row atoms in comparison to experimental reference data. The results reveal
some general features that are also found with polyatomic radicals, as well as with
transition metal complexes: (i) Anisotropic coupling constants are much less sensi-
tive to vxc and basis set than isotropic ones, and essentially all of the results are in
semiquantitative agreement with the CCSD(T) reference. (ii) For isotropic coupling,
the requirements for basis set and vxc are much less stringent if the unpaired spin
populates s-type orbitals (7Li) rather than p-type (and d-type, see Section 29.3.5) or-
bitals. The transfer of unpaired spin from p- or d-orbitals to the magnetic nuclei
takes place exclusively via the spin-polarization mechanism, the description of
which represents the major challenge of HFC calculations. Basis sets of very good
quality along with a high-level treatment of electron correlation are thus mandatory
in order to obtain accurate results. This is particularly highlighted in the case of
atomic calculations, while for other systems (e.g. organic p-radicals, Section 29.3.2)
the description appears less critical and less method dependent. Another problem
specific to computations on atomic systems is the handling of their spherical sym-
metry [4].
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Looking at the data in Table 29.1 in somewhat more detail, we conclude that all
presented results for Adip fall within ca. 10% of the reference CCSD(T) values, and
that all Aiso results for 7Li(2S) lie within 15% of the experiment. In particular, 7Li is
the only system where LDA along with the EXT basis set of Barone provides rea-
sonable results for the isotropic coupling, while for all other atoms even the sign of
rN

a–b comes out wrong. The BP86/EXT level of calculation corrects the LDA spin
density in the wrong direction for 11B(2P), leaves it unchanged for 13C(3P), while
improving it slightly for 14N(4S), 17O(3P), and 19F(2P). The BLYP gradient correction
already provides a significant improvement over LDA, but the best results with the
EXT basis are provided by the B3LYP method. The B3LYP-based validation of var-
ious GTO bases reveals that the 6-31G and EPR-II basis sets are much too small for
Aiso calculations on atoms, whereas EPR-II appears sufficient in the case of poly-
atomic main-group radicals (see below). Both EPR-III and IGLO-III sets give results
comparable to the EXT basis and along with the B3LYP functional represent an effi-
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Table 29.1 Isotropic and dipolar hyperfine splitting of second row atoms (in MHz) computed
using different basis sets and density functionals, compared to experiment and CCSD(T) data.

Method Basis 7Li(2S) 11B(2P) 13C(3P) 14N(4S) 17O(3P) 19F(2P)

Aiso

LDAa GTO-EXT 399.5 –8.3 –6.1 –1.9 5.7 –62.4
BP86a GTO-EXT 388.4 –16.4 –6.1 –0.3 –2.3 7.5
BLYPa GTO-EXT 460.2 16.2 21.1 7.9 –20.2 145.1
B3LYPa GTO-EXT 453.3 18.6 25.1 10.0 –26.4 213.6
B3LYPa 6–31(d,p) 373.3 –4.1 5.4 7.3 –30.2 227.3
B3LYPa EPR-II 10.9 14.9 5.2 –11.8 139.4
B3LYPa IGLO-III 449.2 17.1 23.8 9.5 –25.5 207.0
B3LYPa EPR-III 449.2 18.0 24.2 9.7 –25.5 210.2
BP86b STO-6s5p4d 1.4 19.6 11.8 –32.5 305.5
CCSD(T)c 23s12p10d4f2g 10.3 21.4 11.0 –33.2 302.9
Expd 401.8 11.5,18.7 19.6,22.5 10.4 –34.5 301.7
Adip

LDAa GTO-EXT 59.9 99.4 149.6 1628.2
BP86a GTO-EXT 59.9 99.1 153.7 1650.9
BLYPa GTO-EXT 62.0 101.0 153.9 1655.1
B3LYPa GTO-EXT 61.2 100.1 152.2 1641.9
B3LYP a 6–31G(d,p) 53.6 87.7 135.1 1473.0
B3LYPa EPR-II 54.3 91.0 141.0 1536.2
B3LYPa IGLO-III 60.7 98.9 148.5 1601.8
B3LYPa EPR-III 59.9 98.3 148.5 1605.5
CCSD(T)c 23s12p10d4f2g 55.1 93.8 150.4 1575.0

a) Ref. [4].
b) Ref. [31].
c) Ref. [64].
d) Ref. [65] for 7Li, Refs. [66, 67] for 11B, Refs. [66, 68, 69] for 13C,

Refs. [70, 71] for 14N, and Ref. [72] for 17O and 19F.



cient tool for isotropic HFC calculations for first-row atoms. With the exception of
11B results, the BP86/STO-6s5p4d isotropic hyperfine couplings are in excellent
agreement with experiment.

Concerning the performance of DFT for second-row atoms (and further below),
available studies concentrated on alkali metal and alkaline earth metal atomic radi-
cals, where good agreement has been obtained between the PWP86 calculations and
experiment [34]. Although encouraging results have been obtained for HFCCs in
molecular phosphorus and sulfur centered radicals [35, 36], the higher sensitivity of
atomic radicals to theoretical treatment suggests that 3p atom hyperfine parameters
might turn out more challenging.

29.3.2
Methyl, Vinyl and Allyl Radicals

We proceed now by studying the performance of DFT approaches for three typical
hydrocarbon radicals: a nonconjugated p radical (methyl, CH3), a conjugated p radi-
cal (allyl, C3H5), and an unsaturated r radical (vinyl, C2H3). Table 29.2 summarizes
selected Aiso data obtained with conventional GTO and STO basis sets along with
the local density approximation, three gradient-corrected and two hybrid func-
tionals. The body of data available in the literature has been augmented by addi-
tional calculations of the author in order to complete the picture.

The equilibrium D3h geometry of the methyl radical, a species well characterized
by EPR, possesses little resistance to pyramidalization in the symmetric m2

“umbrella” vibrational mode. This motion influences significantly the isotropic cou-
plings. In Table 29.2, data computed for the hypothetical nonvibrating planar radical
are compared to experimental HFCCs with vibrational contributions subtracted, as
estimated by Chipman [37]. In addition, a direct comparison is made between
experimental data and Barone’s DFT results accounting for the vibrational aver-
aging.

For any of these two comparisons, LDA with GTO bases underestimates spin den-
sities at C and H significantly in absolute value, whereas BP86 does this less so. The
isotropic carbon splitting is already improved notably at the PWP86 level and the
result closest to experiment is obtained at the BLYP level. The hybrid B3LYP and
PBE0 functionals slightly overestimate carbon spin densities but provide the best
agreement with experiment in the case of hydrogen spin densities. One of the moti-
vations for the use of hybrid functionals has been the hope of obtaining simulta-
neously good results for spectroscopic parameters and structures at the same level
of theory. Indeed, Table 29.2 shows that B3LYP and PBE0 provide C–H bond lengths
closest to experiment. The LDA and BP86 spin densities at C and H computed with
STO bases are significantly more negative than their counterparts with GTO bases,
and the BP86/STO-6s4p2d results already compare well to experiment [32]. The
PWP86/STO-6s4p2d level describes C coupling correctly but underestimates H cou-
pling. The lack of data does not allow any conclusions about the behavior of other
vxc when combined with STO bases (no implementations of hybrid functionals are
available with STO basis sets).
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Table 29.2 Isotropic hyperfine splitting of methyl, vinyl and allyl radicals (in MHz) computed
using different basis sets and density functionals, compared with experiment and coupled-cluster
results.a

2CH3

HFCC LDA /
TZ2P¢

BP86 /
TZ2P¢

PWP86 /
EPR-II

BLYP /
TZ2P¢

B3LYP /
TZ2P¢

PBE0 /
EPR-III

CCSD(T) /
Chipman

exp.

Structure LDA BP86 PWP86 BLYP B3LYP PBE0 exp
r(CH) (in �) 1.088 1.087 1.091 1.085 1.079 1.078 1.079 1.079
Aiso(C)b 30.5 64.5 75.0 76.3 83.4 81.8 79.7 76
Aiso(H)b –50.7 –64.0 –61.5 –60.8 –65.4 –73.1 –72.6 –70
<Aiso(C)>c 58.2 92.2 104.0 111.0 107.3
<Aiso(H)>c –45.1 –58.4 –55.2 –59.8 –64.7
Ref. 73 73 74 73 73 75 64, 76 77

HFCC LDA /
STO-
6s4p2d

BP86 /
STO-
6s4p2d

PWP86 /
STO-
6s4p2d

CCSD (T) /
Chipman

exp.

Structure BP86 BP86 BP86 exp
r(CH) (in �) 1.090 1.090 1.090 1.079 1.079
Aiso(C)b 45.9 81.8 76.7 79.7 76
Aiso(H)b –53.9 –67.0 –59.0 –72.6 –70
Ref. 32 32 32 76 77

2C2H3

HFCC LDA /
EPR-III

BP86 /
STO-
6s5p4d

PWP86 /
EPR-II

BLYP /
EPR-III

B3LYP /
EPR-III

PBE0 /
EPR-III

CCSD(T) /
Chipman

exp.

Structure LDA BP86 PWP86 BLYP B3LYP PBE0 Ref. 78
Aiso(Ca) 233.2 313.9 283.9 292.9 316.9 308.8 328.7 301.5
Aiso(Cb) –6.4 –12.3 –11.2 –10.8 –16.3 –19.3 –17.1 –24.1
Aiso(Ha) 45.4 46.2 45.4 55.1 49.9 37.3 33.3 38.7
Aiso(Hb

a)
d 182.3 186.4 169.3 195.6 183.8 174.3 143.8 184.7

Aiso(Hb
s)

d 124.2 118.3 101.5 122.0 117.4 112.7 82.0 111.0
Ref. 79 30 4 79 75 75 83 77a,b

2C3H5

HFCC LDA /
GTO-
7s6p2d

BP86 /
GTO-
7s6p2d

PWP86 /
GTO-
7s6p2d

BLYP /
EPR-III

B3LYP /
EPR-III

PBE0 /
EPR-III

CCSD(T) /
Chipman

exp.

Structure LDA LDA LDA BLYP B3LYP PBE0 Ref. 80
Aiso(Ha) 2.1 8.3 8.6 10.4 12.3 15.7 13.3 11.8
Aiso(Hb1) –28.7 –38.7 –36.5 –39.9 –43.4 –48.5 –48.3 –39.0
Aiso(Hb2) –27.6 –37.9 –34.7 –37.6 –40.9 –45.7 –50.4 –41.5
Aiso(Ca) –31.6 –39.5 –40.9 –38.1 –45.4 –51.8 –63.5 –48.2
Aiso(Cb) 15.4 36.4 56.0 45.9 51.8 53.8 59.3 61.4
Ref. 38 38 38 79 75 75 76, 81 82, 83

a) Data given for the 1H and 13C isotopes.
b) Data for the hypothetical planar nonvibrating radical.
c) Vibrationally averaged values.
d) Hb

a (Hb
s) proton oriented anti (syn) with respect to the singly occu-

pied hybrid AO



The allyl radical is well-investigated spectroscopically. It is also of particular theo-
retical interest as a small molecule which exhibits the phenomenon of doublet
instability. The DFT results available in the literature for Aiso do not allow the valida-
tion of all vxc examined in Table 29.2 at a uniform level for both structures and basis
sets. We note, however, that the effect of using a PWP86-optimized or experimental
geometry instead of the LDA one has been estimated by Eriksson et al. to be small,
and that both the 7s6p2d/3s2p and the EPR-III basis sets are supposed to provide
converged results [24, 38]. LDA underestimates in absolute value the spin densities
at all nuclei. BP86, PWP86 and BLYP gradient corrections bring Aiso to within
10–15% of experiment for b-hydrogens but not for a-hydrogens and carbons.
The best overall agreement with experiment (10% for all couplings) is obtained
using the B3LYP/EPR-III level of calculation. PBE0 gives the highest absolute
values for rN

a–b at all centers and provides thus the best results for Cb(supposedly
due to the remarkable accuracy of PBE0 structures) but overestimates somewhat
Aiso(H).

The calculation of HFCCs of unsaturated r radicals is particularly difficult for
conventional HF-based methods. This makes the vinyl radical a suitable benchmark
for the performance of DFT approaches. PBE0 appears to be most successful. It pro-
vides Aiso within 10% (Ca, Ha, Hb) to 20% (Cb) of experiment. The GGA functionals
(including BP86/STO-6s5p4d) along with B3LYP provide isotropic couplings within
10% of the experiment for Ca and Hb but too positive spin densities at Cb and Ha,
apparently due to an insufficient description of spin polarization.

In summary, with GTO basis sets, the most accurate Aiso for hydrocarbon radicals
are obtained with B3LYP and PBE0 functionals: Except for some Cb and Ha cou-
plings, all results are within 10% of experiment. In the case of CH3, results of the
same quality are provided by the BP86/STO-6s4p2d level of calculation.

29.3.3
p-Radicals Involving Heteroatoms

Proceeding now to oxygen-centered radicals, we point out additional difficulties in
HFCC calculations for systems where the constituent atoms possess significantly
different electronegativities [4]. The three examples examined in Table 29.3, OH,
H2O+, and H2CO+, represent a diatomic p-radical, an out-of-plane p-radical, and an
in-plane p-radical, respectively. The scatter in computed isotropic HFCCs increases
in the order H < C < O and is significantly larger than in the case of hydrocarbon
radicals. The BP86/IGLO-III approach provided Aiso(Ca) for the latter species within
15–20% of experiment (Tab. 29.2). It now underestimates spin densities at oxygen
by more than 50% (Tab. 29.3). We see the best performance with GTO basis sets for
the PWP86 and B3LYP functionals.

The hydroxyl radical, OH, represents one of the smallest systems for which accu-
rate experimental isotropic 17O couplings exist [39a] and, in contrast to the homolo-
gous CH and NH radicals [4, 28], it is a particular challenge for current quantum
chemical methods [40]. With the IGLO-III basis set, B3LYP is the only functional
tested that provides Aiso(O, H) couplings within 15% of experiment. The problem of
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Table 29.3 Isotropic and dipolar HFCCs of main-group radicals (in MHz) computed using differ-
ent basis sets and density functionals, compared to experiment and to coupled-cluster results.a

Unless stated otherwise, calculations have been performed on experimental structures: in 2OH,
r(O–H) = 0.969 �; in 2H2O+, r(O–H)=0.999 �, —HOH = 110.5�.

2OH
HFCC BVWN /

IGLO-III
BP86 /
IGLO-III

PWP86 /
IGLO-III

PW91 /
IGLO-III

BLYP /
IGLO-III

B3LYP /
IGLO-III

CCSD(T) /
11s7p2d

exp.

Aiso(O) –31.3 –19.4 –49.9 –14.2 –35.0 –43.9 –46.5 –51.3
Aiso(H) –52.0 –54.6 –58.3 –53.1 –56.9 –61.2 –71.7 –73.1
Adip(O) 145.2 143.3 145.7 –140.4 144.1 142.8 125.0
Adip(H) 44.1 43.9 43.7 44.2 44.5 45.1 49.9
Ref. 4 4 27 79 4 4 84 39

HFCC BP86 /
STO-
6s5p4d

BLYP /
GTO-
8s5p2d /
7s2p

B3LYP /
GTO-
18s13p4d
3f/11s4p

CCSD(T) /
11s7p2d

exp.

Aiso(O) –47.1 –34 –65.9b –46.5 –51.3
Aiso(H) –65.3 –62 –66.4b –71.7 –73.1
Ref. 31 28 85 84 39

2H2O+

HFCC BVWN /
IGLO-III

BP86 /
IGLO-III

PWP86 /
IGLO-III

PW91 /
IGLO-III

BLYP /
IGLO-III

B3LYP /
IGLO-III

exp.

Aiso(O) –47.4 –35.3 –68.9 –37.1 –50.9 –64.7 –83.2
Aiso(H) –54.5 –57.6 –61.9 –59.8 –60.6 –65.0 –73.1
Ref. 4 4 27 79 4 4 86

HFCC BVWN /
EPR-III

BP86 /
EPR-III

BLYP /
EPR-III

B3LYP /
EPR-III

exp.

Aiso(O) –47.8 –36.5 –50.9 –66.1 –83.2
Aiso(H) –60.2 –63.7 –66.7 –72.3 –73.1
Ref. 79 79 79 79 86

2H2CO+

HFCC BVWN /
Chipman

BP86 /
IGLO-III

PWP86 /
IGLO-III

PW91 /
IGLO-III

BLYP /
IGLO-III

B3LYP /
EPR-III

exp.

Structure QCISD(T) BP86 PW86 PW91 BLYP B3LYP
Aiso(C) –62 –81 –89 –85.1 –87 –93.9 –108.7 109
Aiso(H) 325 364 374 369.1 384.0 365.2 300.4 373
Aiso(O) –22 –17 –35.3 –16.9 –28 –43.2 –56.9
Ref. 28 28 27 79 28 75 87 88

HFCC BVWN /
STO-
6s6p4d

BP86 /
STO-
6s6p4d

BLYP /
IGLO-III

exp.

Structure MCSCF MCSCF QCISD(T)
Aiso(C) –68.4 –83.8 –78 –108.7 109
Aiso(H) 359.5 368.5 328 300.4 373
Aiso(O) –16.5 –31.7 –36 –56.9
Ref. 29, 89 29, 89 28 87 88

a) Data for the 1H, 13C and 17O isotopes.
b) A B3LYP bond length of 0.974 � has been employed.



the DFT description appears to arise from insufficient delocalization of the unpaired
spin from O to H (cf. O, H dipolar and H isotropic couplings) and insufficient spin
polarization of oxygen 1s and 2s orbitals (cf. O isotropic coupling). While the use of
more extensive basis sets improves the spin density at hydrogen (compare BLYP,
B3LYP results in Tab. 29.3), rN

a–b at oxygen is either unchanged (BLYP) or overesti-
mated (B3LYP). On the other hand, the BP86 functional, that provided very poor
results with GTO bases, gives the best overall results for Aiso (10% agreement for C,
H) when the STO-6s5p4d basis is used instead.

The DFT spin densities at O and H nuclei are, in general, also below experiment
in the case of the water cation, H2O+. The Aiso(O,H) results closest to experiment
(within 15–20 %) are those obtained with the PWP86/IGLO-III and B3LYP/EPR-III
levels of calculation. Note that with any vxc, the change from IGLO-III to EPR-III
basis sets increases Aiso(H) by ca. 6 Hz but leaves Aiso(O) almost unchanged. This
trend corresponds to Barone�s observation that the IGLO-III basis is not converged
for hydrogen in molecular HFCC calculations [4]. Too low heavy-atom isotropic cou-
pling has also been reported for the isoelectronic radical NH2, where most of the
conventional DFT or ab initio techniques appear to recover only 70–90% of Aiso(14N).
Apparently, the description of electron correlation effects on the spin density at the
nuclei seems particularly difficult in the case of nitrogen and oxygen [41], and even
more so for fluorine [42]. Increasing difficulties along the series H, C, N, O and F
have been encountered in a related problem of one-bond spin–spin coupling con-
stants. They were first reported by Malkin et al. [43] who suggested that the ability of
the current exchange-correlation functionals to describe spin-density distribution
depends on the number of lone pairs at the nucleus in question. For more informa-
tion on DFT performance in calculations of NMR spin-spin coupling, see Chapter 7
of Helgaker and Peal.

Turning to H2CO+, the best performance is again found for PWP86 and B3LYP/
IGLO-III levels of calculation (for the latter, Aiso(C, H) are within 15% of experi-
ment, and Aiso(O) is within 25% of the CC results). As in the previous cases, the
description of Aiso(O) by BP86 changes strongly when going to an STO basis. A de-
tailed discussion of hyperfine parameters of H2CO+ as compared to isoelectronic
H2CN is given in Ref [5].

29.3.4
Further Main-Group Systems

In numerous cases problems with a quantitative reproduction of HFCCs are related
to difficulties in determining the structure of the radical. A well-known example is
the F2

– radical, where the hyperfine parameters are highly sensitive to changes in
the F–F bond length [44], and at the same time there is an unusually large disagree-
ment in predicted bond lengths between different theoretical methods. As a two-
center-three-electron system, F2

– is highly susceptible to the self-interaction energy
error which makes the DFT-optimized bond length too large [45]. Using instead the
more accurate MRCI F–F distance, the HFCCs at DFT level exhibit perfect agree-
ment with experiment and with high level ab initio methods [27]. Difficulties related
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to structure may represent the major obstacle in quantitative HFCC calculations, yet
in other cases the major challenge appears the description of spin-density distribu-
tion, and sometimes both problems are coupled. A good example is provided by the
two inorganic peroxides HOO and FOO, where a debate persists in the literature as
to what are the correct equilibrium structures, and which structures correspond to
the observed HFCCs [42]. In the case of HOO, high-level QCISD results for the iso-
tropic couplings are in much closer agreement with experimental data (for related
small peroxide radicals) than the B3LYP results, in spite of very similar geometrical
structures [46]. In the case of FOO, very good agreement exists between QCISD/6-
311+G(2d) calculations of HFCCs done on the QCISD optimized structure and
experiment. At the same time, B3LYP calculations yield significantly different
HFCCs when working with both the much larger B3LYP F–O bond length and with
the QCISD structure [42].

The above examples indicate the type of accuracy we may expect from DFT ap-
proaches. However, small gas-phase radicals are not very realistic systems from a
chemical point of view. In the remainder of this section we will instead focus on the
major strength of the DFT approach, the possibility of treating large radicals, includ-
ing their interactions with the surroundings. An extensively explored class of para-
magnetic systems are large organic p-radicals of more or less direct biophysical
importance. Existing studies conclude that the PWP86 and B3LYP approaches along
with basis sets of extended TZ quality (IGLO-III, EPR-III, partially decontracted
bases of the 6-311G(2df,p) family) can provide reasonable HFCC data for most
nuclei in these systems [47–49]. As shown by Barone and coworkers, dynamical and
solvent effects are in general important in EPR calculations of organic radicals and
can be successfully reproduced by current theoretical approaches [50–52]. An over-
view of the models to include solvent effects is provided in Chapter 12 by Ciofini.
Let us finally turn to systems containing metals: Eriksson has shown that the
PWP86/IGLO-III approach is well-suited for relatively large clusters of main-group
metal atoms. Good performance for isotropic hyperfine couplings was found for
both s (Li, Na, K, Mg) and p (Al) valence metals. Furthermore, the DFT approach
successfully mimics the effects of Ne, Ar, and zeolite matrices on metal radical
hyperfine structures [49].

29.3.5
Transition Metal Complexes

The variable performance of different functionals for different systems is particular-
ly pronounced for the group of transition metal complexes. Figure 29.1 illustrates
the vxc dependence of metal spin densities for (a) complexes with a singly occupied
MO (SOMO) composed mainly of the metal 4s orbital (ScO, TiN, TiO, VN) and for
(b) compounds where SOMO is dominated by the metal 3dz

2 orbital with some 4s
character mixed in (TiF3, MnO3). The results taken from a recent validation study [7]
(see also Tab. 29.4) clearly show that while the vc dependence can be considered
dominant for ScO, TiN or TiO, it is the vx dependence that is crucial for TiF3 and
especially for MnO3.
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For the first group of complexes, metal isotropic hyperfine couplings closest to
experiment are obtained with the BPW91 and B3PW91 functionals. Yet all com-
puted values were within 5% (ScO, TiN) to 10% (TiO) of the very precise gas-phase
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Figure 29.1 Spin density rN
a–b at their metal nuclei in (a) 2ScO,

3TiO, 2TiN, 3VN, and (b) 2TiF3, 2MnO3, normalized to the num-
ber of unpaired electrons. Dependence on vxc.



experimental data. In the case of VN, pure DFT and B3- functionals behave analo-
gously to isoelectronic TiO. However, BH-type functionals underestimate appreci-
ably the spin density at vanadium, due to a significant spin contamination
(<S2> ~ 2.5, nominal triplet-state <S2> = 2.0) causing a large negative contribution to
rN

a–b. In the cases of ScO and TiN, spin densities are determined mainly by the con-
tribution from the singly occupied metal 4s orbital, since 3d spin population as well
as spin polarization contributions are negligibly small. Metal hyperfine couplings
thus reflect the composition of the singly occupied orbital that becomes more dif-
fuse along the series LYP < P86 < PW91 as well as upon the addition of an exact
exchange. TiO and VN have in addition one 3dr-type SOMO, inducing a negative
spin-polarization contribution to rN

a–b. While the direct 4s contribution again domi-
nates the metal HFCCs, the dramatic onset of spin contamination found for VN
(contrary to isoelectronic TiO!) leads to a much larger dependence on vx and the
deterioration of the results with the BH-hybrid functionals.

The metal isotropic HFCCs of the trigonally planar complexes TiF3 and MnO3

again reveal a considerable direct contribution making rN
a–b at the metal positive,

but spin polarization is very important as well. The sensitivity to vx is already signifi-
cant for TiF3 with results closest to experiment given by the B3-type hybrid func-
tionals, but all vxc do still give results within ca. 15% of the measured value. For
MnO3, the vx dependence is particularly pronounced and is complicated by signifi-
cant spin contamination (cf. Tab. 29.4). The results for MnO3 exemplify a dilemma
that arises also in other cases [7]: While some admixture of exact exchange increases
spin polarization and thus may improve the agreement with experiment relative to
the ”pure” GGA results, it may lead at the same time to considerable spin contam-
ination. The more covalent, highly oxidized MnO3 turns out to be much more sensi-
tive to spin contamination than the isoelectronic TiF3. While the B3-type functionals
provide Aiso(Mn) closest to the experimental and CC results, the large variations of
Adip (Mn) from the reference data suggest that the overall description of spin density
distribution deteriorates rather than improves when exact exchange is introduced.

The exact-exchange mixing is thus in general problematic, especially for systems
with low-lying virtual orbitals that significantly overlap with the SOMO and may
give rise to spin contamination. Yet for many, especially high-spin, systems, the spin
contamination problem is not encountered and the hybrid functionals provide most
encouraging results. An example is given by the [Cr(CO)4]+ complex where, due to
the high Td symmetry, all of the five metal-centered singly occupied orbitals contain
only Cr 3d and no Cr 4s contributions. The spin density at the metal thus arises
exclusively due to spin polarization. It is negative, in absolute value considerably
smaller than in the previous complexes, and very sensitive to vxc. As illustrated by
the results in Tab. 29.4, the b spin density at Cr is enhanced considerably with the
admixture of exact exchange. Aiso of both Cr and C closest to experiment are those
obtained with vx containing as much as 50% of the HF exchange.

Unfortunately, the success of hybrid functionals is not universal and the spin-po-
larization vs. spin-contamination dilemma remains a challenge for the DFT descrip-
tion of open-shell transition metal complexes. This holds not only for HFCCs but
also for other properties like g-tensors [20]. Table 29.5 examines the behavior of five
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more recently introduced functionals (three gradient corrected and two hybrid ones)
for MnO3 and [Mn(CN)4]2–, the latter complex being isoelectronic with [Cr(CO)4]+.
While for [Mn(CN)4]2– inclusion of exact exchange seems advisable and problem-
free, for MnO3 the spin-contamination problem remains. A recent study of meta-
GGA and model exchange-correlation potentials reported no improvement over the
previously validated vxc [20].

The results presented above have been obtained in nonrelativistic KS-DFT calcula-
tions and the comparison of theoretical and experimental HFCCs was based on the
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Table 29.4 Metal and ligand isotropic and dipolar hyperfine splitting (in MHz) of selected transi-
tion metal complexes computed using various density functionals, compared to experiment and
coupled-cluster results.a

BLYP BP86 BPW91 B3LYP B3PW91 BHPW91 UCCSD exp.

2ScO
Aiso(Sc) 2043.5 1979.6 1933.5 2032.3 1930.2 1847.7 1823.1 1947.3
Adip(Sc) 17.1 17.5 17.3 18.7 18.7 21.0 23.1 24.8
Aiso(O) –22.8 –21.3 –19.8 –19.9 –17.0 –11.6 –17.4 –20.3, –18.9
Adip(O) 0.2 –0.2 –0.2 0.6 0.2 0.7 0.4 0.4, 0.7
<S2> 0.751 0.752 0.752 0.751 0.752 0.753 0.751 0.750

2TiF3

Aiso(Ti) –218.0 –216.6 –211.6 –192.2 –186.1 –149.4 –170.5 –184.8, –177.1
Adip(Ti) –9.9 –9.2 –9.1 –10.1 –9.5 –9.3 –7.5 –6.6, –8.1
Aiso(F) 8.7 5.0 1.7 –5.6 –12.9 –24.3 –35.1 8.3, 8.0
T11 20.9 26.9 29.7 19.4 25.2 21.6 18.7
T22 –0.2 5.0 6.4 –0.4 4.8 2.8 5.9
T33 (F) –20.7 –31.9 –35.8 –19.0 –30.0 –24.4 –24.6
<S2

> 0.752 0.752 0.753 0.752 0.753 0.753 0.750 0.750

2MnO3

Aiso(Mn) 2042.4 2009.3 1987.2 1735.5 1675.9 1111.7 1511.3 1613
Adip(Mn) 95.9 95.1 95.5 124.5 125.9 171.4 101.5b 81
Aiso (O) –5.1 –4.1 –3.5 2.6 2.6 19.0 7.8
T11 –23.9 –24.2 –24.7 –34.7 –55.3 –61.5 –27.0
T22 3.0 2.0 1.5 –14.9 18.1 –57.8 –35.8
T33 (O) 20.9 22.2 23.2 49.6 37.2 119.3 62.8
<S2> 0.765 0.768 0.770 0.880 0.914 2.054 1.068 0.750

6[Cr(CO)4]+

Aiso(Cr) 21.9 23.8 25.2 26.9 30.8 40.4 41.5
Adip(Cr) 0 0 0 0 0 0 0c

Aiso(C) –5.0 –9.2 –11.5 –8.4 –13.4 –15.4 –13.5
Adip(C) 1.1 1.1 0.8 1.4 1.1 1.4 1.0
Aiso(O) –1.6 –1.2 –1.1 –1.8 –1.4 –1.6
Adip(O) 1.0 0.8 1.0 0.9 0.9 0.8
<S2> 8.757 8.761 8.762 8.759 8.764 8.765 8.750

a) All results have been taken from Ref. [7]; for structures, bases and
references to experimental works see therein. Data given are for the
most abundant magnetic isotopes.

b) A strongly asymmetric tensor has been obtained. The value
reported represents 1/2 of the maximum element of the tensor.

c) Determined by the molecular symmetry.



assumption of negligible spin–orbit (SO) and scalar relativistic (SR) contributions.
Accordingly, systems were considered for which relativistic contributions to HFCCs

have been estimated or at least can be expected to be relatively small (see below). In
general, relativistic effects on HFCCs are important for transition metal complexes,
and an increasing number of recent studies has been devoted to this issue. A sec-
ond-order perturbation treatment of spin–orbit coupling for TiF3 due to Belanzoni
et al. [33] along with the BP86 functional gave very small positive spin–orbit (pseu-
docontact) contribution to Aiso (Ti) (ca. 3–6 MHz). SO contributions to Adip were
estimated negative (–2.3 to –2.8 MHz) and large compared to the small dipolar cou-
pling.

A more rigorous treatment of SO effects is due to van Lenthe et al. who derived
expressions for molecular hyperfine interactions within the zeroth-order regular
approximation (ZORA) to the Dirac equation [54]. ZORA results for TiF3 [54] have
been found to be in nice agreement with the perturbation treatment due to Belan-
zoni et al. [33]. The performance of the DFT-ZORA approach for the HFCC calcula-
tions has been validated for a set of 22 small metal compounds by Belanzoni et al.
[55] including the ScO complex for which very small relativistic contributions have
been found. This was expected since the g-value of ScO is very close to the free-elec-
tron g-value ge [55, 56]; for the same reason we also expect small SO effects for the
other complexes discussed above. On the other hand, substantial SO effects were
found especially for late 3d elements like Ni [57].

A limitation of the ZORA formalism is that spin polarization and SO coupling
currently cannot be introduced at the same time, and the formalism has been
worked out only for a single unpaired electron. Both restrictions are absent in the
coupled-perturbed Kohn–Sham implementation of SO contributions to HFCCs due
to Neese [58]. Validation calculations on a set of 3d transition metal complexes
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Table 29.5 Metal isotropic and dipolar hyperfine splitting of MnO3 and [Mn(CN)4]2– (in MHz)
computed using several more recently implemented density functionals, compared coupled-cluster
results and experiment.a

PW91b

PW91c
mPWb

PW91c
G96b

PW91c
mPW1b

PW91c
B1b

LYPc
RCCSD UCCSD exp./

nominal <S2>

2MnO3

Aiso(Mn) 1996.6 1994.3 1983.5 1689.8 1747.6 1492.0 1511.3 1613
Adip(Mn) 95.3 95.4 97.1 112.9 112.5 94.7 101.5 81(3)
<S2> 0.767 0.768 0.770 0.816 0.801 0.771 1.068 0.750

6[Mn(CN)4]2–

Aiso(Mn) –104.7 –104.2 –113.0 –140.5 –121.8 –199
<S2> 8.764 8.745 8.766 8.766 8.763 8.750

a) Structures and basis sets have been taken from Ref. [7]; for refer-
ences to experimental data see therein. Data given are for the most
abundant magnetic isotopes.

b) Exchange potential.
c) Correlation potential.



HFCCs have been found in reasonable to good agreement with the experimental
data, with the main error being probably due to the Fermi contact term [58]. For
systems involving still heavier elements, besides SO coupling scalar relativistic con-
tributions also become of importance, as shown in a systematic study for a series of
4s, 5s, and 6s radicals by Belanzoni et al. [55]. Very recently, the calculation of
HFCCs withthin the four-component formulation of the Dirac–Hartree–Fock (DHF)
approximation has been implemented and validated by Quiney and Belanzoni [59].
Results for a test set of transition metal compounds are in good agreement with
experiment; the existing discrepancies are attributed to the neglect of higher-order
core polarization effects as well as to the lack of electron correlation.

Calculations of EPR parameters for transition metal complexes are now becoming
increasingly important in studies of biological systems. A lucid discussion of the
applications can be found in a recent review by Neese [60], as well as in Chapter 36
by the same author.

29.4
Concluding Remarks

Judging the performance of DFT in calculations of HFCCs from the perspective of
transition metal HFCCs, unfortunately none of the vxc tested so far provides accept-
able results for all compounds considered. Moreover, for some particularly difficult
systems, essentially none of the functionals has been found to be truly appropriate.
The core of the problem seems to be in the spin-polarization vs. spin-contamination
dilemma that is a challenge to a single-determinant description of HFCCs. On the
other hand, for a significant number of transition metal complexes, a 10–15% agree-
ment with experiment may be obtained with a wide class of functionals along with
appropriate but not necessarily very large basis sets. For other subsets of complexes,
a qualitative electronic structure analysis may suggest a pragmatic choice of the
range of functionals (like the B3-type or BH-type hybrids) appropriate for HFCC
calculations. It should also be noted that reproducing trends in HFCCs as functions
of structural/electronegativity parameters appears much easier than matching their
absolute values. Such correlations may often be achieved with a wide range of func-
tionals [61–63].

For many light main-group radicals, DFT methods provide isotropic and dipolar
HFCCs as good as high-level MRCI or CCSD(T) results. This may be partly due to
favorable error cancellation. It is in any case necessary to select an appropriate func-
tional. The most recommended candidates are PWP86 within the GGA family, and
B3LYP or PBE0 among the hybrid functionals. The results provided by other GGA
functionals deviate usually more from the reference data for heavier atoms than for
hydrogen. The deviations turn out to be relatively small for hydrocarbon p-radicals
and larger for systems containing electronegative elements like N, O and F. Calcula-
tions on isolated atoms are most demanding regarding both the requirements on
functional and on basis set. All of these conclusions are based on validation studies
performed using GTO basis sets. A few studies on a limited class of systems with
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STO basis sets reveal a much better performance of the BP86 GGA functional than
found with GTOs, providing HFCCs close to the best PWP86 or B3LYP results. In
order to understand the better performance of the BP86/STO calculations compared
to the available BP86/GTO studies, the results should be analyzed and studied in
terms of their basis-set convergence. It would also be highly interesting to explore
the performance of further functionals in calculations with STOs. Finally, it is
important to note that the DFT results for HFCCs of light main group systems
come very close to the most accurate ab initio calculations only in cases where the
HF configuration dominates for the latter. Where large MRCI calculations with
many reference determinants are required to get highly accurate data, DFT also fails
and predicts HFCCs with a quality between single-reference CISD, QCISD(T), or
CCSD(T) [49]. Such “difficult systems” remain a challenge and a stimulation for
new developments in density functional theory.

Acknowledgment

This work was supported by grant LN00A016 from the Ministry of Education of the
Czech Republic.

29 DFT Calculations of EPR Hyperfine Coupling Tensors480

References

1 W. Meyer, J. Chem. Phys. 1969, 51, 5149.
2 a) D. A. Case, M. Karplus, J. Am. Chem. Soc.

1977, 99, 6182; b) P. J. M. Geurts, P. C. P.
Bouten, A. van der Avoird, J. Chem. Phys
1980, 73, 1306; c) J. Weber, A. Goursot,
E. P�nigault et al. J. Am. Chem. Soc. 1982, 104,
1491.

3 V. G. Malkin, O. L. Malkina, L. A. Eriksson et
al. in Theoretical and Computational Chemistry,
Vol. 1, Density Functional Calculations, eds.
Seminario, J. M.; Politzer, P., Elsevier, Amster-
dam 1995, pp. 273–347.

4 V. Barone, in Recent Advances in Density Func-
tional Methods, Part 1, ed. D. P. Chong, World
Scientific, Singapore 1995, p. 287.

5 B. Engels, L. A. Eriksson, S. Lunell, Adv.
Quantum Chem. 1996, 27, 297.

6 W. Koch, M. Holthausen, A Chemist’s Guide to
Density Functional Theory, Wiley-VCH, Wein-
heim 2000, p. 209.

7 M. Munzarov�, M. Kaupp, J. Phys. Chem. A
1999, 48, 9966.

8 P. Hohenberg, W. Kohn, Phys. Rev. B 1964,
136, 864.

9 W. Kohn, L. J. Sham, Phys. Rev. A 1965, 140,
1133.

10 J. C. Slater, Quantum Theory of Molecules and
Solids, Vol. 4: The Self-Consistent Field for Mole-
cules and Solids, McGraw-Hill, New York 1974.

11 S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys.
1980, 58, 1200.

12 J. P. Perdew, Y. Wang, Phys. Rev. B 1986, 33,
8822; J. P. Perdew, Y. Wang, Phys. Rev. B 1986,
34, 7406.

13 C. Lee, W. Yang, G. R. Parr, Phys, Rev. B 1988,
37, 785; B. Miehlich, A. Savin, H. Stoll et al.
Chem. Phys. Lett. 1989, 157, 200.

14 J. P. Perdew, Physica B 1992, 172, 1; J. P. Per-
dew, in Electronic Structure of Solids ’91, eds.
P. Ziesche, H. Eschring, Akademie Verlag,
Berlin 1991; J. P. Perdew, Y. Wang, Phys. Rev.
B 1992, 45, 13244.

15 J. P.Perdew, Y. Wang, Phys. Rev. B 1986, 33,
8800.

16 J. P. Perdew, in Electronic Structure of Solids,
eds. P. Ziesche, H. Eschrig, Akademie Verlag,
Berlin 1991.

17 A. D. Becke, Phys. Rev. A 1988, 38, 3098.



References 481

18 C. Adamo, V. Barone, J. Chem. Phys. 1998,
108, 664.

19 P. M. W. Gill, R. D. Adamson, Chem. Phys.
Lett. 1996, 261, 105.

20 A. V. Arbouznikov, M. Kaupp, V. G. Malkin et
al. Phys. Chem. Chem. Phys. 2002, 4, 5467.

21 A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
22 A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
23 A. D. Becke, J. Chem. Phys. 1996, 104, 1040.
24 C. Adamo, V. Barone, J. Chem. Phys. 1998,

108, 664.
25 C. Adamo, V. Barone, J. Chem. Phys. 1999,

110, 6158.
26 J. P. Perdew, K. Burke, M. Ernzerhof, Phys.

Rev. Lett. 1996, 77, 3865; J. P. Perdew, K.
Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78,
1396.

27 L. A. Eriksson, O. L. Malkina, V. G. Malkin et
al., J. Chem. Phys. 1994, 100, 5066.

28 H. U. Suter, V. Pless, M. Ernzerhof et al.,
Chem. Phys. Lett. 1994, 230, 398.

29 N. Ishii, T. Shimizu, Phys. Rev. A 1993, 48,
1691.

30 N. Ishii, T. Shimitzu, Chem. Phys. Lett. 1994,
225, 462.

31 I. Ishii, T. Shimitzu, Chem. Phys. Lett. 1995,
235, 614.

32 P. Belanzoni, E. J. Baerends, M. Gribnau,
J. Phys. Chem. A 1999, 103, 3732.

33 P. Belanzoni, E. J. Baerends, S. van Asselt
et al., J. Phys. Chem. 1995, 99, 13094.

34 F. Himo, L. A. Eriksson, J. Chem. Soc., Fara-
day Trans. 1995, 91, 4343.

35 M. T. Nguyen, S. Creve, L. C. Vanquicken-
borne, J. Phys. Chem. A 1997, 101, 3174.

36 M. Engstr�m, O. Vahtras, H. �gren, Chem.
Phys. Lett. 2000, 328, 483.

37 D. M. Chipman, J. Chem. Phys. 1983, 78, 3112.
38 L. A. Eriksson, V. G. Malkin, O. L. Malkina

et al., Int. J. Quantum Chem. 1994, 52, 879.
39 a) K. R. Leopold, K. M. Evenson, E. R. Comben

et al., J. Mol. Spectrosc. 1997, 122, 440;
b) J. A. Coxon, K. V. L. N. Sastry, J. A. Austin
et al., Can. J. Phys. 1979, 57, 619.

40 S. D. Wetmore, L. A. Eriksson, R. J. Boyd,
J. Chem. Phys. 1998, 109, 9451.

41 D. Feller, E. D. Glendening, E. A. McCullogh,
Jr., et al., J. Chem. Phys. 1993, 99, 2829.

42 L. A. Eriksson, A. Laakonsen, in Recent
Research Developments in Physical Chemistry,
Vol. 2, 1998, ed. S. G. Pandalai, Transworld
Research Network, Trivandrum 1998, p. 369.

43 V. G. Malkin, O. L. Malkina, D. R. Salahub,
Chem. Phys. Lett. 1994, 221, 91.

44 D. Feller, J. Chem. Phys. 1990, 93, 579.
45 H. Chermette, I. Ciofini, F. Mariotti et al.,

J. Chem. Phys. 2001, 115, 11068.
46 S. D. Wetmore, R. J. Boyd, L. A. Eriksson,

J. Chem. Phys. 1997, 106, 7738.
47 L. A. Eriksson, F. Himo, Trends in Phys. Chem.

1997, 6, 153.
48 C. Adamo, V. Barone, A. Fortunelli, J. Chem.

Phys. 1995, 102, 384.
49 L. A. Eriksson, in Density-functional Methods in

Chemistry and Materials Science, ed. M. Spring-
borg, Wiley & Sons, New York 1997, p. 125.

50 V. Barone, Chem. Phys. Lett. 1996, 262, 201.
51 V. Barone, A. Bencini, I. Ciofini et al., J. Phys.

Chem. A 1999, 103, 4275.
52 G. A. A. Saracino, A. Tedeschi, G. D’Errico

et al., J. Phys. Chem. A 2002, 106, 10700.
53 A. V. Arbouznikov, M. Kaupp, V. G. Malkin

et al., Phys. Chem. Chem. Phys. 2002, 4, 5467.
54 E. van Lenthe, A. van der Avoird, P. E. S. Wor-

mer, J. Chem. Phys. 1998, 108, 4783.
55 P. Belanzoni, E. van Lenthe, E. J. Baerends,

J. Chem. Phys. 2001, 114, 4421.
56 A. Abragam, B. Bleaney, Electron Paramagnetic

Resonance of Transition Ions, Clarendon Press,
Oxford 1970.

57 M. Stein, E. van Lenthe, E. J. Baerends et al.,
J. Phys. Chem. A 2001, 105, 416.

58 F. Neese, J. Chem. Phys. 2003, 118, 3939.
59 H. M. Quiney, P. Belanzoni, Chem. Phys. Lett.

2002, 353, 253.
60 F. Neese, Curr. Opin. Chem. Biol. 2003, 7, 125.
61 M. L. Munzarov�, M. Kaupp, J. Phys. Chem. B

2001, 105, 12644.
62 a) P. J. Carl, S. L. Isley, S. Larsen, J. Phys.

Chem. A 2001, 105, 4563; b) A. C. Saladino,
S. C. Larsen, J. Phys. Chem. A 2002, 106,
10444.

63 J. Swann, T. D. Westmoreland, Inorg. Chem.
1997, 36, 5348.

64 S. A. Perera, J. D. Watts, R. J. Bartlett J. Chem.
Phys. 1994, 100, 1425.

65 F. W.King, Phys. Rev. A 1989, 40, 1735.
66 J. S. M. Harvey, L. Evans, H. Lew, Can. J. Phys.

1972, 50, 1719.
67 W. R. M. Graham, W. Weltner, Jr., J. Chem.

Phys. 1976, 65, 1516.
68 G. Wolber, H. Figger, R. A. Haberstroh et al.,

Z. Physik 1970, 236, 337.
69 J. R. Macdonald, R. M. Golding, Theoret.

Chim. Acta 1978, 47, 1.



29 DFT Calculations of EPR Hyperfine Coupling Tensors482

70 J. M. Hirsch, G. H. Zimmerman III, D. J. Lar-
son et al., Phys. Rev. A. 1977, 16, 484.

71 W. W. Holloway, Jr., E. L�scher, R. Novick,
Phys. Rev. 1962, 126, 2109.

72 J. S. M. Harvey, Proc. R. Soc. London, Ser. A
1965, 285, 581.

73 C. Adamo, V. Barone, A. Fortunelli, J. Chem.
Phys. 1995, 102, 384.

74 C. Adamo, V. Barone, A. Fortunelli, J. Phys.
Chem. 1994, 98, 8648.

75 C. Adamo, M. Cossi, V. Barone, J. Mol. Struct.
Theochem. 1999, 493, 145.

76 S. A. Perera, L. M. Salemi, R. Bartlett, J. Chem.
Phys. 1997, 106, 4061.

77 Experimental Aiso: a) R. W. Fessenden, R. H.
Schuler, J. Chem. Phys. 1963, 39, 2147; b) R. W.
Fessenden, J. Phys. Chem. 1967, 71, 74; c) W.
Weltner, Jr., Magnetic Atoms and Molecules,
Dover Publications, Mineola, NY 1983. The ob-
served isotropic values have been corrected
(Ref. [37]) to remove the large effect of m2

vibrational averaging. Experimental bond
length: d) E. Hirota, C. Yamada, J. Mol. Spec-
trosc. 1985, 96, 175 and references therein.

78 a) P. Millie, G. Berthier, Int. J. Quantum
Chem. Symp. 1968, 2, 67; b) P. Millie, B. Levy,

G. Berthier, Int. J. Quantum Chem. 1972, 6,
155.

79 M. L. Munzarov�, unpublished results using
the Gaussian 98 DFT-implementation of EPR
HFCCs. For geometry optimizations, the
6-311G(d,p) basis set has been employed.

80 D. M. Chipman, personal communication to
S. A. Perera, L. M. Salemi and R. J. Bartlett
(see Ref. 76).

81 H. J. McManus, R. W. Fessenden, D. M. Chip-
man, J. Phys. Chem. 1988, 92, 3778.

82 E. Hirota, C. Yamada, M. Okunishi, J. Chem.
Phys. 1992, 97, 2963.

83 H. Sekino, R. J. Bartlett, J. Chem. Phys. 1985,
82, 4225.

84 S. D. Wetmore, L. A. Eriksson, R. J. Boyd,
J. Chem. Phys. 1998, 109, 9451.

85 a) V. Barone, J. Chem. Phys. 1994, 101, 6834;
b) V. Barone, Chem. Phys. Lett. 1994, 226, 392.

86 L. B. Knight, J. Steadman, J. Chem. Phys. 1983,
78, 5940.

87 V. Barone, Theor. Chim. Acta 1995, 91, 113.
88 L. B. Knight, J. Steadman, J. Chem. Phys. 1984

80, 1018.
89 D. Feller, E. R. Davidson, Theor. Chim. Acta

1985, 68, 57.



30.1
Introduction

The measurement of the hyperfine interaction offers information about the electron-
ic structure of radicals since the associated hyperfine coupling constants (HFCCs)
provide a map of the spin distribution in the systems [1, 2]. The isotropic HFCC [3]

AisoðNÞ ¼ 4
3
�e�Nge gN SZh i�1

W dðrN ÞSZj jWh i ð30:1Þ

gives the spin density at each nucleus N. It is also termed the Fermi contact term or
simply contact interaction. In Eq. (30.1) be is the Bohr magneton, bN is the nuclear
magneton, ge is the free-electron g-value (2.002 319 31), gN is the nuclear g-value,
and ÆSZæ is the expectation value of the z-component of the total electronic spin.
Finally, dðrN Þ is the Dirac delta function which picks out the value of the wavefunc-
tion at rN so that W dðrN ÞSZ

�� ��W
� �

gives the spin density at the position of nucleus N.
The anisotropic HFCCs in Cartesian coordinates k, l are given as [3]

Akl Nð Þ ¼ be bN gegN SZh i�1
W

����r
�5
N r

2
N dkl � 3rN;k rN;l

� �
SZ

����W
� �

ð30:2Þ

They contain information about the spin density in the environment of the nuclei.
In ab initio calculations for main group elements it is found that anisotropic HFCCs
mainly depend on the quality of the atomic orbital (AO) basis set, while they are
quite insensitive to the theoretical approach used for the calculation. The isotropic
HFCC Aiso depends strongly on the chosen basis set and on the theoretical method
if the unpaired electrons occupy orbitals which have p character within the vicinity
of the nuclei under consideration [4–8]. For such systems the isotropic HFCC
vanishes at the restricted Hartree–Fock (RHF) level since the value of such an
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orbital at the nucleus is zero and RHF does not describe spin polarization1) by
which spin density could be transferred to orbitals with s-character (which can con-
tribute to Aiso). The unrestricted Hartree–Fock approach (UHF) allows for such spin
polarization but largely overestimates the effects (and tends to lead to spin contam-
ination). The computation of Aiso is further complicated by the fact that for atoms of
the second row of the Periodic Table the contributions to Aiso arising from the spin
polarization of the 1s and 2s shells are similar in magnitude but possess opposite
signs [10]. For radicals with open shell r orbitals the computation of the isotropic
HFCC is much easier since spin polarization effects only contribute about 10–20%
of the total value so that RHF already provides reasonable values [4, 8, 11–13].

To some extent the difficulties connected with reliable computations of Aiso can
also be traced back to the fact that the Dirac delta function d(rN) evaluates the wave-
function only at a single point. As a consequence no error cancellation, which often
takes place for other one-electron properties, can occur. Operator expressions that
compute Aiso by integrating over parts of the wavefunction are discussed in Chap-
ter 31 by Rassolov and Chipman. They seem to depend less on the theoretical
approach. In the present chapter Aiso is computed from the trace of the tensor of the
anisotropic HFCCs expressed in cartesian coordinates.

Currently, most theoretical investigations employ DFT approaches to compute the
HFCCs as described in Chapter 29 by Munzarov�. The reason is that current func-
tionals provide astonishingly good isotropic HFCCs for a large variety of systems,
while approaches based on the wavefunction, such as multi-reference configuration
interaction (MR-CI) or coupled cluster (CC) approaches, show a slow convergence
with respect to the level of sophistication [11, 12]. However, the tremendous success
of DFT quite often seems to result from fortuitous error cancellation. In some cases
the cancellation does not work so that large residual errors are found. Therefore, ab
initio approaches are still of interest for benchmark calculations and for a better
understanding of the error cancellations in DFT. The latter is important to foresee
the cases where the error cancellation breaks down. In the present chapter we will
focus on problems which arise for MR-CI approaches since they also provide an
insight into the effects responsible for the difficulties of other methods, e.g. for the
coupled cluster approach. Finally, we use the ground state of H2CN (2B2) to discuss
error compensations in DFT.
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1) Spin polarization comprises the effects which
result because the interaction between elec-
trons with equal spins are slightly different
from the interaction between electrons posses-
sing opposite spin. As a consequence, in a sys-
tem with an unpaired electron, two paired elec-
trons of a doubly occupied orbital interact
somewhat differently with the unpaired elec-
tron. In the unrestricted Hartree–Fock
approach (UHF), which allows different radial
expansions for the two paired electrons, this

effect is considered. Since the restricted Har-
tree–Fock (RHF) approach forces both spatial
expansions to be equal, the effect cannot be
considered. Consequently, in the RHF method,
spin polarization effects appear as correlation
effects but in UHF they are already included in
the orbitals. A nice phenomenological explana-
tion can be found in Ref. [3]. A description of
the more technical differences in UHF and
RHF can be taken from Ref. [9].
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30.2
Problems Appearing in MR-CI Computations of Aiso

After various investigations it became clear that reliable ab initio computations of
the isotropic hyperfine interaction require the consideration of higher than double
excitations [4–8, 10, 11, 14]. As a consequence, multi-reference configuration inter-
action (MR-CI) approaches need large reference spaces. With individually selecting
CI approaches, in which the configurations are selected due to their importance for
the energy, nearly all configurations have to be considered to obtain accurate isotro-
pic HFCCs. This represents a much stronger dependence than found for other one-
electron properties. In coupled cluster approaches quite often the CCSD level is
already accurate2) but sometimes also triple substitutions (CCSD(T)-approach) have
to be included. It is quite intriguing that a CI treatment which considers only all
single excitations (S-CI3)) as used by Chipman [15] gives isotropic HFCCs which are
in excellent agreement with experiment [8]. Computations for the ground state of
the CH molecule (X 2P) show that this results from an error cancellation [15, 16].
For the carbon center the S-CI approach gives an isotropic HFCC of about 41 MHz.
It is in good agreement with the experimental value of 46.7 MHz –2 MHz. How-
ever, if the wavefunction is improved by including all double excitations with respect
to the RHF configuration the value drops to about 30 MHz. A nearly converged
value of about 45 MHz is only found if all triple excitations are also taken into con-
sideration.

Computations for the boron atom (2Pu) and the nitrogen atom (4Su) provide more
insight into the various effects. Second-row atoms turned out to be quite trouble-
some (also for DFT computations) and were used as test systems by some groups [5,
6, 14, 15, 17]. The AO basis sets used for the present study consist of a 13s8p basis
contracted to an [8s5p] set. They were augmented by two d functions (boron: 0.2 /
0.8; carbon: 0.318 / 1.097; nitrogen: 0.5 / 1.9) [6, 18]. The basis sets were chosen to
include the most important features necessary for the computation of HFCCs [7,
10], while keeping the cost of the calculations reasonable. All calculations were per-
formed employing natural orbitals (NO) as underlying one-particle basis.

Table 30.1 summarizes the computed values of Aiso for the two systems as a func-
tion of the CI treatment. The RHF treatment (not given) gives zero for all systems
since the singly occupied p orbitals vanish at the position of the nuclei. Conse-
quently, only spin polarization effects can contribute. Taking the nitrogen system as
an example it is seen that the agreement with the experimental value gets worse as
we go from the S-CI treatment to a SD-CI treatment. An improvement is found if
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2) It is important to note that within the frame-
work of the coupled cluster approach higher
excitations are always taken into account. As a
consequence CCSD already includes, e.g., the
influence of higher excitations on the coeffi-
cients of single substitutions.

3) In the present paper the expression “excitation”
is used for a replacement at the spatial orbital

level as used, e.g., by Chipman [15]. In the case
of a single excitation at the spatial orbital level,
it has to be kept in mind that for an open shell
system at least one of the arising determinants
represents a higher than single excitation with
respect to the RHF determinant. More infor-
mation can be found in Refs. [12, 15].
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triple excitations are taken into account. The influence of further quadruple excita-
tions seems to be small which can be seen if the MR-CI value is compared with the
SDT-CI result. The remaining differences with respect to the experimental results
are due to basis set deficiencies [5–7, 20]. Similar behavior is found for the carbon
system (not given) [12, 17]. For boron, SD-CI shows an improvement with respect to
S-CI but both approaches even predict the wrong sign of the isotropic HFCCs.
Again a real improvement is only found if triple substitutions are considered.

To understand the variations as a function of wavefunction quality, the influence
of the different excitations on Aiso is important. Going from an S-CI to an SD-CI
treatment, two effects of the double excitations exist [17]. A direct effect arises from
the double excitations themselves. Furthermore, since within the SD-CI treatment
the coefficients of the single excitations are optimized considering their interactions
with the double excitations, their values in the S-CI wavefunction are different com-
pared to their values in the SD-CI wavefunction. These alterations also influence the
value of Aiso. In the following this effect will be called indirect effect. Both effects can
be separated. The indirect effect can be computed if one projects the configurations
of the S-CI out of the SD-CI wavefunction and renormalizes. The indirect effect
then is the difference between the values obtained with the S-CI and the projected
wavefunction. Please note that the renormalization has only minor effects.

The size of the indirect effect of the double, triple and even higher excitations on
the coefficients of the single excitations can be taken from Table 30.2. If the coeffi-
cients of the single excitations are taken from the S-CI wavefunction (S-WF, S-CI in
Table 30.2) for the 2Pu state of the boron atom, a value of -3.2 MHz is computed. If
the coefficients are projected out of an SD-CI wavefunction (S-WF from SD-CI in
Table 30.2), the value drops to –20.5 MHz showing that the indirect influence of the
doubly excited configurations leads to a change in Aiso of about –17 MHz. Taking
the coefficients of the singly excited configurations from an SDT-CI the isotropic
HFCC of the boron atom is predicted to be –15.2 MHz. This shows that due to the
interaction with triple excitations the coefficients of the single substitutions also
change considerably. It is unclear whether this effect results from a direct interac-
tion between the single and triple excitations or whether it is indirectly induced via
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Table 30.1 Isotropic hyperfine coupling
constants for the ground states of the
boron atom (2Pu) and nitrogen atom (4Sg)
using different levels of the CI treatment.

CI-Treatment Aiso (in MHz)

B (2Pu) N (4Sg)
S-CI –3.2 5.4
SD-CI –1.3 3.9
SDT-CI 5.2 7.8
MR-CI 6.5 7.8
Exp 11.6a 10.4b

a) Ref. [14].
b) Ref. [18].
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the double excitations. This consideration also shows that a wavefunction-based
method can only be reliable for computations of isotropic HFCCs if it provides accu-
rate coefficients for the singly excited configurations.

A similar discussion to that for the singly excited configurations could also be
applied for the other excitation classes, however, a separation of the various effects
becomes more complicated. Such information can be obtained if the various contri-
butions of the excitation classes to Aiso are considered. Since Aiso is a one-electron
property, it can be written as a sum over matrix elements between configurations
belonging to the same excitation class or differing by one excitation:

A
iso
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cr
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In Eq. (30.3) i, j and r, s indicate the orbitals involved in the excitations. The first
term in Eq. (30.3) gives the contribution arising from matrix elements between the
RHF determinant and the single excitation (singles-RHF), while the following three
terms contain the contributions resulting from matrix elements between single exci-
tations amongst themselves (singles–singles). The last term gives the singles–dou-
bles contributions. Further contributions arising from doubles–doubles, doubles–tri-
ples, etc. are straightforward. It should be kept in mind that the contribution from
the diagonal matrix element of the RHF determinant in the cases considered in the
present work is zero.
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Table 30.2 Indirect influence of double and triple excitations on
Aiso for the ground states of the boron and the nitrogen atom.
All values were obtained with a wavefunction including the RHF
determinant and all single excitations. They were projected out
of the wavefunction obtained by different CI treatments.

CI-treatment for Coefficients Aiso (in MHz)

B (2Pu) N (4Su)
S-CI –3.2 5.4
SD-CI –20.5 –3.2
SDT-CI –15.2 –0.3
MR-CI –14.9 –0.2



Table 30.3 summarizes the size of the various contributions obtained with differ-
ent wavefunctions. The indirect influence of the doubles and of the triples on the
coefficients of the singles, which we already discussed above, can be seen from the
variations of the terms singles–RHF and singles–singles depending on the wave-
function. It is seen that mainly the contribution from the singles–RHF matrix ele-
ments changes. It varies from –11.4 MHz (S-CI) to –29.1 MHz (SD-CI) to
–24.7 MHz (SDT-CI) while the contribution from the single–single matrix elements
stays more or less constant. Since the coefficients of the single excitations appear in
both terms the variations in the singles–singles contribution arising due to the vari-
ations in the coefficients either average out or are too small. This may arise since for
the singles–singles contributions two small coefficients are always multiplied while
for the singles-RHF matrix elements the small coefficients of the single excitations
are multiplied by the large coefficient of the RHF configuration.

The direct contribution of the double excitations (sum of doubles–singles and
doubles–doubles) is around 19 MHz. It does not change much if one takes the coef-
ficients from an SD-CI or an SDT-CI calculation. This shows that the indirect influ-
ence of the triples on the doubles is quite small. However, we cannot rule out that
cancellation effects also occur here. Table 30.3 also shows that the direct contribu-
tion of the triples (triples–doubles and triples–triples) can be neglected. As discussed
previously, the influence of even higher excitations can also be neglected.

In summary a wavefunction-based method designed to give accurate isotropic
HFCCs must be able to provide very accurate coefficients for the singly and doubly
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Table 30.3 Decomposition of the various contribu-
tions to Aiso of the boron and nitrogen atoms.

Aiso [MHz]

Approach/Contribution B (2Pu) N (4Su)
S-CI –3.2 5.4

singles–RHFa –11.4 1.1
singles–singles 8.2 4.3

SD-CI –1.3 3.9
singles–RHF –29.1 –6.6
singles–singles 8.6 3.3
doubles–singles 6.3 3.3

SDT-CI 5.2 7.7
singles–RHF –24.7 –4.1
singles–singles 9.5 3.7
doubles–singles 7.6 3.7
doubles–doubles 13.3 4.2
triples–doubles –0.7 0.2
triples–triples 0.2 0.1

a) Singles-RHF summarizes all contributions to Aiso

arising from the first term of Eq. (30.3), while
singles–singles gives the contribution due to the
second term and so on.



excited determinants. The direct contribution of triples and even higher excitations
can be neglected but the influence of these excitations on the coefficients of the sin-
gle excitations is necessary. Such a method is the MRD-BK method [16, 21]. In a first
step, an individually selecting MR-CI is used to select an appropriate CI wavefunc-
tion out of the full MR-CI space. In the second step, the BK method [22] is used to
correct the coefficients of this wavefunction by considering the indirect influence of
the neglected configurations. With this approach it is possible to predict very accu-
rate values for Aiso with quite compact wavefunctions including only up to 3�104

configuration state functions. In most applications the accuracy of this approach
was found to be comparable to that of the CCSD(T) or QCISD(T) approach [12, 16,
21, 23]. A description of the underlying theory can be found elsewhere [12, 16, 21].
As an example for the accuracy of the MRD-CI/BK method, Table 30.4 gives the
HFCCs of the CCO molecule in its 3�u

– groundstate [24]. Other examples can be
taken from the literature [12, 25]. Table 30.4 again reflects the error compensations
found within a S-CI, which brings the values into a much better agreement with the
experimental values than the computed values of a SD-CI. However, it is also
obvious that the error compensation is not sufficient in this case. Similar behavior
was also found for other triplet molecules [24].

30.3
Error Cancellations in Computations of Aiso with DFT

As already mentioned, DFT quite often predicts very accurate isotropic HFCCs which
is quite astonishing taking into account the problems found for wavefunction-based
methods. It is even stranger that DFT predicts especially accurate proton HFCCs
which are very problematic for wavefunction-based methods [12]. This is a very valu-
able feature for DFT since in most cases only the isotropic HFCCs of the protons are
known. Table 30.5 summarizes results for H2CN as an example. It shows that both
RHF and UHF fail completely. The GGA functionals BLYP and BP86 predict the
proton couplings extremely accurately but are not able to provide good coupling con-
stants for the heavier atoms. For the heavier centers their accuracy is only compar-
able to the MRD-CI approach which possesses large errors for all centers. If the
wavefunction is corrected by the MRD-CI/BK approach, the predicted isotropic HFCCs
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Table 30.4 TheoreticalHFCCs (inMHz) for the groundstate ofCCO (3�u
–). (A?=Aiso + Azz, A||=–1/2 Azz).

CaCbO Ca Cb O

Aiso A? A|| Aiso A? A|| Aiso A? A||

S-CI 17.3 43.7 –35.5 –33.8 –32.4 –36.6 –26.6 –43.3 6.8
SD-CI –8.0 17.9 –59.7 –34.8 –32.0 –40.2 –5.2 –17.7 19.8
MRD-CI –7.8 17.9 –59.3 –34.0 –31.7 –38.7 –12.7 –26.8 15.7
MRD-CI/BK 30.7 56.3 –20.7 –30.7 –29.6 –32.9 –23.8 –41.3 11.2
Exp. 57(3) –17(3) –26(3) –32 (3) – – –



for the heavier centers are in very good agreement with experiment but for the pro-
ton couplings still larger errors are found. To get a feeling for the differences it is
important to distinguish between contributions arising directly from the singly
occupied orbital (SOMO) and those resulting from spin polarization effects. In
H2CN the SOMO is mainly centered at the nitrogen atom and represents a pin plane

orbital i.e. it vanishes at the position of both heavier centers but not at the position
of both protons. As a consequence the isotropic HFCCs of the heavier centers are
solely determined by spin polarization effects, while contributions from the SOMO
and from spin polarization effects are important for the hydrogen nuclei. The direct
contributions from the SOMO are also given in Table 30.5 (HSOMO, right-hand side).
Comparing both contributions to the HFCCs of the hydrogen centers it is obvious
that in comparison to MRD-CI/BK both DFT approaches possess much higher con-
tributions from the SOMO but considerably lower contributions due to spin polar-
ization effects. A definite statement on which approach is right is not possible since
for the isotropic HFCCs of the hydrogen atoms only the sum of both contributions
represents a measurable quantity. However, some insight can be gained from the
isotropic HFCCs of the heavier centers. Here the direct contribution vanishes so
that the strength of the spin polarization is directly measurable. The fact that for the
heavier centers the spin polarization effects of the MRD-CI/BK method are also
much larger than those described by DFT, might point to a deficiency of the current
functionals. For the hydrogen centers, this is canceled by an overestimation of the
contributions from the SOMO. Taking into account that the spin polarization effects
at the heavier centers arise due to non-local interaction their underestimation is in
line with the well known difficulties of DFT in describing such interactions [28].

Two other error compensations which appear quite often in DFT should also be
addressed. One is connected with properties of the UHF approach. From Table 30.5
it is seen that the UHF approach largely overestimates all isotropic HFCCs. From
this it is obvious (see also the discussion in Chapter 29 by Munzarov�) why hybrid
functionals (e.g. B3LYP), which are obtained from a combination of a pure GGA
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Table 30.5 Isotropic HFCCs of H2CN (2B2). For all computa-
tions we used the MCSCF-ACPF/Duij geometry described in Ref.
[26]. All values given in G. All calculations were performed with
an AO basis optimized for the computation of isotropic HFCCs
[6, 7, 10, 18]. The experimental values are taken from Ref. [27].

Approach C N H HSOMO a

ROHF 0 0 31 31
UHF –69 26 102 83
BLYP –21 7 84 63
BP86 –19 4 80 63
MRD–CI –20 4 61 41
MRD–CI/Bk –28 9 74 41
Exp. –29 9 83 –

a) Contribution from the singly occupied orbital (SOMO).



functional (e.g. BLYP) with UHF, in most cases exhibit much higher spin polariza-
tion effects than pure GGA functionals. However, in our opinion, this also repre-
sents an error compensation since the underestimation of the GGA is coupled with
the overestimation of the UHF. Finally, as discussed in some length in Refs. [12,
29], it is found that DFT predictions of isotropic HFCCs are even better if the under-
lying geometry is not taken from a high level ab initio approach but optimized using
the DFT method itself. However, as already discussed in Ref. [30], very often these
geometries are not as good as the ab initio data.

30.4
Concluding Remarks

In the present chapter we have discussed problems which appear within MR-CI
computations of isotropic HFCCs, Aiso. We focused on the MR-CI method since its
problems also provide insight into effects responsible for difficulties of other wave-
function-based methods. We have shown that wavefunction-based methods de-
signed to give accurate isotropic HFCCs must be able to provide very accurate coeffi-
cients for the determinants representing single and double excitations with respect
to the RHF determinant. Higher excitations (triples, etc.) do not contribute directly
to Aiso but are only important since they indirectly influence the coefficients of the
single excitations within the MR-CI treatment. As a consequence, approaches which
take such effects into account but neglect the higher excitations within the wave-
function already give very accurate predictions for Aiso. As an example we discussed
results given by the MRD-CI/BK approach. This finding also explains why CCSD
approaches give very accurate results for Aiso in most cases while the CISD method
fails in nearly all cases. We also discussed the error compensations appearing in an
S-CI approach.

In the second part of the paper we discussed error cancellations appearing in
DFT approaches. Results for the H2CN molecule indicate that the current func-
tionals underestimate spin polarization effects. However, for protons in a b position
with respect to the radical center, this error is often compensated by higher direct
contributions from the singly occupied orbital. The orbital provided by DFT seems
to be somewhat more compact than the corresponding orbitals obtained from ab
initio methods (e.g. Hartree–Fock, natural or CASSCF orbitals). Additional error
compensation arising from geometrical parameters or with hybrid functionals were
also addressed. Nevertheless, we would like to state that, despite all of these deficien-
cies, DFT has proven to be extremely valuable for the interpretation of experimental
spectra since it is sometimes more helpful for the experimentalists to get right
results for the wrong reasons than wrong results for the right reasons.
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31.1
Introduction

Fermi contact interactions determine important parameters characterizing magnetic
resonance spectra. The EPR isotropic hyperfine coupling constant observed at mag-
netic nucleus A in a free radical is given by known constants times ÆW0 | dA 2 Ŝz |
W0æ, which is the electronic spin density evaluated at point A as expressed by an
expectation value over the ground state electronic wavefunction W0 of the delta func-
tion operator dA2Ŝz ”�i

electrons d3 (ri – RA)2Ŝzi (see Chapter 29 by Munzarov�). A
major contribution to the NMR indirect spin–spin coupling constant between mag-
netic nuclei A and B in a molecule is given by known constants times �n„ 0 ÆW0 |
dAŜ | Wn æ · ÆWn | dBŜ | W0 æ / (En – E0), which is a sum-over-states expression involv-
ing off-diagonal matrix elements of delta function operators between the ground
state and all excited electronic wavefunctions Wn (see Chapter 7 by Helgaker and
Pecul).

These Fermi contact properties are difficult to calculate accurately because of
their high sensitivity to the quality of the wavefunction at the nucleus that is picked
out by the delta function operator. Most electronic wavefunctions are determined by
some kind of global energy-based optimization procedure, and may admit large
errors at a single point in space. Furthermore, the Gaussian basis sets used in most
molecular calculations are especially deficient at nuclei. To obtain accurate results, it
is usually necessary to use very large Gaussian basis sets that are designed for these
particular properties.

Promising alternative approaches for Fermi contact interactions are possible by
substituting the delta function operators with more global operators that are less
sensitive to local errors in the wavefunctions. It is possible to find alternative global
operators that would lead to exactly the same results as the delta function operators
if exact wavefunctions were utilized. With approximate wavefunctions they generally
give different results, and may in fact be preferable in practice to the delta function
operators.

An alternative operator of this type was first proposed by Hiller, Sucher and Fein-
berg [1] (HSF), analyzed by Sucher and Drachman [2], and later extended by Harri-
man [3] to spin density calculation. Cioslowski and Challacombe [4] have shown that
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the HSF operator provides a density possessing a cusp at the nucleus, even with
Gaussian basis sets, although the form of the cusp differs from the exact condition
obtained by Kato [5]. However, it was also formally shown [6] that with most approx-
imate wavefunctions the HSF operator leads to incorrect long-range asymptotic be-
havior of the density.

Numerical studies have been made of both charge and spin densities with the
HSF operator [7–13]. These reveal that, despite its promise, the HSF formulation is
advantageous to the usual delta function formulation only with relatively large basis
sets. The incorrect long-range asymptotic behavior of HSF causes it to give inaccu-
rate values of charge densities at light atoms in the vicinity of heavy ones [9], and
similarly limits the accuracy of spin density calculations [13]. An additional very seri-
ous problem for implementation of the HSF operator in systems of practical interest
is that the calculations may require more computer resources than it takes for deter-
mination of the wavefunction.

We have developed a new class of alternative operators [14–16] that are free of
many of the drawbacks of both the delta function and the HSF formulations. The
alternative operators are derived in Section 31.2 and their formal properties are pre-
sented in Section 31.3. Selected numerical results from the literature are given for
EPR applications in Section 31.4 and for NMR applications in Section 31.5. Finally,
a conclusion is provided in Section 31.6.

We consider in this work only nonrelativistic stationary-state real normalized elec-
tronic wavefunctions of atoms and molecules obtained under the approximation of
clamped nuclei. Atomic units (au) are used throughout, unless specifically noted
otherwise.

31.2
Derivation of New Alternative Operators

The alternative operators of interest here can be obtained from the hypervirial theo-
rem [17], which states that the commutator ĤHŴW–ŴWĤH of a Hamiltonian ĤH with an
arbitrary operator ŴW has vanishing expectation value when taken over an eigenfunc-
tion W0:

hW0 jĤHŴW � ŴWĤHjW0i ¼ 0 : ð31:1Þ

This is immediately seen to be true by making use of the eigenvalue relation
ĤHW0 = E0W0 and the hermitian nature of the Hamiltonian. We have further proved
[11] that the hypervirial relation holds if ŴW is any one-electron operator and W0 is
any fully optimized MCSCF wavefunction. The hypervirial relation provides many
interesting results when considering operators ŴW that do not commute with ĤH. For
example, the well-known quantum mechanical virial theorem [18] is obtained by
putting ŴW =�iri¶/¶ri.
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31.2 Derivation of New Alternative Operators

The simple concept underlying the alternative operators can be illustrated by first
treating a single-electron system, placing the nucleus of interest at the origin. Con-
sider the antihermitian generating operator1)

ŴW ¼ FðrÞ @
@r
þ 1

r

� �
þ 1

2
F¢ðrÞ ; ð31:2Þ

where F(r) is an arbitrary weight function, except that it should be well-behaved and
not vanish at the origin, and the prime notation indicates differentiation with
respect to r. The electronic Hamiltonian is ĤH ¼ T̂T + U with kinetic energy operator
T̂T ¼ �r2

r =2þ L̂L
2
=2r2, where r2

r ¼ @2=@r2 þ ð2=rÞ@=@r and L̂L
2

represents electronic
angular momentum, and U is a one-electron potential energy function that need not
be explicitly specified. A delta function arises in working out the relevant commuta-
tor, from a term involving r2

r ð1=rÞ ¼ �4pd3ðrÞ. The final result of the hypervirial
theorem in this example then turns out to be

hW0 jdjW0i ¼ hW0 jd̂djW0i ;

where d̂d is a hermitian operator given by

d̂d ¼ 1
2pFð0Þ FðrÞ � L̂L
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3 þ
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ð31:3Þ

In words, with an exact wavefunction the expectation value of a delta function opera-
tor at the nucleus is equal to the expectation value of a global operator d̂d.

For the electronic charge density at nucleus A in a many-electron molecule we
use a generating operator ŴWA that is a sum of one-electron terms, each term given
by ŴW as defined above and referred to origin at A, to obtain

hW0 jdA jW0i ¼ hW0 jD̂DA jW0i : ð31:4Þ

Here dA �
P

i d3ðri �RAÞ is a sum of one-electron operators. The operator
D̂DA �

P
i d̂di also involves a sum over individual electrons i, with each term d̂di being
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1) Originally [14, 15] we considered the simpler
nonhermitian generating operator F(r)¶/¶r.
That approach leads to a nonhermitian alterna-
tive to the delta function, which in practice
necessitates symmetrization of all integrals

over basis functions with respect to the basis
function indices. The version given here that
leads to a hermitian alternative to the delta
function was reported later [16].
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implicitly referred to an origin at nucleus A. The Hamiltonian potential energy func-
tion must now be represented as U + V, which has both one-electron terms U and
two-electron terms V. Consequently, the commutator of r2

i with the potential energy
function produces contributions to d̂di from both a one-electron term involving
@U=@ri and also a two-electron term involving @V=@ri. Similarly, the electronic spin
density at nucleus A that determines the EPR isotropic hyperfine coupling constant
in a many-electron molecule can be expressed as

hW0 jdA 2ŜSz jW0i ¼ hW0 jD̂DA2ŜSz jW0i ; ð31:5Þ

where dA 2ŜSz �
P

i
d

3ðr
i
�RAÞ2ŜS

zi
is a sum of spin-dependent one-electron opera-

tors and D̂DA 2ŜSz �
P

i
d̂d

i
2ŜS

zi
contains both one- and two-electron spin-dependent

operators. It is shown in Section 31.3 that, in practice, all two-electron contributions
can be made negligible.

Treatment of the NMR indirect spin–spin coupling constant is more difficult
because off-diagonal matrix elements of the delta function are involved. There is no
analog of the hypervirial relation that would allow each matrix element over a delta
function operator to be equated with one over an alternative global operator. Never-
theless, useful results can still be obtained for the property of interest here, because
it involves a sum of matrix elements over all excited states, making possible use of
the completeness of the set of all hamiltonian eigenfunctions as expressed byP

n6¼0
jWnihWn j ¼ 1� jW0ihW0 j. We refer to the original work [16] for all detailed

arguments, and quote here just the final result of

X

n6¼0

hW0 jdA ŜSjWni � hWn jdB ŜSjW0i
En � E0

¼
X

n 6¼0

hW0 jD̂DA ŜSjWni � hWn jD̂DB ŜSjW0i
En � E0

� 1
4pFAð0Þ

hW0 jŴWA ŜS � ðdB þ D̂DBÞŜSjW0i þ 1
4pFBð0Þ

hW0 jðdA þ D̂DAÞŜS � ŴWB ŜSjW0i

ð31:6Þ

This effectively replaces delta functions by alternative operators in the off-diagonal
matrix elements, at the price of introducing ground state expectation value terms. It
is described in Section 31.5 how, in practice, the ground state expectation value
terms can be made negligible.

31.3
Formal Properties of Short-Range Alternative Operators

In this section we consider specific choices for the weighting function F(r), with r
being the radial distance from a nucleus located at the origin. We have studied [14]
two possibilities for F(r). One choice is the Heaviside step function defined by
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F
HðrÞ ¼ 1 if r � r0

0 otherwise

�
; ð31:7Þ

and the other choice is a Gaussian function defined by

F
GðrÞ ¼ e

�r2=r2
0 ; ð31:8Þ

both operators being governed by a range parameter r0. Through the hypervirial the-
orem, these lead to alternative operators d̂dH and d̂dG, respectively.

Results equivalent to the delta function are reached by either new alternative
operator in the limit of r0fi 0. Results equivalent to the HSF operator, which corre-
sponds to the choice F(r) = 1, are reached by either alternative operator in the limit
of r0fi¥. Thus, by changing the value of the range parameter r0 the alternative
operators can interpolate between delta function and HSF results. The alternative
operators turn out to be most useful when the range parameter r0 is chosen to be
small but nonzero, which effectively limits the integration region to the near vicinity
of the nucleus while still allowing for a region of space over which some averaging
of wavefunction errors may take place.

Formal properties of these short-range alternative operators can be analyzed by
expanding all relevant quantities as power series in r0 and working out the coeffi-
cients of the lowest few terms. The Heaviside weighting happens to be most conve-
nient for such analysis, and was used [14] to establish most of the results reported in
this section. It can be expected that the formal properties of the Gaussian-weighted
operator are essentially the same as for the Heaviside-weighted operator. Indeed, by
utilizing numerical grid methods to effectively generate complete basis set results,
this expectation has been fully confirmed by calculations of charge and spin densi-
ties in first-row atoms and in first-row diatomic hydrides [15].

In principle, the alternative operators can be used to evaluate charge and spin
densities from an approximate wavefunction at any point in space. We have shown
[14] that at a point far from any nucleus the charge and spin density evaluated from
the alternative operators differ negligibly from the corresponding delta function
charge and spin density, as long as r0 is chosen to be small. The new alternative
operators therefore do not suffer from the incorrect long-range asymptotic behavior
that plagues the HSF operator.

For evaluation of Fermi-contact interactions in EPR and NMR the main interest
lies in the behavior of the alternative operators when evaluated at a nucleus. Several
very interesting properties can be analytically derived in this situation, as we now
demonstrate.

Any exact wavefunction W satisfies a cusp condition when one electron approach-
es a nucleus. We focus on a nucleus of charge Z at the origin and an electron lying a
small distance r away, while suppressing the coordinates of all other particles. Per-

497



31 Alternative Fermi Contact Operators for EPR and NMR

forming an average over a small sphere about r = 0 (as indicated by an overhead tilde
notation) and expanding in a Taylor series about this point we have

~WWðrÞ ¼ Wð0Þ þ rW¢ð0Þ þ r
2
W†ð0Þ=2þ r

3
W-ð0Þ=6þOðr4Þ: ð31:9Þ

Kato [5] proved that

W¢ð0Þ ¼ �ZWð0Þ; ð31:10Þ

showing that the first derivative is nonzero and is completely determined in terms
of the amplitude. Making use of the Heaviside-weighted alternative operator [16],
and later verifying the results by independent methods [19], we have further proven
that

W -ð0Þ ¼ Z
3
Wð0Þ � 2ZW†ð0Þ; ð31:11Þ

giving the third derivative in terms of lower ones. Thus, the singular coulomb poten-
tial produced by a nucleus governs the behavior of the exact electronic wavefunction
out to larger distance than was previously appreciated. These same cusp relations
also hold for any Hartree–Fock or MCSCF s-orbital that is obtained exactly within a
complete basis set. Analogous results have also been obtained for electron-electron
cusps [19].

The alternative operators show a remarkable behavior for the density near a
nucleus. The exact charge density r(r) satisfies the cusp condition [20]

~rrðrÞ ¼ rð0Þ � 2Zrrð0Þ þ Oðr2Þ; ð31:12Þ

where again the nonzero first derivative is determined by the amplitude. With an
approximate wavefunction, the delta function charge density rd(r) will generally not
satisfy this condition unless specifically constrained to do so. Nevertheless, we have
proved [14] that

~rr
dðr0Þ ¼ r

Hð0Þ � 2Zr0r
dð0Þ þ Oðr2

0 Þ ð31:13Þ

for any general approximate wavefunction. Thus, the alternative operator produces a
density rH(0) having a cusp at the nucleus, which coincides with the exact cusp con-
dition at the particular distance r0, even if the underlying wavefunction from which
it is evaluated has no cusp at all! The analogous result also holds for the spin density,
and this property significantly improves the evaluation of EPR and NMR Fermi con-
tact interactions with the alternative operators when constructing wavefunctions
from Gaussian basis sets that preclude any cusp-like behavior of the delta function
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density. To use the words of Pyykk� in a comment made at the International Confer-
ence on Quantum Chemical Calculations of NMR and EPR Parameters held in the
Slovak Republic on September 14–18, 1998, the alternative operators “show how to
put a pointed hat on a round head”.

Efficiency of calculations is also an important concern. Two-electron contribu-
tions to the alternative operators would require considerable computer resources to
evaluate in many-electron systems. This drawback seriously limits interest in the
HSF operator, but is not a problem for our new alternative operators because of a
formal demonstration [14] that two-electron terms do not begin to contribute until
Oðr4

0Þ and higher, and so are negligible in comparison to one-electron terms when r0

is small. EPR and NMR Fermi contact interactions can be therefore be obtained
with the new alternative operators from one-electron integrals that require only
modest computer resources to evaluate, comparable to calculation of the usual one-
electron integrals needed for energy evaluation.

EPR and NMR calculations have been carried out [15, 16] to examine how results
change as r0 is varied in the new alternative operators. Basis sets of at least double-
zeta quality (with splitting of both core and valence orbitals) are necessary to
describe important spin polarization effects in the wavefunction, otherwise qualita-
tively incorrect results are usually obtained no matter what operator is used. Starting
from the delta function result at r0 = 0, it is generally found with double zeta and
larger basis sets that the results initially change quickly as r0 increases, and then
level off to a flat plateau where the results are insensitive to the particular value
chosen for r0. As r0 becomes still larger a point is eventually reached where
neglected two-electron contributions cause the results to again change rapidly and
become nonsensical. The optimum value of r0 corresponds to a balance between the
competing desires of making it as large as possible to provide significant averaging
of wavefunction errors, while still keeping it small enough to allow neglect of two-
electron contributions.

31.4
EPR Calculations

As an example, we report selected numerical results for spin densities of p-radicals
from the first-row diatomic hydrides CH (X 2�), NH (X 3�–), and OH (X 2�). In few-
electron systems the Heaviside-weighted operator sometimes [15, 16] produces oscil-
lations in the results as a function of the range parameter r0, while the Gaussian-
weighted operator generally leads to smooth behavior, and we therefore show here
results only from the Gaussian-weighted operator. Interested readers can consult
the original publications [15, 16] for detailed comparisons of numerical results from
both new alternative operators, and from the HSF operator as well, for hydrogen,
first-row atoms, and first-row diatomic hydrides.

In practical applications, it is helpful to determine the dependence of the range
parameter r0 on the charge Z of the nucleus under consideration. For this, we note
that both Kato’s cusp condition [5] and its extension to higher order [14, 19] show
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that in the vicinity of a nucleus the wavefunction depends on a scaled variable Zr.
Thus, with small r0 the optimum value of Zr0 should be roughly constant for differ-
ent nuclei. In a comprehensive study of first-row atoms [15] we carefully estimated
that two-electron contributions to the spin density per unpaired electron remain
below 0.0002 au whenever Zr0 is about 0.25 a0 or smaller. This rather conservative
criterion is adopted for the results to be reported here, although in low accuracy
calculations even higher values of Zr0 would be acceptable.

We adopt SP-MCSCF (spin-polarization multiconfiguration self-consistent-field)
wavefunctions. In this context, spin-polarization configurations are those spin-
adapted single excitation configurations that are connected by nonzero matrix ele-
ments to the dominant spin-restricted configuration in the Hamiltonian matrix. All
orbitals are variationally optimized within a given basis set. Seminumerical grid cal-
culations are also obtained with high enough precision to effectively correspond to
use of a complete basis set.

The most proper theoretical comparison for present purposes is that of finite basis
set results to the limiting seminumerical grid results, with a fixed wavefunction
model. Even so, it is naturally of interest to inquire how well the given wavefunction
model is capable of matching experiment. Comparing the seminumerical grid
results to experimental values in Tab. 31.1 shows that the SP-MCSCF model gives
quite good agreement with experiment in this example. That happens frequently for
spin densities of p-radicals, but is probably fortuitous [21, 22] owing to an accidental
cancellation of significant contributions from doubly-excited configurations that
describe dynamic electron correlations with certain triply-excited configurations that
describe spin-polarization of the important doubles (see Chapter 30 by Engels). It is
fully expected that the new alternative operators examined here will be just as valu-
able in studies that include dynamic electron correlation effects as they are in the
simpler studies made so far.
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Table 31.1 Electronic spin densities in au at the nuclei in CH, NH, and OH radicals as calculated
with SP-MCSCF wavefunctions. Results from the d operator and the d̂dG alternative operator with r0

= 0.25/Z a0 are compared with different basis sets, with seminumerical calculations corresponding
to the complete basis set limit, and with experiment.

[4 2|2] [6 3 1|4 1] [6†4†2|4†1] Limit Experiment

C d 0.0343 0.0351 0.0405 0.0393 0.042
d̂dG 0.0406 0.0377 0.0414 0.0393

N d 0.0455 0.0521 0.0588 0.0596 0.061
d̂dG 0.0549 0.0565 0.0608 0.0596

O d 0.0495 0.0593 0.0662 0.0706 0.084
d̂dG 0.0625 0.0657 0.0700 0.0706

H(CH) d –0.0152 –0.0125 –0.0128 –0.0137 –0.0129
d̂dG –0.0165 –0.0132 –0.0134 –0.0137

H(NH) d –0.0167 –0.0141 –0.0142 –0.0148 –0.0148
d̂dG –0.0181 –0.0147 –0.0146 –0.0148

H(OH) d –0.0176 –0.0154 –0.0154 –0.0158 –0.0164
d̂dG –0.0191 –0.0158 –0.0157 –0.0158



31.4 EPR Calculations

Several basis sets of increasing size and complexity are considered. Comparing
the smallest [42|2] double zeta set [23, 24] results to the limiting seminumerical grid
results in Tab. 31.1 shows that d̂dG performs much better than d at the heavy atoms,
although not quite as well at the hydrogens. Uncontracting the outermost primitive
s member from the innermost contraction group and adding diffuse s and p func-
tions as well as polarization functions gives a [631|41] basis especially designed for
spin density calculations [25]. With this basis both operators give notably better
results than with [42|2], and d̂dG performs much better than d at all nuclei. For quan-
titative calculations it is further necessary to add functions that are highly peaked
near the nuclei. The [6†4†2|4†1] basis [13] includes very high exponent s and p func-
tions at the heavy atom and s function at hydrogen, and also somewhat uncontracts
the p space and adds an additional d shell at the heavy atom. The dagger implies
that the extra tight functions are contracted into the existing innermost groups.
Both operators show improved results with this basis, and are both now close to the
limiting numerical values.

It can be concluded that with small basis sets the new alternative Gaussian-
weighted operator gives substantially better spin density results than the delta func-
tion, and also converges more rapidly with increasing basis set size to the limiting
results that both operators ultimately attain with very large basis sets. The Gaussian-
weighted operator has also been found [15] to give much more dramatic improve-
ment over other operators for the total charge density at a nucleus. The less dra-
matic, but still substantial, improvement found for spin density at a nucleus is at-
tributed to the loss of significant figures occurring when subtracting two large alpha
and beta densities of nearly equal magnitude.

The new Gaussian-weighted alternative operator with small r0 has also been used
[26] in spin density calculations based on density functional theory (DFT). To sim-
plify evaluation of basis function integrals over the alternative operator, an ad hoc
assumption was made that contributions from Coulomb and exchange-correlation
terms could be neglected, which is analogous to our analytic demonstration that
two-electron contributions can be neglected in ab initio approaches. First-row
atoms, first-row diatomic hydrides, and several small polyatomic radicals were con-
sidered. With first-row atoms it was found that the best DFT results are obtained
with a value of 0.35 a0 for Zr0, which is a little larger than the 0.25 a0 value we
recommend for ab initio studies. The study concluded that with moderate-sized and
carefully selected Gaussian basis sets, the new operator combined with DFT has
clear advantage for the calculation of nuclear spin densities in molecules.

31.5
NMR Calculations

The only NMR application of the new alternative operators to date is our study [16]
of indirect nuclear spin–spin coupling in the HD molecule. It treats only the Fermi
contact contribution at the equilibrium bond distance, for which limiting results cor-
responding to complete basis set calculations have been estimated [16] from litera-
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ture studies [27, 28] as 53.23 Hz for coupled Hartree–Fock (CHF) and 40.13 Hz for
full configuration interaction (FCI). The latter value accounts for about 93% of the
experimental result of 43.11 Hz, with the remainder [27, 28] coming from averaging
the Fermi contact contribution over nuclear motions and also, to a lesser extent,
from non-Fermi contact contributions arising from spin dipole, paramagnetic spin–
orbit, and diamagnetic spin–orbit interactions.

Optimum values of r0 obtained from EPR experience need not carry over to NMR.
Indeed, two-electron contributions to the spin–spin coupling in HD begin to be
noticeable [16] at r0 of about 0.10 a0, which is significantly shorter than found in
spin density explorations. We use r0H = r0D = 0.10 a0 to evaluate spin–spin coupling
in HD, and neglect all two-electron contributions. These r0 values are much shorter
than the internuclear distance, making the overlap of the weighting functions on
the two centers very small. Consequently, it is also permissible to neglect the ground
state expectation value terms. The remaining sum-over-states expression was indi-
rectly evaluated by a finite-field method [29, 30].

Selected results are given in Tab. 31.2. We use medium to large basis sets that
show a flat plateau region where the results are not very sensitive to r0. Very small
basis sets do not show a plateau region, making them unsuitable for the alternative
operators in this problem.

The [41] and [4†1] contracted basis sets are the same as described above in Section
31.4. With the [41] basis d shows significant errors while d̂dG performs well. The [4†1]
basis produces considerable improvement with d and some improvement with d̂dG.
Moving to a large uncontracted (10 5 2) basis taken from the literature [27], d is a
little worse while d̂dG is again improved. After further augmentation with four more
tight s-functions to produce the (14 5 2) basis that effectively saturates the s space
[28], the errors are finally small with d while unchanged with d̂dG. This independence
of the d̂dG results to addition of very tight s-functions clearly illustrates the improved
behavior in the cusp region produced by the new operators. The lack of complete
convergence with d̂dG to the exact limiting result suggests some lingering small defi-
ciency in the basis, quite possibly in the tight regions of the p space.

It may be concluded that the d̂dG operator performs somewhat better than d for
calculation of the indirect spin–spin coupling constant in HD, both with CHF and
FCI wavefunctions.
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Table 31.2 Fermi contact contribution in Hz to the indirect nuclear spin–spin coupling constant in
the HD molecule as calculated with CHF and FCI wavefunctions. Results from the d operator and
the d̂dG alternative operator with r0 = 0.10 a0 are compared with different basis sets and with the
estimated complete basis set limit.

[4 1] [4{1] (10 5 2) (14 5 2) Limit

CHF d 48.10 51.80 51.98 53.19 53.23
d̂dG 53.99 53.55 53.42 53.42 53.23

FCI d 36.58 39.39 39.20 40.10 40.13
d̂dG 41.08 40.75 40.30 40.30 40.13



31.5 NMR Calculations

31.6
Conclusions

For calculations of Fermi contact interactions, the delta function operator is “too
local.” It is sensitive to significant errors often found at the nuclei in molecular
wavefunctions. On the other hand, the HSF operator is “too global.” An inexact
description of the wavefunction far from the point of interest contributes to error in
the HSF results.

The new alternative operators achieve accuracy by averaging wavefunction errors
over a vicinity around the nucleus, and by providing a density cusp at the nucleus
even when the wavefunction itself is cuspless. It is also possible to easily and effi-
ciently compute results with the alternative operators, whereas the HSF formulation
is very complicated and expensive.

To date, only a few studies have been reported with the new alternative operators.
The Heaviside-weighted operator has been most useful for proving formal proper-
ties, while the Gaussian-weighted operator performs a little better in numerical cal-
culations. Further detailed investigations should be made to gain more practical
experience. EPR hyperfine coupling constant calculations should be carried out with
highly correlated wavefunctions to see if the alternative operators work as well there
as with the simple spin-polarization wavefunctions studied so far. Also, the opti-
mum value of the range parameter r0 should be examined in more systems, espe-
cially in connection with NMR spin–spin coupling constants.

From the studies made so far, it can be concluded that the new alternative opera-
tors are useful in providing improved values of Fermi contact interactions. They are
a very promising tool and are recommended for more widespread use in both EPR
and NMR applications.
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32.1
Introduction

Applications of density functional theory [1, 2] to calculations of EPR g tensors [3–5]
have a long and distinguished history (See Refs. [6–10], and references therein).
Used together with semiempirical spin–orbit coupling operators and approximate
perturbation theory expressions, early DFT techniques have proven successful in
gaining a qualitative understanding of the experimental results [9]. In the last few
years, the remarkable success of DFT in calculations of the NMR shielding tensors
(See Chapters 6 by van W�llen; 14 by Autschbach; 18 by Kaupp) has led to a
renewed interest in DFT approaches to the closely related [11] g-tensors. These devel-
opments were also spurred by the seminal ab initio work of Lushington and Grein
[12–14], and other recent ab initio techniques [15–17] (also see Chapter 33 by Lush-
ington). Following the first modern DFT implementation of the EPR g-tensors by
Schreckenbach and Ziegler in 1996 [18, 19], a number of density functional ap-
proaches to this property have been implemented [20–26]. More than 50 application
papers using these techniques have appeared in print so far. Some of the applica-
tions of these techniques are reviewed later in this volume, as well as elsewhere [11,
27–30].

Although some fundamental, unresolved problems remain (see below), density
functional calculations of EPR g-tensors are clearly entering the age of maturity.
Nonetheless, gaining understanding of the unique strengths and weaknesses of any
given implementation1) can be a daunting task, not least because the original
research publications [18–26] tend to emphasize the differences rather than the
essential affinity between these techniques. Therefore, the goal of this chapter is to
provide a bird’s eye view of the existing DFT approaches to g-tensor calculations,
which is then used as a basis for a better understanding of their individual quirks.

The rest of this chapter is organized as follows. Section 32.2 briefly summarizes
the physical origin of the g-tensor, as far as is necessary for defining the g-tensor
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expressions. Section 32.3 introduces the first- and second-order approaches to g-ten-
sor calculations, and discusses the issues arising in the treatment of the spin–orbit
coupling operator. It also briefly summarizes the features of published DFT imple-
mentations. Section 32.4 provides an overview of the factors affecting the accuracy
of practical g-tensor calculations. Finally, Section 32.5 gives the conclusions, and
outlines possible directions of future development.

32.2
The Physical Origin of the g-Tensor

The g tensor, together with the zero-field splitting tensor D (covered in Chapter 34
by Neese), serves as a convenient summary of the electronic transitions in experi-
mental electron paramagnetic resonance (EPR) spectra. To a good approximation,
the observed energies and intensities of such transitions can be reproduced by an
effective Hamiltonian [3–5] (See also Chapter 4 by Lushington), expressed in terms
of a fictitious, effective spin operator ~S (atomic units):

~HH ¼ 1
2c
~BB � g � ~SSþ ~SS � D � ~SS ð32:1Þ

In Eq. (32.1), c is the speed of light (»137.04), and ~BB is the magnetic field. The total
effective spin is chosen to reproduce the experimental ð2~SSþ 1Þ-level multiplet struc-
ture. For effective doublet radicals (~SS ¼ 1=2), as well as high-spin radicals in the
strong field limit, the eigenvalues of this Hamiltonian are given by [3]:

Ek ¼ k B
2c

~nn
T � g � gT � ~nn

� �1=2
ð32:2Þ

In Eq. (32.2), k varies between �~SS and ~SS, in integer increments, while ~nn specifies the
direction of the magnetic field (~nn ¼ ~BB=B). When the deviation Dg (Dg = g – ge 1, 1
being the 3 � 3 unit matrix) from the free electron g-value ge (ge » 2.002 319 277 8) is
small, Eq. (32.2) can be expanded to first order in Dg, giving:

Ek ¼ k B
2c

ge þ ~nn
T � Dg � ~nnþO Dg

2
� �� �

ð32:3Þ

Any theoretical treatment of the g tensor employs a physical, microscopic Hamilto-
nian to determine the magnetic field-induced splitting of two convenient electronic
energy levels. This energy separation, calculated for different orientations of the
magnetic field, is then matched to the individual components of the g tensor above.

The simplest non-relativistic microscopic Hamiltonian, which can qualitatively
account for the deviation of g-tensors from the free-electron value ge, must include
at least the one-electron spin Zeeman (ĤZ), orbital Zeeman (ĤL), and nuclear
spin–orbit (SO) coupling (ĤSO(N)) operators [4, 31]:
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~HHZ ¼
X

j

ĥh
j
Z ¼

X

j

ge

2c
~BB � ŝsj ð32:4Þ

~HHL ¼
X

j

ĥh
j
L ¼

X

j

1
2c
~BB � ~rrj � p̂p

j

� �
ð32:5Þ

~HHSOðNÞ ¼
X

j

ĥh
j
SOðNÞ ¼

X

j

g ¢
4c

2

X

A

ZA ŝsj �
~rrj �~RRA

� �
� p̂p

j���~rrj �~RRA

���
3 ð32:6Þ

In Eqs. (32.4) – (32.6), the summation runs over all electrons (j) and nuclei (A). Posi-
tion, momentum and spin operators of an electron j are given by~rrj, p̂pj, and ŝsj, respec-
tively. The symbols ~RRA and ZA refer to the positions and nuclear charges of a (fixed)
nucleus A. The spin–orbit g 0-factor g is given by [4]:

g¢ ¼ 2ge � 2 ð32:7Þ

The spin Zeeman operator manifests itself in the diagonal, free-electron contribu-
tion to the g-tensor. The interplay between ĤHL and ĤHSO(N) is responsible for the lead-
ing contribution to Dg. Qualitatively similar, but mathematically more involved
operators will appear in relativistic two- [4, 20, 26] and four- [4, 32] component ap-
proaches.

Additionally, calculations aiming for quantitative agreement with experiment will
need to consider [4, 12, 13] two-electron (2e) contributions to the spin–orbit coupling
operator (2e spin–orbit ĤHSO(2e), and spin–other-orbit ĤHSOO), as well as the spin Zee-
man kinetic energy correction ĤHZKE:

ĤHSOð2eÞ ¼
X

j

X

k 6¼j

� g¢
4c

2 ŝsj �
~rrj �~rrk

� �
� p̂p

j
��~rrj �~rrk

��3 ð32:8Þ

ĤHSOO ¼
X

j

X

k6¼j

� 1
c

2 ŝsj �
~rrk �~rrj

� �
� p̂p

k��~rrk �~rrj

��3 ð32:9Þ

ĤHZKE ¼
X

j

� ge

4c
3 p̂p

2

j
~BB � ŝsj ð32:10Þ

Finally, in order to obtain gauge-invariant results, “gauge correction” operators
(nuclear spin–orbit ĤHdia

SOðNÞ, 2–e SO ĤHdia
SOð2eÞ, and 2–e SOO ĤHdia

SOO) must also be
included. These terms are sometimes called “diamagnetic” contributions, following
the convention used in NMR literature [19]. The explicit form of the diamagnetic
operators can be obtained by replacing the electron momentum operator (p̂pj) in
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field-free SO operators (32.6), (32.8), and (32.9) by the vector potential contribution
due to the magnetic field (minimal coupling [33]):

p̂p
j
! 1

c
~AA ~rrj

� �
¼ 1

2c
~BB�~rrj ð32:11Þ

where the Coulomb gauge has been used for the magnetic field.
A succinct physical interpretation of Eqs. (32.6) – (32.10) was given by Pickard

and Mauri [25]: “The spin–other-orbit correction ... describes the screening of the external
field B by the induced electronic currents, as experienced by the unpaired electron. The
unpaired electron itself is not at rest and in the reference frame of the unpaired electron the
electric field due to the ions and to the other electrons is Lorentz transformed so as to
appear as a magnetic field. The interaction between the spin of the unpaired electron and
this magnetic field results in the spin–orbit correction ... Finally, the electron Zeeman
kinetic energy correction ... is a purely kinematic relativistic correction.”

The four one-electron operators (ĤHZ, ĤHL, ĤHSOðNÞ, and ĤHdia
SOðNÞ) do not present any

special difficulty in the context of density functional theory. However, a direct evalu-
ation of the matrix elements of the two-electron ĤHSOð2eÞ and ĤHSOO operators (and
their diamagnetic counterparts ĤHdia

SOð2eÞ, ĤHdia
SOO) requires knowledge of the two-parti-

cle density matrix [31], not available in Kohn–Sham DFT [1]. In all practical DFT
calculations, these terms are therefore either neglected, or treated approximately
(see Section 32.3.3).

32.3
DFT Expressions for g-Tensors of Isolated Molecules

In the Kohn–Sham formulation of one- (non-relativistic) and two-component (relati-
vistic2)) density functional theory, the total energy expression is given by [1, 2]:

E
KS ¼

X

i

w
i
j f̂f jw

i

D E
� 1

2

Z
vee ~rrð Þr ~rrð Þd~rr �

Z
vxc ~rrð Þr ~rrð Þd~rr þ Exc ð32:12Þ

In Eq. (32.12), index i runs over all occupied Kohn–Sham (KS) one-particle spin-or-
bitals wi, which are obtained as self-consistent solutions of the eigenequations:

f̂f wi ¼ eiwi ð32:13Þ

The Kohn–Sham–Fock operator f̂f , including the principal terms relevant for the g-
tensor calculations, is given by:
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2) Although four-component Dirac–Hartree–Fock
calculations of g-tensors of atoms and mole-
cules have been reported [32, 34], we are not
aware of any four-component molecular DFT
calculations of this property. Therefore, we will
not consider four-component density func-

tional theory approaches presently. Because
spin–orbit coupling is an integral part of the
Dirac equation, the g-tensor will appear as a
first-order perturbation with respect to the
magnetic field [26, 32], similar to the two-com-
ponent techniques.



32.3 DFT Expressions for g-Tensors of Isolated Molecules

f̂f ¼ T̂T þ vext þ vee þ vxc þ ĥhSO þ ĥhZ þ ĥhL þ ĥh
dia

SO ð32:14Þ

The terms ĥhZ and ĥhL are the one-electron spin- and orbital- Zeeman operators,
respectively (see Eqs. (32.4) and (32.5)). The functionals Exc and vxc are, respectively,
the exchange-correlation (XC) energy and XC potential. At least in principle [2],
these functionals may incorporate the dependence on spin-densities rr, spin-cur-
rent densities~jjr, and KS orbitals (for “exact exchange” [35] and “s-dependent” [36]
functionals). Operators ĥhSO and ĥhdia

SO are effective, one-electron operators, intended
to represent the spin–orbit coupling and the SO gauge correction. Their explicit
form will be given in Section 32.3.3.

In the familiar, non-relativistic case, the non-interacting kinetic energy operator T̂T
is given by:

T̂T
NR ¼ 1

2
p̂p

2 ð32:15:1Þ

For the zeroth order regular approximation (ZORA) [37–39] it is:

T̂T
ZORA ¼ p̂p � c

2

2c
2 � veff

p̂p ð32:15:2Þ

where veff is the effective one-electron potential. Finally, for the two-component
Douglas–Kroll (DK) method [40–42], the non-interacting kinetic energy is given by:

T̂T
DK ¼ c p̂p

2 þm
2
c

2
� �1=2

ð32:15:3Þ

In the non-relativistic case, and for the existing ZORA implementations, the exter-
nal scalar potential vext and electron–electron interaction potentials vee are given by
the Coulomb law expressions:

vext ~rrð Þ ¼ �
X

A

ZA

~rr �~RRA

���
���

ð32:16Þ

vee ~rrð Þ ¼
Z

r ~rr¢ð Þ��~rr �~rr¢
�� d~rr ¢ ð32:17Þ

In the Douglas–Kroll approach, vext is replaced by a rather complicated expression
[40], which is beyond the scope of this review. (See Ref. [43] for a critical comparison
of ZORA, DK, and other relativistic approaches).

Because of the small energy scale of the EPR transitions (even in the high-field,
150 GHz F-band spectra, typical separation between EPR energy levels is below
0.001 eV [3]), the field-dependent terms are best treated as a perturbation. For the
spin–orbit coupling, the situation is less clear. For light nuclei, the spin–orbit cou-
pling is quite weak (e.g. the 3P2 and 3P1 levels in atomic oxygen are split by only
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0.02 eV), which appears to indicate perturbative treatment (however, also see Section
32.4.2). Already for copper, spin–orbit splitting becomes comparable to two-electron
interaction (in free Cu+2 ion, the 2D5/2 and 2D3/2 levels are split by 0.26 eV). The SO
splittings increase by another order of magnitude for 5d transition metals, and
heavier elements, making the perturbational treatment of the SO operators in such
systems questionable.

As a result, two distinct approaches to the calculation of g-tensors have emerged:
in two-component approaches, the spin–orbit coupling is treated variationally, with
the g-tensor calculated as a first derivative of the energy. In one-component meth-
ods, both the magnetic field and the SO coupling are treated as perturbations, lead-
ing to a second-order g-tensor expression. The conceptually simpler first-order
approach will be examined first, followed by the mathematically more involved sec-
ond-order method.

32.3.1
EPR g-Tensor as a First-Order Property (Two-Component Methods)

A two-component g-tensor treatment is not new in DFT. The g-tensor was already
calculated as a first-order property of a two-component, spin–orbit coupled DFT
wavefunction by Case back in 1985 [8, 44]. More recently, it has been implemented
in ADF [45, 46] by van Lenthe et al. [20] and in PARAGAUSS [47] by Neyman et al.
[26]. Perhaps the clearest exposition of this technique was given by Jayatilaka [15],
although not in the context of density functional theory.

In molecular, two-component relativistic DFT calculations, Kohn–Sham orbitals
are given by the expansion over basis functions:

wi ¼ w
a

i

��ai þ w
b

i

��bi ð32:18Þ

w
a

i
¼
X

l

C
a
livl ð32:19Þ

w
b

i ¼
X

l

C
b
li vl ð32:20Þ

where the coefficients Ca
li and Cb

li (and therefore the spatial parts wa
i and wb

i , asso-
ciated with aj i – and bj i –spin components) are allowed to become complex. These
coefficients are determined through a self-consistent solution of the eigenequations:

F
aa

F
ab

F
ba

F
bb

� �
C

a
i

C
b
i

� �
¼ ei

S 0
0 S

� �
C

a
i

C
b
i

� �
ð32:21Þ

where S is the matrix of overlap integrals between the basis functions, and F are the
matrix elements of the Kohn–Sham–Fock operator (Eq. (32.14)), calculated in the
absence of the magnetic field. For field-independent basis functions, the derivative
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of the total energy with respect to magnetic field strength can then be calculated
using the Hellmann–Feynman theorem [15]:

Xocc

i

wi

��� @
@B

ĥhZ þ ĥhL þ ĥh
dia
SO

� � ���wi

� �
¼ @E
@B
¼ ~SS

2c
~nn �G � ~nn
� �1=2

ð32:22Þ

(The factor c–1 on the right-hand side of Eq. (32.22) is often absorbed in the defini-
tion of the Zeeman operators ĥhZand ĥhL). In the absence of symmetry, the derivative
has to be evaluated at six different orientations of the magnetic field [15]. This fully
determines the symmetric tensor G = g · gT (see Eq. (32.2)).

Evaluation of the derivative in Eq. (32.22) requires that the Kohn–Sham orbitals
are perturbation-adapted3) [15], which does not place any restrictions on the form of
the wavefunction, but may require several, independent SCF calculations, one for
each orientation of the magnetic field. While this is straightforward to achieve in ab
initio calculations, a peculiar practical complication arises in spin-density functional
theory. In the two-component approach, spatial components of the spin operator do
not commute with the Hamiltonian. Therefore, if the spin-density is defined in anal-
ogy to one-component techniques (the so-called ”collinear” approach [48, 49]), by:

r
a�b
¼ 2
Xocc

i

w�i ŝsz wi ð32:23Þ

the spin-densities, and hence the exchange-correlation potential, become orienta-
tion-dependent. In turn, this leads to orientational dependence of the total energy,
of the order of 0.05 eVatom–1 [48], so that Eq. (32.22) can no longer be applied with
confidence.

The problem can be overcome within the “non-collinear” spin-density functional
theory, which arises naturally within relativistic DFT [50] (Also see Ref. [49] for a
recent review). In the non-collinear approach, the spin-density is defined as the
magnitude of the local magnetization vector:

r
2

a�b
¼
X

r¼x;y;z

2
Xocc

i

w
�
i
ŝsr w

i

 !2

ð32:24Þ

Definition of Eq. (32.24) is rigorously rotationally invariant, and thus presents no
difficulties with Eq. (32.22).

Practical implementation of Eq. (32.24) requires somewhat tedious algebra, par-
ticularly if gradient or higher terms are included in the exchange-correlation poten-
tial [48]. Instead, a constraint is commonly placed on the spatial part of the Kohn–
Sham orbitals, by requiring that the orbitals appear in conjugate pairs, connected by
time-reversal symmetry (Kramers pairs) [20, 26]:
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3) A simple way to guarantee that the final SCF
orbitals are perturbation-adapted is to perform
the SCF procedure in the presence of a weak

magnetic field, which is gradually switched off
as convergence is approached [15].
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i;1
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i
aj i þ w
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i
bj i
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i;2
¼ � w
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�

aj i þ w
a

i

� ��
bj i

ð32:25Þ

Contributions to Eq. (32.22) from fully occupied Kramers pairs will vanish, so that
only the singly occupied molecular orbital (SOMO) will appear on the left-hand side
of Eq. (32.22). For a spin-restricted calculation with one unpaired electron (~SS ¼ 1=2),
the requirement of perturbation-adapted orbitals can be removed, by treating the
singly occupied Kramers pair with degenerate perturbation theory [31]. To first order
in the magnetic field, the Hamiltonian matrix within the degenerate subspace can
be written as [20, 26]:

F ¼
~BB �F11

~BB �F21

~BB �F12

~BB �F22

 !
¼
X

a¼x;y;z

Ba

F
a
11

F
a
21

F
a
12

F
a
22

 !
ð32:26Þ

where matrix elements F are given by the first derivative of the orbital-, spin-Zee-
man, and diamagnetic spin-orbit integrals over the SOMO Kramers pair, with
respect to the magnetic field:

Fab ¼ F
x
ab ; F

y
ab ; F

z
ab

� 	
ð32:27Þ

F
c
ab ¼ wSOMO;a

�����
@
@Bc

ĥhZ þ ĥhL þ ĥh
dia
SO

� ������wSOMO;b

* +
ð32:28Þ

After writing the effective Hamiltonian of Eq. (32.1) in terms of Pauli matrices r
[31, 33]:

H ¼ 1
4c
~BB � g � ~rrð Þ ¼ 1

4c

X

a¼x;y;z

Ba
gaz gax � igay

gax þ igay �gaz

� �
ð32:29Þ

term-by-term comparison of Eqs. (32.26) and (32.29), for different orientations of
the magnetic field, leads to the final expressions for the g-tensor components [20]:

gkx ¼ 4cRe F
k
21

� �
¼ 4cRe F

k
12

� �

gky ¼ 4cIm F
k
21

� �
¼ �4cIm F

k
12

� �

gkz ¼ 4cRe F
k
11

� �
¼ 4cRe F

k
22

� �
ð32:30Þ

It should be emphasized that, unlike the general result of Eq. (32.22), these expres-
sions are valid only for the case of an effective spin-doublet, treated in the spin-
restricted approximation.
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32.3.2
EPR g-Tensor as a Second-Order Property (One-Component Methods)

In the second-order treatment of the g-tensor, both the magnetic field and spin–orbit
coupling operators are treated as perturbations. With a few exceptions [8, 15, 32],
this is the approach taken by most ab initio studies [12–14, 16, 17], and many early
DFT implementations [6, 7, 9, 10]. In a second-order approach, it is sufficient to
determine the electronic structure up to the first order in either spin–orbit coupling,
or the magnetic field (orbital Zeeman operator ĥL). For practical reasons [19], the
magnetic field is usually chosen as the first perturbation [19, 21–25]. In the simplest
case (all-electron calculation with single gauge origin, no relativistic effects beyond
ĥSO, no current dependence in the exchange-correlation functional, and no admix-
ture of the exact exchange), the g-tensor is then given by [19, 21–25]:

gst ¼ ge dst þ Dg
d
st þ Dg

p
st ð32:31Þ

Dg
d
st ¼ 2c

~SS

Xocc

ri

w
ri

���ĥh
dia
SO; st

���wri

D E
ð32:32Þ

Dg
p
st ¼ 2c

~SS

X

r
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i

Xvirt

a

uai
r;s

wri

��� 1
i

ĥhSO; t

���wra

D E
ð32:33Þ

In Eqs. (32.32) and (32.33), r refers to electron spin (r= a, b), while indices i and a
run over occupied and virtual KS MOs, respectively. Additional, small terms will
appear if further relativistic corrections are considered, or gauge-dependent orbitals
are introduced. The free-electron contribution ge dst arises from the spin-Zeeman
term in the Hamiltonian (which commutes with the zeroth-order Hamiltonian in
this approximation.)

The coefficients ur; s
ai describe the mixing between occupied and virtual Kohn–

Sham MOs, induced by the s-component of the magnetic field. Under the same
assumptions as Eqs. (32.31) – (32.33), they are given by:

u
r; s
ai ¼ 1

er a � er i

wr a

�����
1
i
@ĥhL

@Bs

�����wr i

* +
ð32:34Þ

(The factor 1/i in Eqs. (32.33) and (32.34) appears to ensure that all quantities and
operators are real.) For current-dependent functionals, or for exact-exchange func-
tionals [35], additional terms, dependent on the first-order change in density matrix,
will appear in Eq. (32.34). In the latter case, orbital mixing coefficients have to be
determined as solutions of coupled-perturbed Kohn–Sham (CPKS) equations
[22, 24]. Most of the mathematical aspects, involved in the derivation of the
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Eqs. (32.31) – (32.34) are shared with the DFT approaches to the NMR shielding
tensors, which are discussed in Chapter 6.

Equations (32.32) and (32.33) are derived in the assumption that the operators
ĥhSO; t and ĥhdia

SO; st do not couple spin-orbitals wri from different spin spaces. Satisfying
this assumption requires special treatment of the spin–orbit coupling. The operators
ĥhSO; t and ĥhdia

SO; st are commonly written as:

ĥh
dia
SO; st ¼ @

2
ĥh

dia
SO

@Bs@ ŝst

�����
s¼0; ~BB¼0

ð32:35Þ

ĥhSO; t ¼
@ĥhSO

@ ŝst

���
s¼0

ð32:36Þ

In this case, the “derivatives” with respect to the spin operators, which appear in
Eqs. (32.35) and (32.36) are nothing more than a shorthand notation for the spin-
field reduction procedure, where the axis of spin quantization is chosen to coincide
with each component of the spin operator (ŝx, ŝy, ŝz) in turn. Given this choice
(which is possible because the zeroth order Hamiltonian in one-component ap-
proaches commutes with the one-electron spin operator), the spin-orbitals are auto-
matically perturbation-adapted.

For example, the components of the one-electron nuclear spin–orbit coupling
operator ĥSO(N), t (t= x, y, z):

ĥhSOðNÞ; t ¼
g¢

2c
2

X

A

ZA ŝsq

���~rr �~RRA

���
�3

~rr �~RRA

� �
� p̂p

n o

t
ð32:37Þ

are given in terms of the spin operator ŝsq ¼ ŝsz (corresponding to the direction of
spin quantization), rather than operators ŝsx , and ŝsy, as might have been na�vely
expected from the component-by-component expansion of Eq. (32.6)4).

The paramagnetic contribution Dgp
st can be re-cast in a physically more transpar-

ent [25, 31, 51] form in terms of spin-currents~jjsa and~jjsb, induced by a unit magnetic
field applied along the direction s:

Dg
p
st ¼ 2c

~SS

Z
ĝgSO � ~jj

s

a �~jj
s

b
Þ d~rr

� i

t



ð32:38Þ
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4) It would have been possible to use the straight-
forward expansion of Eq. (32.6) as well, giving
the alternative form of the spin –orbit coupling
operators

~hhSOðNÞ; t¼
g ¢

2c2

P
ZA ŝst

��~rr�~RRA

���3
~rr �~RRA

� 	
�p̂p

� �
t
.

For the components t= x and y, the alternative
SO operators will couple the a- and b-spin KS
orbitals, contrary to the assumptions made in

deriving Eqs. (32.32)–(32.34). In the spin-
restricted approach, this mixing can be accom-
modated by treating each pair of a/b-spin orbi-
tals sharing the same spatial part with degener-
ate perturbation theory. The final working
expressions are then identical to Eqs. (32.31)–
(32.37). It is far from clear how the alternative
SO coupling operators could be treated pertur-
bationally in the spin-unrestricted approxima-
tion.
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r ¼
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ai wri
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ð32:39Þ

The total spin-current is given by~jjr ¼ ~BB � ~jjxr;~jj
y
r;~jjzr

� �
. The operator ĝgSO; t is obtained

from the corresponding spin–orbit coupling operator ĥhSO; t, by removing the electron
momentum operator (which is transferred to the spin-current expression (32.39))
and replacing spin operator ŝz with 1�2. For example, for ĝSO(N):

ĝg
SOðNÞ ¼

g¢
4c

2

X

A

ZA

���~rr �~RRA

���
�3

~rr �~RRA

� �
ð32:40Þ

It should be emphasized that despite the formal similarity to the classical perturba-
tion theory result [12, 52], derivation of Eqs. (32.31) – (32.40) does not rely on sum-
mation over excited states. Their justification is found entirely within the current-
density functional theory (CDFT) [53].

32.3.3
Treatment of the Spin–Orbit Coupling Operator

In a purist view of non-relativistic DFT, both two-electron contributions to the
spin–orbit coupling operator (ĤHSOð2eÞand ĤHSOO) would belong to the exchange-corre-
lation functional, with the spin–other-orbit term ĤHSOO appearing as current depen-
dence of the exchange-correlation potential. Because no sufficiently accurate func-
tionals of this kind have been developed so far (See Ref. [54], and references
therein), practical g-tensor calculations are left with the task of choosing an approx-
imate one-electron operator ĥhSO, suitable for use in Eq. (32.33) (one-component
methods), or within the zeroth-order Hamiltonian (two-component methods).

The simplest approach, widely used in early DFT calculations [6, 9, 10] is to
approximate the total spin–orbit coupling by a modified nuclear spin–orbit operator:

ĥhSO ¼
X

A

nA

���~rr �~RRA

���
� �

ŝs � ~rr �~RRA

� �
� p̂p ð32:41Þ

with the atomic factors nA rð Þ designed to mimic the screening effect of the core elec-
trons. A common choice of nA rð Þ (used by Ref. [22]) is simply:

nA rð Þ ¼ g ¢
4c

2

ZA; eff

r
3 ð32:42Þ

The effective nuclear charges ZA, eff are then adjusted to reproduce experimental spi-
n–orbit term splittings [55]. Relativistic spin–orbit effective core potentials [56] can
be used to a similar effect [21, 25]. These approximations are justified by the fact
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that the spin–orbit coupling is nearsighted, and is dominated by regions of space
close to the nuclei.

A more sophisticated approach based on the same effective-potential idea, makes
use of the observation that the~rr=r3 terms in the nuclear and 2e SO Hamiltonians
(Eqs. (32.6) and (32.8)) are simply the derivatives of the corresponding electron–nuc-
lear and electron–electron interaction potentials. In the one-electron Kohn–Sham–
Fock eigenequations (Eq. (32.13)), these interactions are represented by an effective
one-electron potential:

veff ¼ vext þ vee þ vxc ð32:43Þ

Therefore, the same substitution appears to be justified in the SO coupling operator,
giving:

ĥhSO ¼
g ¢

4c
2 ŝs �

@veff

@~rr
� p̂p

� �
ð32:44Þ

This approximation is used by several implementations [19, 20, 25, 26] and is
expected to give a faithful description of the nuclear and 2e spin–orbit coupling. By
design, it neglects the ĤSOO contribution in the many-electron Hamiltonian, which
is often small, compared to ĤSO(N) + ĤSO(2e) [21, 25] (See Section 32.4.3 and Tab. 32.5
below).

An ingenious suggestion for an approximate treatment of the spin–other orbit
contribution to the g-tensor was given by Pickard and Mauri [25]:

Dg
SOO
st ¼ 1

~SS

Z
B

1;s
t ~rrð Þ ra ~rrð Þ � r

b
~rrð Þ

h i
d~rr ð32:45Þ

where ~BB1;s is the magnetic field due to the induced current, arising from unit mag-
netic field applied in direction s (s= x, y, z):
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� ~rr �~rr¢
~rr �~rr¢j j3

d~rr¢ ð32:46Þ

The ~jj
s

a �~jj
s

b

� �
term in Eq. (32.46) is intended as a self-interaction correction, pre-

venting the unpaired electron from “feeling” its own magnetic field. It still remains
to be seen how this prescription fares in practical calculations in molecules.

Yet another approach to treating the two-electron SO coupling operators is taken
by Malkina and coworkers [21, 24, 57], who step outside density functional theory
and approximate the one-electron matrix elements in Eq. (32.33) by matrix elements
of the two-electron operators ĤSO(2e) and ĤSOO, taken between the non-interacting
Kohn–Sham reference wavefunction Wref, and a single-determinantal wavefunction
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Wi!a
ref obtained by promoting an electron from an occupied KS orbital i to a virtual

orbital a5):

wri ĥhSO

���
���wra

D E
� Wref ĤHSOðNÞ þ ĤHSOð2eÞ þ ĤHSOO

���
���Wi!a

ref

D E
ð32:47Þ

The underlying assumption of this approach is that Wref is a good approximation to
the (unknown) wavefunction Wtrue of the interacting system. Direct evaluation of
the right-hand side of Eq. (32.47) can be computationally very demanding [21]. Very
similar results can be obtained by exploiting the locality of the SO operators, using
the atomic mean field approximation (AMFI) introduced by Hess et al. [59] and
popularized by Schimmelpfennig [60].

32.3.4
Gauge Invariance of the g-Tensor

The dependence of magnetic operators on the choice of the origin of the coordinate
system (or more generally, on the gauge of the vector-potential) is often the major
stumbling block in calculations of magnetic properties [61]. Practical experience
with ab initio and DFT calculations so far [12, 14, 15, 20] indicates that the gauge
dependence of the g-tensors is usually small, so that the common prescription [62]
of placing the gauge origin at the centroid of the electron charge is sufficient to
obtain accurate results in small molecules. As noted by Kaupp and co-workers [63],
an exception to this rule of thumb can occur in situations where a delocalized radical
exhibits a g-tensor with two similar principal components. In this case, the orienta-
tion (but not the magnitude) of the principal components becomes quite sensitive to
the choice of the coordinate origin, making a gauge-independent treatment manda-
tory.

In larger systems, all common approaches to mitigation of the gauge dependence
(gauge-including atomic orbitals, GIAOs [19, 20, 63]; individual gauge origin for lo-
calized orbitals, IGLO [21], and gauge-including projector-augmented waves,
GIPAW [25, 64]) give very similar results for the g-tensors. At the same time, the
individual implementations vary greatly, depending on the choice of zeroth-order
Hamiltonian and treatment of the spin–orbit operators. These details can be found
in the original publications [19–21, 24, 25] and need not be discussed here (also see
Chapter 6 by van W�llen). On aesthetical grounds, the rigorously gauge invariant
GIAO and GIPAW approaches are to be preferred over IGLO, which may suffer
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5) The original publications by Malkina and cow-
orkers [21, 57] give the 2-electron SO interac-
tion integrals as “ÆWr,i‰ĤSO(2e) + ĤSOO‰Wr,aæ”,
with Wr,i and Wr,a defined as one-electron
Kohn–Sham orbitals, and N-electron operators
ĤSO–e, ĤSOO given by Eqs. (32.8) and (32.9).
The integration over the remaining (N-1) elec-

tronic coordinates is thus left unspecified.
From the close agreement of the results of ref.
[21] to other DFT and ab initio implementa-
tions, as well as from the approximate AMFI
expressions, given in Refs. [57, 58], Eq. (32.47)
appears to be the only reasonable interpreta-
tion of the formula above.



from artifacts, introduced due to arbitrariness of the underlying localization proce-
dure.

32.3.5
Practical Implementations

A number of DFT g-tensor implementations have been reported in the literature
[19–25]. The salient features of these implementations are summarized in Table
32.1. The implementations fall into two major classes. Two-component codes (using
ZORA in ADF [20] and Douglas-Kroll in PARAGAUSS [26]) include spin–orbit cou-
pling effects to all orders, and can be applied to studies of radicals with arbitrarily
large Dg shifts. However, both the ADF and PARAGAUSS implementations invoke
the spin-restricted approximation (Eq. (32.30)), which reduces their usefulness in
cases where spin-polarization is important. In their current form, two-component
techniques are also limited to treating effective doublet states, and are somewhat
restricted in the choice of the XC functionals.

One-component methods, on the other hand, can treat radicals of arbitrary multi-
plicity (even if not ”officially” implemented, the required change to the code is trivial
[22, 23]). Due to the incorporation of spin-polarization terms, these methods tend to
be more accurate for radicals with small Dg values. At the same time, truncation of
the SO contributions at the first order leads to some qualitative failures (See Section
32.4). One- and two- component approaches are therefore complementary. In this
respect, the ADF [45, 46] program package, which incorporates both one- [19, 23]
and two- component [20] implementations is particularly attractive for practical ap-
plications.

The implementation of Pickard and Mauri [25] also deserves a special mention.
This is the first, and so far the only, g-tensor program, which supports calculations
on defects in periodic solids. In principle, g-tensors of solid defects can also be mod-
eled with cluster models, using standard molecular codes [67]. However, the cluster
size dependence of the calculated g-tensors is usually severe [67, 68], which makes it
difficult to obtain converged results. This is also one of the only two implementa-
tions to treat the spin–orbit coupling operator completely, including spin–other-orbit
terms. (The first complete implementation was by Malkina et al. [21, 24]). Unfortu-
nately, Pickard and Mauri did not publish any results including the DgSOO correction
for small radicals, making comparison of the two approaches impossible.
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32.4
Numerical Performance of the DFT Approaches

Before briefly examining the factors affecting the accuracy of DFT g-tensors, it is
instructive to see how DFT fares under the optimal circumstances: for light main
group radicals with no close-lying excited states. This situation is illustrated by the
DFT results for the g-shift component perpendicular to the main symmetry axis
(Dg?) in ten high-spin, diatomic radicals (3R ground state), which are collected in
Table 32.2. Highly accurate, ab initio results for this set were previously obtained by
Engstrom et al., using correlated CASSCF wavefunctions [16]. Experimental esti-
mates of the gas-phase Dg? values are available from the rotational spectra, using
Curl�s relation [5]. These values are compared with the DFT and ab initio results in
Fig. 32.1. With the exception of the three sulfur-containing radicals (SO, SH+, S2),
DFT results are in admirable agreement with experiment. Even for the more diffi-
cult sulfur radicals, DFT agrees with experiment to within 20%, the accuracy
expected from Curl�s relation [5]. At least in this case, DFT is clearly competitive
with much more laborious CASSCF calculations.
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Table 32.2 Comparison of DFT and CASSCF results for Dg^ tensor components (in parts per thou-
sand, ppt), in diatomic main-group radicals with 3R ground states.

Radical Experimenta CASSCFb DFTc

O2 2.9 2.8 3.3
SO 3.6 4.1 4.8
S2 14.5 11.2 12.6
NH 1.7 1.4 1.9
NF 2.0 1.9 2.2
NCl 5.4 4.1 5.6
PH 4.5 4.0 4.8
PF –1.6 –0.6 –1.0
OH+ 4.4 4.0 5.0
SH+ 9.0 7.8 11.2
Correlation coefficient 0.993 0.974
Correlation slope 0.749 0.909
Correlation intercept 0.6 0.8
RMS error 1.3 1.0

a) Experimental values are estimated from gas-phase spin-rotational
constants given in Ref. [16].

b) CASSCF results for the large ”CAS2” active space and TZ2P-quality
basis set are cited from Ref. [16].

c) DFT results for the VWN LDA functional and TZP-quality basis set
are cited from Ref. [23]. For PF, OH+, and SH+, which were not
treated in Ref. [23], g-tensors were calculated using the program of
Refs. [19,23], VWN functional, and an all-electron Slater-type TZ2P
basis set.



32.4.1
Exchange-Correlation Functionals and Basis Sets

For many magnetic properties, calculated values are rather sensitive to the choice of
the basis set [61], either in the vicinity of the nuclei [69], or in the diffuse region [70].
Happily, the g-tensor is essentially a valence and semi-core property [18, 27], and is
relatively insensitive to the choice of the basis set [19, 21, 23]. Quite modest split-
valence basis sets, with one polarization function in the valence region, already pro-
duce reasonable results, with polarized triple-f basis sets being close to saturation
[19, 21], both for the Slater and Gaussian-type basis sets. Any improvements from
further expansion of the basis set appear to be swamped by the residual errors due
to other approximations (see below). In d-block transition metal compounds, addi-
tion of f-type polarization functions appears unnecessary as well [23]. This weak
dependence of the calculated Dg values on the basis set choice is illustrated in Fig.
32.2.

A cautionary note applies to elements with large semi-cores [71]. In this case, an
adequate description of the core polarization is essential for obtaining reliable
results. For example, freezing the 2p shell of the Al atom in aluminum oxide AlO
(2R), leads to Dg? value of –0.1 parts per thousand (ppt), completely out of line with
the experiment (–2.2 ppt). Unfreezing the 2p shell leads to a much more reasonable
value of –2.1 ppt.

The influence of the exchange-correlation functional on the calculated g-tensor
components has received a great deal of attention [21–24, 51, 65]. A particularly
impressive study, covering all major classes of functionals, was undertaken by
Arbuznikov et al. [65]. In principle, due to the close analogy that exists between the
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NMR shielding tensors and g-tensors [11, 19], many of the observations on the func-
tional dependence of the former [11, 72, 73] also apply to the latter [27]. In particular,
g-tensors of main-group radicals are, by and large, insensitive to the choice of the
XC functional. In such radicals, common gradient-corrected functionals perform
identically [21, 23], and do not represent a major improvement over the local density
approximation (LDA) results [21–24]. For example, for a set of 19 high-spin, main
group radicals [23], BP86 and RPBE functionals lead to root-mean-square (RMS)
deviations from experimental Dg? values of, respectively, 6.2 and 6.3 ppt. Main-
group results obtained with hybrid [22, 24, 65], meta-GGA [65], or model potential
[65] functionals are also similar. For the main-group test set of Arbuznikov et al.
[65], all functionals led to standard deviation from experiment of »0.5 ppt, and iden-
tical correlation coefficients (0.993–0.994). As usual, an exception is furnished by
radicals with close-lying excited states (such as H2O+), which do show a significant
dependence on the choice of the exchange-correlation functional. The latter example
has been analyzed in detail by Kaupp et al. [24].

In transition metal radicals, the differences between functionals become more
pronounced, but are still rather small compared to deviations from the experiment
[21–24, 51, 65]. The huge variety in the electronic structure and bonding situation in
transition metal complexes also means that the choice of the ”best” functional is
strongly system-dependent. For example, Patchkovskii and Ziegler found essentially
no difference between LDA and GGA functionals for 15 small nd1 (n=3,4,5) complex-
es [51] (RMS error of 56 ppt for VWN LDA, vs. 57 ppt for BP86 GGA), or for 28 high-
spin diatomic radicals [23]. Kaupp and co-workers [24], studying a more diverse set
of twelve 3d transition metal complexes, concluded that GGA functionals are some-
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what more6)reliable (correlation coefficient of 0.972 for GGA, vs. 0.963 for LDA).
The hybrid functionals were found to give the best results (correlation coefficient of
0.981 for B3PW91). A similar conclusion was reached by Neese [22], who examined
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Table 32.3 Influence of the exchange-correlation functional, spin–orbit coupling, and spin polariza-
tion treatment on the calculated g-tensor components (in ppt) for a representative transition metal
complex (TiF3).

ĥSO Treatment Program D g|| D g^ Ref.

Expt.a –3.7 –123.7

Spin-restricted approaches
LDA (VWN) 2-component,

effective (Eq. (32.44))
ADF –1.4 –84.8 [20]

GGA (BP86) 2-component,
effective (Eq. (32.44))

ADF –1.0 –79.7 [20]

GGA (BP86) 1-component,
effective (Eq. (32.44))

ADF +0.1 –73.3 [20]

GGA (BP86) 2-component,
effective

PARAGAUSS –0.3 –45.3 [26]6)

One-component, spin-unrestricted approaches
LDA (VWN) effective (Eq. (32.44)) ADF –1.6 –60.7 [66]
LDA (VWN) AMFI ReSpect –1.2 –50.9 [24]
GGA (BP86) effective (Eq.

(32.44))
ADF –1.7 –42.8 [20]

GGA (BP86) AMFI deMon-EPRb –1.1 –26.6 [21]
GGA (BP86) AMFI ReSpect –1.3 –36.0 [24]
GGA (BP86) effective (Eqs.

(32.41), (32.42))
ORCA –0.9 –30.7 [22]

meta-GGA (FT98) AMFI ReSpect –1.2 –31.2 [65]
meta-GGA (PKZB) AMFI ReSpect –1.3 –29.1 [65]
hybrid (B3LYP) effective (Eqs.

(32.41), (32.42))
ORCA –1.1 –41.8 [22]

hybrid (B3PW91) AMFI ReSpect –1.4 –48.8 [24]
hybrid (BHPW91) AMFI ReSpect –1.4 –71.4 [24]
SIC-VWNc effective (Eq. (32.44)) ADF –1.9 –123.5 [66]
SIC-revPBEc effective (Eq. (32.44)) ADF –1.2 –71.4 [66]

a) In neon matrix; cited from Ref. [20].
b) The large difference in the calculated value Dg^, compared to later

AMFI calculations [24], arises from the use of an inadequate fitting
set [24].

6) The PARAGAUSS result, obtained in the spin-
restricted approximation, is not consistent with
other spin-restricted values for this radical.
Because the DK treatment [26] is closely related

to the ZORA approach [20], and produces similar
results in all other cases, this likely indicates an
unnoticed technical problem with the Douglas–
Kroll calculation of the TiF3 g-tensor in Ref. [26].



B3LYP and PBE0 hybrid functionals. Somewhat disappointingly, in transition metal
complexes meta-GGA functionals appear to be inferior to both hybrids and standard
GGA functionals [65].

A stark example of the sensitivity of transition metal radicals to the choice of the
exchange-correlation functional and treatment of spin-polarization is given by one
of the most studied transition metal radicals, TiF3 [10, 20–22, 24, 26, 65, 66]. The g-
tensor components, calculated for this radical with different XC functionals, are
summarized in Table 32.3. From the results of spin-restricted calculations [10, 20], it
may appear that this radical is, at least qualitatively, well described by density func-
tional theory. Spin-restricted LDA recovers about 2/3 of the experimental Dg? shift
(–85 ppt vs. –124 ppt in experiment). However, this is an artifact of the spin-
restricted treatment. Removing the spin-polarization constraint leads to an LDA
Dg? shift of only half of the experimental value. Adding gradient, laplacian, or
kinetic energy corrections deteriorates the result even further, so that BP86 (gradi-
ent-corrected), FT98 (laplacian meta-GGA), and PKZB (kinetic energy density meta-
GGA) functionals all recover only about one third of the experimental Dg? value (ca.
–30 ppt) [65]. Adding an admixture of the exact exchange improves the result to
about the spin-unrestricted LDA level (B3PW91: –49 ppt; BHPW91: –71 ppt). At the
same time, functionals with a high exact exchange fraction (BHPW91) begin to suf-
fer from spin contamination, which significantly deteriorates the overall correlation
with experiment [24]. A ray of hope for such cases is provided by the recently intro-
duced self-interaction corrected functionals [74]. These functionals appear to be at
least as successful in reproducing ”difficult” g-tensors as hybrid functionals [66],
without suffering from the undesirable spin-contamination effects.

32.4.2
Relativity and Spin-Polarization

An unpleasant dilemma, currently faced by all practical DFT calculations of the g-
tensors, is that spin-polarization and high-order spin–orbit coupling effects cannot
be treated at the same time. The problem is not new [8], and is closely related to the
fundamental difficulty in defining spin-density in two-component approaches (see
Section 32.3.1). While the issue is widely recognized and acknowledged [20, 23, 26,
27], we believe that its practical consequences have received much less attention
than they deserve.

Table 32.4 collects calculated g-tensor components (Dgjj and Dg?) for 21 linear
radicals with 2R ground states, obtained with one- [19] and two-component [20] ap-
proaches. Because we used the same geometries, same functional, same approxima-
tion for the spin–orbit coupling operator, and basis sets similar to the original two-
component ZORA study of this series [75], all major differences are expected to
come from the treatment of spin polarization and high-order SO coupling effects.

For the parallel component Dgjj, the qualitative difference of the two approaches
can be clearly seen in Fig. 32.3. While the two-component ZORA calculations are
reasonably successful in reproducing experimental trends (correlation slope of
0.918, with root of the mean square error of 5 ppt), one-component results bear no
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Table 32.4 Performance of one- and two-component DFT methods for the Dg tensor components
(in ppt) for diatomic 2R radicals, in comparison with experiment and four-component Dirac–Har-
tree–Fock calculations.

Radical Experimenta ZORAa SZb DHFc

Dg|| Dg^ Dg|| Dg^ Dg|| Dg^ Dg|| Dg^

ZnH –2.0 –17.1 –0.4 –24.9 –0.0 –19.7 –2.1 –1.8
CdH –5.3 –49.9 –2.4 –71.7 –0.1 –55.9 –0.3 –17.2
HgH –26.3 –174.3 –30.0 –251.8 –0.1 –158.9
ZnF –0.3 –6.3 –0.3 –6.8 –0.1 –6.3 –0.4 –43.7
CdF –1.3 –17.3 –0.9 –21.4 –0.1 –20.0
HgF –9.3 –41.3 –14.0 –66.1 –0.2 –30.1
ZnAg 0.2 –11.8 –0.3 –21.8 –0.0 –16.7
CdAg –0.9 –31.2 –1.3 –51.3 –0.0 –40.3
HgAg –6.5 –88.7 –10.4 –143.8 –0.1 –93.8
CdCN –34.2 –1.5 –40.4 –0.1 –36.7
HgCN –123.4 –18.4 –137.2 –0.2 –86.9
ScO –0.5 –0.5 –0.1 0.1 –0.0 –0.8 0.0 –0.5
YO –0.7 –0.2 –0.2 0.6 –0.0 1.0 –0.2 –1.8
LaO –2.3 –3.3 –0.7 –6.3 –0.0 –3.3 –0.2 –1.7
BO –0.3 –1.7 –0.1 –2.5 –0.0 –2.2 –0.1 –1.4
AlO –0.3 –2.2 –0.3 0.8 –0.1 –2.1d

GaO –3.3 –34.3 –6.0 –88.4 –0.2 –37.4
InO –27.3 –192.3 –45.3 –277.5 –0.2 –121.9
BS –0.7 –8.1 –0.5 –12.4 –0.1 –9.9 –0.1 –7.5
PdH –37.3 290.9 –27.7 294.8 –0.2 248.3 –64.6 595.0
RhC 1.6 51.8 –2.0 50.3 –0.1 49.8
Data points (All values) 19 21 19 21 9 9
Correlation coefficient 0.918 0.985 0.590 0.987 0.991 0.988
Correlation slope 1.067 1.193 0.004 0.822 1.763 1.961
RMS error 5.1 31.8 12.5 20.3 9.3 102.9
Data points (‰Dg^‰<100 ppt)e 17 17 8
Correlation coefficient 0.965 0.991 0.235
Correlation slope 1.459 1.023 0.210
RMS error 21.2 4.4 18.4

a) Experimental and two-component ZORA results, obtained with the
BP86 exchange-correlation functional and all-electron QZP basis
set, are cited from [75].

b) Ref. [19] and this work. One-component DFT results for the BP86
exchange-correlation functional were calculated using the program
of Ref. [19], and geometries of Ref. [75]. Standard ADF basis set of
TZ2P quality was used on hydrogen through gallium. Heavier
nuclei were treated using TZP basis set. Frozen cores were used on
Sc and Zn (2p), Ga (3p), Y through Cd (3d), In (4p), La and Hg (4d).
Scalar Pauli relativistic corrections were applied self-consistently.

c) Four-component Dirac–Hartree–Fock results, using basis sets of
double-f quality, are cited from Ref. [32].

d) A different Dg^ value of –0.1 ppt, calculated using the same
approach, was reported previously [19]. The discrepancy arises from
the use of an excessively large 2p core in Ref. [19].

e) Data points restricted to the range of Dg^ values where the first-
order treatment of spin–order coupling operator may be expected to
be adequate.



relation to experiment at all (slope: 0.004, RMSE: 13 ppt). The reason for this failure
is qualitatively simple [5, 75]. In a sum-over states model using a one-component
reference, Dgjj is given by [5]:

gjj ¼ ge � 2n
X

n

0 L̂Lz

�� ��n
D E

n L̂Lz

�� ��0
D E

En � E0
� 2n

2X

n

0 L̂Lx

�� ��n
D E���

���
2

En � E0ð Þ2
þ ::: ð32:48Þ

where L̂Lz is the angular momentum operator, n is the effective spin–orbit coupling
constant (compare Eq. (32.42)), and summation is over all electronically excited
states.

For radicals with an nR ground state, L̂Lz 0j i vanishes, so that the term in the first
order of n is zero. Because this is the only contribution that is treated in one-compo-
nent approaches, these methods give zero for Dgjj in 2R radicals. (In practice, small
non-zero contributions will still arise from Zeeman kinetic energy correction and
gauge terms. These terms are of no practical consequence in this case.) On the
other hand, the two-component methods, which treat the spin–orbit coupling opera-
tor variationally, include all terms in Eq. (32.48), and thus lead to a qualitatively cor-
rect result for Dgjj.

A similar correlation plot for the perpendicular component Dg? is given in Fig.
32.4. In this case, the leading contribution to Dg is in the first order in spin–orbit
coupling and is treated by both approaches. Consequently, both methods show a
reasonable agreement with experimental values. At the same time, the spin-polar-
ized, one-component results (corr.: 0.987; RMSE: 20 ppt) are clearly superior to the
two-component values (corr.: 0.985; RMSE: 32 ppt). The difference is particularly
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pronounced for the small Dg? shifts ( Dg?j j< 100 ppt), where one-component num-
bers are in quantitative agreement with experiment (RMSE: 4 ppt), while the two-
component results show significant scatter (RMSE: 21 ppt), and systematically over-
estimate the shifts (correlation slope 1.46, vs. 1.02 in the one-component treatment).
For larger g shifts, higher-order spin–orbit contributions are expected to become
more important, so that one-component results start to deteriorate. Therefore, it
appears that both spin-polarization and high-order spin–orbit terms are important
and must be considered simultaneously, in order to obtain accurate results.

In passing, we also note that treatment of the electron correlation effects is essen-
tial for obtaining qualitatively correct g shifts in these radicals. Consider the four-
component Dirac–Hartree–Fock (DHF) results, which are available for nine radicals
in this series [32] (Tab. 32.4). Once the extreme outlier PdH (expt. Dg? 291 ppt;
DHF: 595 ppt) is excluded from the statistics, the DHF results for this data set are
uncorrelated with the experimental values (correlation coefficient of 0.235), and
have no predictive power.

32.4.3
Approximations Used for the Spin–Orbit Coupling Operator

The final issue we would like to consider in this chapter is the dependence of the
calculated g-tensor components on the choice of the approximate treatment of the
spin–orbit coupling operator. A certain controversy [21, 23, 24] exists on the subject
of the best approximation for this operator. Rather than going into the detailed argu-
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ments in favour of the effective potential [23] or Wref /AMFI [21, 24] approaches, we
will simply examine the results, obtained with three different approximations for
the spin–orbit coupling operator [19, 22, 24] for a number of small radicals (Table
32.5).

Despite the small differences in the calculated g-tensor components, which may
favor one of the methods over the other, the calculated g-tensor components are of
roughly the same quality. For this set of radicals, the AMFI approach of Malkina et
al. [21, 24] and the empirically parametrized SO operator used by Neese [22] are
clearly superior to the effective potential approach of Schreckenbach and Ziegler.
The likely reason is the inclusion of the spin–other-orbit terms, either explicitly [21,
24] or through the empirical parameters [22, 55]. This drawback of the non-empiri-
cal effective potential approach may disappear if the simple DgSOO correction of
Pickard and Mauri [25] (Eq. 32.45) is included.

Compared to the remaining deviations from experiment, the differences between
the approaches to the SO coupling operator become even less significant for radicals
containing heavier nuclei, and particularly transition metal complexes. This is illus-
trated in Table 32.6, using the example of the d1 CrOCl4

– radical. In this system, the
effective potential [19] and AMFI [21, 24] results for Dgi differ by 0.4 ppt, compared
to 28 ppt deviation from the experimental value. The Dg^ components agree to with-
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Table 32.5 Influence of the spin–orbit coupling treatment on calculated Dg values (in ppt) in light
main-group radicals. All calculated values use BP86 GGA functional.

Radical Dg component Effectivea Effectiveb AMFIc Expt.d

H2O+ Dgxx 0.1 –0.1 –0.2 0.2
Dgyy 13.8 10.2 10.9 18.8
Dgzz 5.1 3.7 3.8 4.2

HCO Dgxx 2.7 2.2 2.3 +1.5
Dgyy –0.3 –0.2 –0.2 0.0
Dgzz –9.5 –7.4 –7.7 –7.5

C3H5 Dgxx –0.1 –0.0 –0.0 0.0
Dgyy 0.7 0.5 0.5 0.4
Dgzz 0.8 0.6 0.6 0.8

NO2 Dgxx 4.2 3.4 3.6 3.9
Dgyy –13.7 –11.2 –11.4 –11.3
Dgzz –0.8 –0.7 –0.6 –0.3

NF2 Dgxx –0.7 –0.6 –0.5 –0.1
Dgyy 7.6 6.2 6.5 6.2
Dgzz 4.7 3.9 5.1 2.8

a) Ref. [19], using Eq. (32.44).
b) Ref. [22], using Eqs. (32.41), (32.42).
c) Ref. [24]. Somewhat different results have been reported for the

same SO treatment earlier [21].
d) Experimental values cited from Refs. [19, 24]. For NO2, Dgxx values

from +3.2 to + 3.8; Dgyy values from –9.1 to –11.7, and Dgzz values
from –2.7 to +0.7 were also reported, see Ref. [19] for the refer-
ences.



in 2.7 ppt, compared to 3.0 ppt (effective) or 5.7 ppt (AMFI) deviation from experi-
ment. The individual g-tensor contributions in this molecule are also in reasonable
agreement. In fact, some of the more spectacular examples [21] of the differences
between the Wref/AMFI and the effective potential approaches seem to arise from
the use of an inadequate auxiliary fitting set in the original publication [24]. Thus,
the original AMFI results for CrOF4

– (Dgi= –13.6 ppt; Dg^ = –21.8 ppt [21]) were
later corrected [24] to Dgi= –17.1 ppt, Dg^ = –25.8 ppt, bringing them into better
agreement with the effective potential g-tensor (Dgi= –19 ppt; Dg^ = –29 ppt [47]),
and a somewhat better agreement with experiment (Dgi= –43 ppt; Dg^ = –34 ppt
[47]). A similar correction has also been made for TiF3 (see Tab. 32.3).
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Table 32.6 Dependence of the individual contributions to the calculated Dg tensor (in ppt) in
CrOCl4

– on the treatment of the SO coupling operator.

Contribution
Dgi Dg^

Effectivea AMFIb Effectivea AMFIb

DgGC(1e)
c +0.6 +0.5 +0.5 +0.5

DgGC(2e)
d –0.4 n/c –0.3 n/c

DgRMC
e –0.6 –0.7 –0.6 –0.7

DgSO-N
f +15.9 +20.9 –34.0 –32.8

DgSO-2e
g +3.1 –0.3 +12.5 +13.4

DgSOO
h n/c –0.1 n/c +1.6

Total +18.6 +20.3i –22.0 –18.1i

Expt. –10.0 –25.0

a) Calculated using program of Schreckenbach and Ziegler [19] using
all-electron Slater-type basis of TZP quality, at optimized VWN geo-
metry [51].

b) Cited from Ref. [21].
c) 1-electron gauge correction terms.
d) 2-electron gauge correction terms.
e) Contributions due to relativistic Zeeman mass correction term (Eq.

(32.10)).
f) Contributions due to nuclear spin–orbit coupling operator (Eq.

(32.6)).
g) Contributions due to two-electron spin–same orbit coupling opera-

tor (Eq. (32.8)).
h) Contributions due to two-electron spin–other orbit coupling opera-

tor (Eq. (32.9)). This contribution is not included in program of Ref.
[19].

i) Calculations using the same functional and SO treatment in
ReSpect give: Dgi = +18.2 ppt, Dg^ = –19.3 ppt [24], in significantly
better agreement with the results of effective potential treatment.



32.5
Summary and Outlook

We have examined density functional theory approaches to calculation of the EPR
g-tensors, trying to emphasize that the existing techniques are fundamentally much
the same. Moreover, we have attempted to underscore the physical meaning of the
resulting expressions. In the process, we have scrutinized the critical approxima-
tions, which have to be made to obtain a computationally useful theory.

Further, we have illustrated the utility of the DFT techniques for both the “best-
case” applications (main group radicals), where DFT is competitive with high-level
ab initio approaches, and for the more challenging transition metal radicals. For the
latter systems, DFT is, at present, the only practical choice for large-scale calcula-
tions. In many transition metal complexes, the absolute values of the DFT g-tensors
suffer from the approximations made in most XC functionals. However, trends in
related systems can be predicted with much better accuracy.

We have given a dramatic example of a simple, qualitative failure of one-compo-
nent approaches, in radicals where the first-order spin–orbit contribution vanishes.
Furthermore, we have examined three common approximations for the spin–orbit
coupling operator, using a selection of main-group and transition metal radicals.
Despite the drastically different approach to the SO coupling operator, these approx-
imations lead to calculated g-tensors of similar quality, thus underlining the essen-
tial robustness of all three approximations.

We have also provided a glimpse of possible future developments of density func-
tional theory approaches to g-tensors. The most obvious improvement involves com-
bining treatments of spin-polarization effects and higher-order spin–orbit coupling
terms in a single method. One possibility for such a technique is given by Eq.
(32.22), closely related to the GUHF method of Jayatilaka [15], which could be imple-
mented using the non-collinear two-component treatment of spin densities (Eq.
(32.24)) [26, 48]. Another likely development involves introduction of new exchange-
correlation functionals [66], which show promise for correcting some of the known
deficiencies in the existing techniques. A third area where future developments are
called for is related to the DFT treatment of the g-tensors for degenerate and quasi-
degenerate ground states. This is closely related to the issue of achieving a qualita-
tively correct description of degenerate multiplet states, which is one of the big
unsolved problems in approximate DFT [76].

Altogether, we believe that the next few years promise to be rather exciting for
DFT approaches to g-tensors, both in terms of the theoretical development and for
the practical application of the DFT techniques to problems in chemistry, solid-state
physics, and biochemistry.
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As has been noted frequently throughout this book, EPR spectroscopy is a valuable
analytical tool not only for the unique molecular fingerprints it provides, but also for
the detailed structural insight that it can convey. Although hyperfine interactions
are often considered first when extracting structural information, the g-tensor can
be of substantial analytical value as well. From the discussions of Atkins [1], one
sees how anisotropic shifts in g-tensor values (g-shifts) relative to the free-electron g-
value can yield significant information about the bound state environment of
unpaired electrons, their interactions with the external magnetic field, and the mag-
netic properties of low-lying excited states. However, from Chapter 4 by Lushington
one recalls that the electronic Zeeman effect in a bound state arises as a sum of
different concurrent electromagnetic interactions of both collaborative and competi-
tive natures. Without some prior estimate of the ratios for these different contribu-
tions, it can be difficult to infer much from EPR peak positions beyond the fact that
a molecule resonates at a given magnetic field strength and frequency of incident
radiation.

Devising a fully general formalism for predicting g-tensors for bound molecular
environments requires accounting for all major electromagnetic contributions pres-
ent in the full phenomenological spin Hamiltonian described for the electronic Zee-
man effect in Chapter 4. In practice this can be a challenge, but offers rich analytical
rewards in that detailed expansion of g-tensors as a sum of physically intuitive con-
tributions quantifies the aforementioned ratios between the different electromag-
netic effects underlying magnetic resonance. Given high quality theoretical g-tensor
predictions (i.e., at a level of theory that has been consistently shown to give fairly
close agreement with experiment), it is thus possible to confidently deconstruct the
implications behind the g-shifts and make sophisticated inferences about molecule
structure in accordance with Atkins’ principles. This ability to deconvolute the inter-
actions underlying g-shifts has thus been a major motivation for development of
reliable ab initio g-tensor prediction methods.

Despite obvious motivations for developing advanced g-tensor prediction meth-
ods, such tools have proven quite elusive until fairly recently. In fact, although inter-
est in the field dates from the early days of quantum mechanics, practical and
broadly available ab initio methods have only existed for theoretical g-tensor predic-
tion since 1996. Tremendous recent progress has been made however: High accu-
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33 Ab Initio Calculations of g-Tensors

racy implementations now exist and are widely available as part of popular computa-
tional chemistry software. Among these are ab initio models described in this chap-
ter, and DFT methods discussed in Chapter 32 by Patchkovskii and Schreckenbach.

Two important measures of the usefulness of a g-tensor prediction scheme are:
(1) the ability to properly and accurately represent the Zeeman effect for a broad
range of different molecular systems, and (2) the efficiency in handling specific
cases. These goals are often at odds. From symmetry arguments, one finds that the
choice of spin Hamiltonian operators depends on the complexity of the molecule;
thus the pursuit of broad generality demands rigorous inclusion of the full spin
Hamiltonian in order to properly represent disparate cases. However, such rigor
may prove needlessly complex when applied to simple molecules wherein many
operators may be superfluous. Ab initio g-tensor method development has paid
heed alternately to both of these competing considerations, and this chapter explores
the gradual evolution of a balance between the two goals.

The first known ab initio g-tensor calculations, dating to the early 1970s, were
highly simplistic and efficient models for special cases such as hydrogen atoms [2],
and H2

+ [3]. With computational resources being a limiting factor, simple cases like
atoms, diatomics and linear polyatomics would remain especially popular for the
next decade. A 1972 paper by Hayden and McCain reporting Hartree–Fock / STO-
3G level g-tensors for the isoelectronic species O3

–, NO2
2– and NF3 [4] was likely the

first published attempt to extend ab initio methodology to nonlinear polyatomics.
Their method was limited in that it did not include any first-order g-tensor correction
terms such as the relativistic mass correction or the one- and two-electron spin–orbit
Zeeman gauge corrections. In retrospect, their work can also be viewed as heavily
empirical and, in fact, rather flawed methodologically. Based on a formulation by
Atkins and Symons [5], their method approximated sum-over-state magnetic
response contributions in following fashion:

Wi

� ��HSO W0

�� �
W0

� ��L Wi

�� �
� k Wi

� ��L W0

�� �
W0

� ��L Wi

�� �
ð33:1Þ

where k is the spin–orbit coupling constant of the molecule, estimated empirically
as a sum of experimental atomic spin–orbit coupling constants. This approximation
of k is questionable as spin–orbit coupling is a property of the whole molecule and
is not validly expressed as a sum of atom components, but the predicted values
seem empirically reasonable. Any attempt to decouple k from the molecular spin–
orbit operator to isolate a magnetic dipole moment operator, L, however, is not.
From Eqs. (4.26), (4.27) in Chapter 4, one recalls that the orbital moment in HSO is
defined via sums over charged centers (nuclei and electrons), while for the orbital
Zeeman term (Eq. (4.25) in Chapter 4), it is defined relative to an unspecified gauge
origin: a critical difference. It is difficult even to find an empirical justification for
doing so. Equation (33.1) implies that for a particular molecule, the HSO and L tran-
sition moments for all states Wi coupled with the ground state W0 should exhibit
roughly constant ratios (HSO / L) approximately equal to k. Experience has shown
us, in fact, that decomposition of sample sum-over-states expansions completely
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refutes this assumption of consistency. For example, in the case of the Dg? compo-
nent of CO+ [6], one finds that the ratio of HSO and L transition moments varies
dramatically in both sign (five of the first nine states have a negative ratio, four have
a positive one) and magnitude (e.g., the seventh state has a ratio nearly 3000 times
larger than that of the third). Although this misleading formulation has been propa-
gated to numerous subsequent papers, most recently a 1996 multi-reference config-
uration interaction level g-tensor study by Tachikawa [7], it is not an empirical
approximation that is particularly defensible.

Overlooking the dubious contribution of Hayden and McCain, a landmark 1973
paper of Moores and McWeeny [8] appears to be the first published demonstration
of fully ab initio and broadly general (i.e., suitable for nonlinear polyatomics) g-ten-
sor calculations. The paper treated NO2 and CN at the ROHF / STO-4G level via a
spin Hamiltonian adhering to the full extent to the Stone formula for g-tensor evalu-
ation [9], thus significantly exceeding the representation used by Hayden and
McCain. Moores and McWeeny rigorously included not just the second-order mag-
netic response expansion, but also first-order spin–orbit Zeeman gauge corrections,
and explicitly treated both the one- and two-electron contributions to both of these
terms in an ab initio fashion. Without explanation, they did omit the spin-Zeeman
relativistic mass correction term, an apparent oversight given its relative ease of
computation (all required integrals are available within a standard Fock matrix) and
given the prior knowledge of its importance to the Zeeman effect [10]. Regardless,
their work stands as a major milestone in the development of ab initio g-tensor the-
ory, and the rigorous nature of their method yielded quantitatively reasonable repro-
duction of CN g-shift magnitudes, and excellent agreement with experimental pa-
rameters for NO2. The biggest shortcoming in their work was that it did not con-
tinue: the 1973 paper was apparently their last in the field, and more than 20 years
would pass before others achieved similar rigor and accuracy.

Although theoretical g-tensor research during the years 1974–1995 represented a
step back from the ambitious work of Moores and McWeeny, it did include some
important developments. Atomic g-factor prediction was pursued vigorously by a
number of groups, including the simple Hartree–Fock level studies of Hegstrom
(e.g., Ref. [11]), the subsequent large basis set Hartree–Fock calculations of Veseth
(e.g. Ref. [12] and references therein), the relativistic Dirac–Fock calculations of Mar-
ketos [13] and a correlated (coupled cluster singles and doubles) relativistic treat-
ment of Lindroth and Ynnerman [14]. Interestingly, these relativistic studies did not
expose significant deviations in atomic g-values relative to nonrelativistic treatment
(even for atoms as heavy as Rb [13, 14]). Very recent work has, however, demonstrat-
ed this to be largely a function of the subject choice (i.e., atoms as opposed to mole-
cules). Specifically, the magnetic response effects that are a major component of the
molecular Zeeman effect but not the atomic one, have been found to exhibit sub-
stantial dependence on the relativistic nature of the wavefunctions used (see Ref.
[15], plus a more thorough discussion of DFT methods in Chapter 32), whereas the
first-order corrections examined in the atomic formulations of Marketos [13], and
Lindroth and Ynnerman [14] displayed only a modest effect. While it would be some
time before the importance of relativistic theory in reproducing g-tensors for mole-
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cules containing heavy atoms was definitively established, this earlier work did still
set an important precedent for the use of multi-component wavefunctions for g-shift
prediction.

During the 1973–1995 period, ab initio level g-tensor calculations on molecules
were rather sparse. Veseth and coworkers published numerous high-level theoretical
predictions of Zeeman parameters for diatomic systems (see Ref. [16] and references
therein); however their analysis did not elucidate g-tensors per se. Their work
focused on a quantity, gs, that is mathematically equivalent to a sum of the first-
order g-tensor corrections, and is experimentally tractable via fitting analysis of EPR
spectra of linear molecules, but did not include the second-order magnetic response
term, and thus could not be generalized to the case of nonlinear polyatomics. Con-
versely, a 1991 paper of Ishii et al. did pursue ab initio g-tensor calculations that
included the appropriate magnetic response effects for a series of nonlinear polya-
tomics; however their formulation neglected all first-order correction terms [17].
This latter work is nonetheless noteworthy for an important methodological develop-
ment therein: the magnetic response was evaluated via finite perturbation theory
(closely analogous to the Hartree–Fock perturbation theory methods recently
reported by Mustafaev et al. [18] and by Angstl for INDO level g-tensor calculations
[19]) rather than the cumbersome sum-over-states expansion. This afforded signifi-
cantly improved accuracy at negligible added computational cost and, as we shall
see later in this chapter, would serve as a useful model for future schemes.

Prior to 1996, a common thread in all ab initio g-tensor studies was the use of an
incomplete spin Hamiltonian. To this point, there had been only one attempt to
even empirically account for all of the first-order plus magnetic response terms rele-
vant to description of nonlinear polyatomics: the aforementioned INDO paper by
Angstl [19]. Angstl’s paper explicitly treated the relativistic mass correction term,
plus the one-electron contributions to the spin–orbit Zeeman gauge correction and
the magnetic response, but accounted for all two-electron contributions empirically
by scaling the effective nuclear charges to mimic the screening effects of electron–
electron interactions. The first truly ab initio treatment to rigorously treat the com-
plete-to-second-order spin Hamiltonian was that of Lushington and Grein [20], who
reported ROHF level calculations for NO2, CO+ and H2O+ over a variety of basis sets
ranging from minimal (STO-4G) to the triple-zeta-valence polarized sets of Sadlej
[21]. Their minimal basis set results for NO2 afforded the first independent theoreti-
cal validation of the 1973 calculations by Moores and McWeeny [8]. In the absence
of the relative mass correction term (omitted by Moores and McWeeny) very close
agreement was found, with the minor deviations (several hundred parts per million
for the gx- and gz-shifts, and less than 10% of the value of the large gy-shift) likely
being attributable to slight differences in molecular geometry and to neglect of
multi-center integrals in the 1973 paper. For both of these papers, the ROHF/STO-
4G results for NO2 enjoyed rather astonishing agreement with experiment. Aug-
menting the results with the relativistic mass correction term brought the apparent
accuracy to nearly within the experimental uncertainty range. Each improvement in
basis set quality beyond the minimal STO-4G led to a decline in quantitative agree-
ment relative to experiment, however. Thus, while the triple-zeta polarized treat-
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ment still reproduced basic qualitative trends (large positive gx-shift, large negative
gy-shift, small gz-shift), errors of 50% or more in shift magnitude were observed.
Large basis set results for the other two molecules studied (CO+ and H2O+) were
comparably mediocre, leading to the inescapable conclusions: (1) g-tensor calcula-
tions apparently exhibit significant basis set dependence, (2) the tantalizing quanti-
tative agreement between experiment and the ROHF / STO-4G level treatment of
NO2 was likely a product of fortuitous cancellation of errors, and (3) the ROHF level
of treatment, although adequate for general qualitative predictions, was apparently
insufficient for quantitative g-shift prediction. Lushington and Grein would later
demonstrate that the shortcomings in large basis set ROHF calculations were
directly attributable to the absence of electron correlation, and that rigorously corre-
lated models obtained by a multi-reference configuration interaction (MRCI) level
representation of the relevant excited-state matrix elements in the magnetic
response term could consistently achieve excellent results for moderate to large
basis set representations [6].

Although responsible for providing some of the most accurate representations
of electromagnetic response type properties in the current literature, MRCI methods
quickly become computationally unwieldy for increasingly large or complex mole-
cules, scale poorly with basis set size, and require substantial user expertise for even
fairly simple systems. Given the EPR community’s substantial interest in complex
molecules (e.g., proteins and other biomolecules) and materials (e.g., crystal defects,
disordered media, etc.), the practical limitations of MRCI-based methodologies are
unrealistically inhibiting. Fortunately, new developments since 1997 have been help-
ing to close the gap between the computationally demanding expert-driven g-tensor
prediction methods that had been developed and a need for more efficient, user-
friendly formalisms. The DFT-based methods discussed in Chapter 32 have become
especially prominent, demonstrating great efficacy for handling the bulkier, more
disordered molecular systems of broad general interest. Ab initio techniques, with
their inherent capacity for systematic improvement will, however, likely remain a
gold standard to which new DFT implementations are benchmarked. It is also fairly
certain that the value of ab initio theory will persist for high accuracy prediction of
small molecule magnetic parameters of interest to the matrix isolation EPR and (via
the Curl relationship [22]) gas phase ultraviolet / visible spectroscopy communities.
Ab initio method development and refinement has thus continued, leading to
important new publications from several different sources, including Lushington
[23], Jayatilaka [24], Neese [25] and Vahtras et al. [26, 27].

Lushington’s most recent work in the field explored a simplified configuration
interaction methodology whose restriction of the configuration space to magnetical-
ly relevant (i.e., single electron) excitations [23] permitted effective representation of
the magnetic response contributions via modest-sized sum-over-states expansions.
The benefits of this approach were two-fold: the computational expense was reduced
to a level comparable to the underlying ROHF treatment, and the resulting sum-
over-states expansion is small enough to be readily amenable to treatment in a com-
plete, closed form, thus avoiding the truncation errors in the MRCI formalism asso-
ciated with the eventual necessity for terminating the discrete sum-over-states
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expansion. Although each individual state is not resolved with the full precision
available in the MRCI method, the closed-form CI expansion still seems capable of
achieving much of the accuracy level of complex MRCI calculations. The method
allows for much of the calculation to be effectively automated and should thus prove
significantly easier for non-expert users to assemble; however some expert interven-
tion is still required in order to scale the excited state energy manifold to account for
the uncorrelated ground state energy.

Employing a significantly different tack, Jayatilaka’s General Hartree–Fock tech-
nique [24] avoided explicit sum-over-states perturbative expansions (and their var-
ious pitfalls) by relying on a coupled two-component unrestricted Hartree–Fock
formalism with spin–orbit coupling explicitly included in the Hamiltonian. Field-de-
pendent terms were also included, albeit only to fix the orientation of the spin. Net
first-order contributions were approximated via explicit inclusion of the relativistic
mass correction. Using triple zeta polarized basis sets of Sadlej [21], Jayatilaka was
able to predict g-tensors of an accuracy level comparable to (arguably better than) the
best DFT results of the time [28], and approaching that of MRCI level treatments [6,
29]. The method omitted one- and two-electron spin–orbit Zeeman gauge correc-
tions, arguing that except for very small molecules, ab initio calculations consis-
tently show that one- and two-electron gauge correction terms largely cancel, leaving
residues that are generally small relative to experimental uncertainty (see e.g., Refs.
[6, 16, 20] and references therein). The large computational expense of treating the
two-electron first-order correction term renders this a pragmatic omission. Such a
variational Hartree–Fock method has recently been extended by Neese [25], who
treated the g-tensor as a mixed second derivative property with respect to the applied
field and the electron magnetic moment. Neese’s method allowed for direct inclu-
sion of spin-polarization effects, enhancing generality across different spin states. It
also proved amenable to both HF and density functional theory, allowing implemen-
tation for hydrid functionals [25].

The final methodological developments of note, those of Vahtras et al., may hold
the greatest promise for a future of accurate and efficient ab initio g-tensor predic-
tions. Like Jayatilaka, the method of Vahtras et al. circumvented the sum-over-states
expansion, this time in favor of a second-order polarization propagator formalism
applied rigorously at the multi-configurational SCF level. Benchmarks relative to
other ab initio calculations do not appear in the literature; however the combination
of a non-perturbative representation of the magnetic response effect and a correlated
level of theory suggests an accuracy level that should exceed uncorrelated methods
such as the General Hartree–Fock, and likely approach the MRCI. Indeed, rigorous
multi-configurational response calculations appear to frequently yield g-shift predic-
tions within 10% of experiment [26], a precision comparable to the MRCI results
[6, 29], in spite of the fact that Vahtras et al. have not addressed any of the first-order
contributions in their work. More recent work by this group explores a reworking of
this scheme, aimed at rendering it amenable to molecules containing heavy (second
and third row) atoms [27]. Taking a lead from an earlier DFT level g-tensor treatment
[30], they noted a declining importance in the two-electron contributions to the mag-
netic response contribution for systems with heavy atoms, and thus have applied
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the atomic mean field approximation (AMFI) to the spin–orbit Hamiltonian [31], a
scheme that more rigorously implements the Z-screening concept used much ear-
lier by Angstl [19] and others. In general, the AMFI leads to results of modest accu-
racy relative to the rigorous all-electron treatment for first-row molecules (differing
by upwards of 20% in g-shift values), but exhibits dramatically improved perfor-
mance for molecules containing second- and third-row atoms (e.g., SiH3, GeH3)
where the difference is rarely more than 1% relative to the all-electron formulation,
while computational savings are frequently of the order of 90% for the g-tensor pre-
diction portion of the calculation.

Assessing these recent theoretical developments, two distinct but complementary
foci are apparent: (1) a desire to devise more accurate and rigorous methodologies,
and (2) a goal of selectively simplifying these advanced new methods so as to bal-
ance accuracy with computational viability in the case of large, complex molecules.
Both objectives are important to the theoretical EPR community; hand in hand, they
can be expected to enhance the scientific maturity of the field and strengthen the
analytical relevance of theoretical g-tensor predictions to the experimental commu-
nity.

At this point it bears asking where ab initio g-tensor prediction methods stand
with respect to maturity and analytical relevance? Significant achievements have
been clearly effected on the latter. Detailed studies by Bruna et al., for example, have
applied Atkins-type arguments to the analysis of correlations between observed g-
shifts and other physical effects such as excited state properties and electron spin
localization (see, e.g., Refs. [32–34] and references therein), while Kiljunen et al. [35]
performed the first explicit ab initio study on the physical effects of rare gas matrices
on electronic g-tensors. If the true test of maturity is the ability to pinpoint and cor-
rect potential errors in experimental analysis, then theory is probably getting quite
close. Bruna et al. [34], for example, exposed an obvious inconsistency with an un-
usual spectrum whose EPR activity had been implausibly attributed to H2

– trapped
in a matrix of solid hydrogen [36]. Significant amounts of validation clearly must
still be done, but evidence is growing that viable, useful ab initio g-tensor methods
have indeed arrived.
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34.1
Introduction

Systems with more than one unpaired electron do frequently occur in nature. In
particular they are commonplace in transition metal chemistry where many dN con-
figurations give rise to ground state multiplicities with S > 1/2 [1–3]. In organic mol-
ecules systems of higher spin are usually limited to triplet states, i.e. S = 1 [4, 5].
These occur in organic biradicals, in short lived excited triplet states or reaction
intermediates when bonds are broken. Most prominently such charge separation
occurs in the light reactions of the photosystems [6]. If the states are sufficiently
long-lived they can be studied by a variety of experimental techniques including
EPR spectroscopy and its high-resolution extensions, optically detected magnetic
resonance (ODMR) or magnetic circular dichroism (MCD). In addition, the net
magnetic moments of molecules with high-spin ground states can be conveniently
and accurately measured with SQUID devices which gives rise to the vast field of
molecular magnetism [7, 8]. This field has recently received much attention due to
the desire to construct single-molecule magnets [9, 10].

In all of these cases the analysis of the experimental data requires additions to
the spin-Hamiltonian (SH) of a S = 1/2 system in order to describe the additional
splittings that arise within the 2S+1 magnetic sublevels. The leading term that must
be added to the electronic Zeeman term (HZe) is the so-called zero-field splitting
(ZFS) term HZFS. In the absence of nuclear spins and exchange interactions, the SH
up to terms bilinear in the effective (fictitious) spin is usually written [1]:

ĤHspin ¼ ĤHZe þ ĤHZFS

¼ b
B
~BBg~SSþ~SSD~SS ð34:1Þ

where bB is the Bohr magneton, ~BB is the magnetic flux density,~SS is the operator for
the effective spin and g and D are the g-matrix and the ZFS-tensor respectively.
ĤHspin acts on the basis functions ‰SMæ with M ¼ S;S� 1; ::;�S. If a coordinate sys-
tem is chosen that diagonalizes D, ĤHZFS can be rewritten:
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HZFS ¼ D S
2

z � 1
3 SðSþ 1Þ

� �
þ E S

2

x � S
2

y

� �
ð34:2Þ

D ¼ Dzz � 1
2

Dxx þ Dyy

� �
; E ¼ 1

2
Dxx �Dyy

� �
ð34:3Þ

Note that a constant 1/3 (Dxx + Dyy + Dzz) S(S + 1) has been dropped because it
shifts all levels equally and the factor –1/3 DS(S + 1) is introduced for convenience.
In a so-called �proper coordinate system’ x, y and z are chosen such that 0£E/D£
1/3 [11]. Note that in general Dxx + Dyy + Dzz„ 0; i.e. the D-tensor is not necessarily
traceless, as is frequently stated. Thus, the ZFS has the appearance of a �spin–spin
interaction’ since it is bilinear in the fictitious electron spin ~SS. Higher order terms
that contain higher than the second power of the electron spin are also known and
sometimes used to interpret measurements. However, their physical origin is not
exceedingly well understood and precise experimental values are rare for molecular
systems. Consequently these terms will not be considered in this chapter.

A rigorous discussion of the origin of ZFS effects has been given in the mono-
graph of Harriman [12]. However, as has been pointed out in the literature [13, 14],
the ZFS is the least studied SH parameter from a theoretical point of view. There
are a few ab initio and semiempirical calculations available on organic [15–25] and
inorganic [13, 26–34] molecules. Most recently this field has been revived by Vahtras
et al. [14, 35] who presented a modern and promising implementation. In the transi-
tion metal field, the ZFS is up to now a domain of ligand field theory (LFT) which
has been extensively reviewed [2, 3, 36–38]. However, as we have discussed several
times, LFT is not reliable for the interpretation of ZFSs and more rigorous ap-
proaches are necessary [13, 38]. While some progress in this direction has been
made, much more work is required to reach the level of sophistication that has been
reached for example in the calculation of g-values and HFCs which are described
elsewhere in this volume (Chapter 33 by Lushington, Chapter 32 by Patchkovskii
and Schreckenbach, Chapter 29 by Munzarov� and Chapter 30 by Engels). However,
as will become evident below, the ZFS is a very complicated property to model by
quantum chemical methods.

In this brief review an overview is given of ZFS effects in EPR spectroscopy and
available quantum chemical approaches to calculate this quantity with a focus of the
treatments in Refs. [14, 35] and [13]. In addition a few examples of ZFS calculations
will be given and future directions will be indicated. Biological examples of ZFS
calculations will be dealt with in Chapter 36 by Neese.

34.2
Zero-Field Splittings in EPR Spectroscopy

In systems with S > 1/2 the ZFS usually strongly dominates the spectral shape. It is
therefore important to understand the basic ZFS effects in the following limiting
cases: (1) the weak field case, in which bBB << D, (2) the high-field case in which
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bBB >>D and (3) the intermediate case where bBB »D. In the weak field case it is
furthermore necessary to distinguish between Kramers systems with a half-integer
spin S and non-Kramers systems with an integer spin S. This is necessary because
of Kramers time-reversal invariance theorem which has the consequence that in the
absence of a magnetic field the degeneracy of the MS levels of a given multiplet can-
not be completely lifted if the system contains an odd number of electrons [39]. The
remaining doubly degenerate levels are commonly referred to as �Kramers doublets’.
For an even electron system the situation is different and, in general, no degeneracy
remains, even in the absence of a magnetic field.

34.2.1
Kramers Systems in the Weak Field Regime

This case is frequently realized in transition metal complexes, where D is commonly
of the order of several wavenumbers, which is large compared to the commonly
employed resonance energy at X-band frequency (hm= gbBB» 0.3 cm–1). The degener-
acy of the S + 1/2 Kramers doublets is lifted by the application of a homogenous
external magnetic field and resonances can always be observed. Since the inter-
doublet spacing is larger than the microwave frequency, in this regime, only transi-
tions within each Kramers doublet can be observed by EPR techniques. The transi-
tion energies can be modeled conveniently by using the so-called �rhombogram
method’ [40]. In this method, each Kramers doublet is regarded as an effective
S¢ = 1/2 system with an �effective g-matrix’ geff which is different for each doublet.
The effective g-values then only depend on the value of E/D and the true g-values g.
If these are taken to be close to 2.00, as is most often the case, a single parameter,
namely E/D, determines the resonance positions in the EPR experiment. In addi-
tion, the different Kramers doublets will be populated according to Boltzmann sta-
tistics, which means that an estimate of the inter-doublet spacing and therefore D
and E/D can be obtained from variable temperature measurements. The transition
probability can be calculated by diagonalizing the SH at each resonance field and
evaluating the magnetic transition dipole moment for a microwave magnetic field
which is polarized perpendicularly to the static magnetic field (or parallel in a so-
called parallel mode experiment, vide infra) [41].

As an example consider the case of S = 5/2 which is frequently met in transition
metal complexes of the Fe(III) ion. As indicated in Fig. 34.1B, an axial ZFS leads to
a splitting of the six levels of the ferric ion into three Kramers doublets. Introduction
of a static magnetic field lifts the degeneracies of the three doublets and gives rise to
the possibility of inducing intra-doublet EPR transitions. For a positive D, the transi-
tions observed for a sample with randomly oriented molecules arise from the lowest
Kramers doublet as indicated in Fig. 34.1A, whereas they arise from the middle Kra-
mers doublet in a completely rhombic system with E/D = 1/3. The effective g-values
found from the relation geff = hm/BresbB are plotted in Fig. 34.1C. It is clear from this
figure that the origin of a given observed transition can be clearly traced back to an
individual Kramers doublet and that the value of E/D can be uniquely determined
from the spectrum with little effort.
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The rhombogram method is a convenient way to obtain systematic information
about the observed transitions, to identify the relevant spin system and to obtain a
reliable value of E/D. However, it does not lead to a unique determination of the
sign and magnitude of the D parameter. This can be done by simply recording the
spectrum as a function of temperature and observing the population and depopula-
tion of the individual Kramers doublets. The case of the complex [Fe (EDTA)(O2)]3–

is shown in Fig. 34.2 [31]. The spectrum in Fig. 34.2A shows a large signal around
geff = 4.3 which is, however, anisotropic, as well as two small but sharp peaks around
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34.2 Zero-Field Splittings in EPR Spectroscopy

geff = 9–10. From the rhombogram an assignment of these transitions is readily pos-
sible and also indicated in Fig. 34.2A which leads to E/D = 0.21. From this assign-
ment, the peak at geff = 9.9 must come from the MS = –5/2 doublet, while the
geff = 9.2 peak must come from the MS = –1/2 doublet. The temperature variation of
the two small peaks shown in Fig. 34.2B shows that the intensity of the MS =–5/2
transition decreases with increasing temperature while that of the MS = –1/2 transi-
tion increases. Consequently, the MS = –1/2 is a �hot’ transition and the MS = –5/2
transition is a �cold’ transition. This leads to the conclusion that the sign of D must
be negative, which means that the MS = –5/2 doublet is lowest in energy. At
E/D = 0.21 the two Kramers doublets are split by 2.72|D| and 3.75|D| as shown in
Fig. 34.2C. Consequently, a Boltzmann fit to variable temperature data yields the
magnitude of D, which amounts to –1– 0.1 cm–1 in the case of [Fe(EDTA)(O2)]3–.
This analysis is typical for ZFS effects in transition metal EPR and is widely used. It
is also clear that the accuracy obtained from the Boltzmann fits is limited and typi-
cally not better than a few tenths of a wavenumber.

As an alternative to the use of Boltzmann fits the use of microwave power satura-
tion studies has also been advocated to obtain information about ZFSs in transition
metal complexes with apparently similar accuracy [42].

34.2.2
Non-Kramers’s Systems in the Weak Field Regime

In the case of non-Kramers ions the ZFS already removes all degeneracies even at
zero-field. The best understood example is the S = 2 configuration, which is fre-
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quently met in high-spin Fe(II) sites. High-spin Fe(II) has an S = 2 non-Kramers
ground state that can split into five components even in the absence of a magnetic
field. Using the standard SH, Eq. (34.1), the following eigenfunctions and energies
can be derived in zero magnetic field [43]:

���2s
E
¼ a

þ ��þ2
�
þ
���2

�� �
=2

1=2 þ a
� ��0i E2s ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2 þ 3E
2

q
(34.4)

���2ai ¼ þ2j i � �2j ið Þ=2
1=2

E2a ¼ 2D (34.5)

1
s�� � ¼ þ1j i þ �1j ið Þ=2

1=2
E1s ¼ �Dþ 3E (34.6)

1
a�� �
¼ þ1j i � �1j ið Þ=2

1=2
E1a ¼ �D� 3E (34.7)

0¢j i ¼ a
� þ2j i þ �2j ið Þ=2

1=2 � a
þ

0j i E0¢ ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2 þ 3E
2

q
(34.8)

where a
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2 1� D=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 3E2

p� 	r
.

In the case where E is zero and ‰D‰ is large (‰D‰ >> hmj the normal case for
high-spin Fe(II)) the level scheme consists of the isolated state ‰0¢æ and two pairwise
degenerate non-Kramers doublets. In this case the energy of the microwave is not
sufficient to induce a transition between states that belong to two different of the
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Figure 34.3 Schematic description of a parallel mode EPR
experiment for a S = 2 system. Left panel: level scheme
showing the relevant splittings in zero field and with applied
field. Right panel: Experimental data and computer simulations
for [Fe(H2O)6]2+ (reprinted with permission from Ref. [43]).



three sets. In addition, the transitions within the ‰1s,aæ and ‰2s,aæ non-Kramers
doublets are forbidden in standard EPR and therefore no transition can be detected.
In the more general case of E „ 0, intra-doublet splittings D1,2 are already present. If
these splittings are smaller or equal to the microwave energy, EPR resonances are,
in principle, detectable. The resonance condition in this case reads:

hmð Þ2¼ D
2
k þ g

kð Þ
bB

� 	2
ð34:9Þ

where g(k) is an effective g-value for the kth doublet. However, in a standard EPR
experiment the transition probability for both intra-doublet transitions is zero along
the principal axes. Therefore it is convenient to employ a parallel mode cavity
(microwave magnetic field B1 oriented parallel to the static field B0 instead of per-
pendicular as in a standard EPR experiment; see Figure 34.3). In such an experi-
ment, the selection rules change from DMS = –1 to DMS = 0. Using this methodolo-
gy, EPR analysis of a wide variety of Fe(II), Mn(III), Co(II) centers as well as spin-
coupled oligonuclear complexes became possible [44–56].

34.2.3
Paramagnets in the High Field Regime

The high field regime is frequently met for organic triplets and biradicals, where the
ZFS is usually much smaller than in transition metal complexes [5]. The most com-
mon case is S = 1. In this case, the ZFS gives rise to a so-called fine structure and it
is appropriately treated by perturbation theory within the SH formalism.

The principle of spectrum analysis for a spin triplet with isotropic g-factor is
shown in Fig. 34.4A. In the axial case (E/D = 0) the eigenenergies with the magnetic
field oriented along the molecular z-axis are given by:

E 0j ið Þ ¼ � 2
3

D ð34:10Þ

E �1j ið Þ ¼ 1
3

D� gbB B ð34:11Þ

For the field in the x,y-plane one has:

E 0j ið Þ ¼ 1
3

D ð34:12Þ

E �1j ið Þ ¼ � 1
6

D� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2 þ 4 gbB B
� �2

q
ð34:13Þ

where ‰MSæ is an abbreviation for the magnetic sublevels of the electronic ground
state (‰0SMSæ) but with the quantization axis chosen along the external magnetic
field for the convenience of labeling. For such a level scheme one observes five
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peaks in an EPR spectrum taken on randomly oriented molecules but with fixed
orientation such as in a frozen solution.

The lowest transition is situated at geff = 4 and is called �half-field’ transition since
it occurs at 2gbBB. It formally corresponds to a DMS = 2 transition which is forbid-
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den under the standard EPR selection rule DMS = 1. However, it gains intensity in
the x- and y-directions due to mixing of the ‰–1æ and ‰0æ sublevels by the Zeeman
operator. In addition, as long as the g-matrix is isotropic, the transition is also isotro-
pic and therefore can be observed with finite intensity unless D becomes zero. The
second pair of transitions is symmetrically split by 2D/gbB around the hypothetical
center transition at Bres = hm/gbB where m is the spectrometer frequency. The inten-
sity of these transitions arises from molecules oriented with their z-axis along the
static magnetic field. The third pair of transitions arises from molecules oriented
with their x- and y-axes along the static magnetic field and is seen to be split by
D/gbB.

The situation is only slightly more complicated in the completely rhombic case
(E/D = 1/3) shown in Fig. 34.4B. Here one still observes a half field transition and a
pair of transitions split by 2D/gbB as in the axial case. However, the third pair of
transitions coalesces into a single transition observed at Bres = hm/gbB.

For intermediate E/D values the spectrum becomes fairly complicated (Fig.
34.4C) but is easily understood with reference to the axial case. The main change is
that the third pair of transitions splits into two transitions each due to the inequality
of the molecular x- and y-axes. The energies of the three magnetic sublevels are
given by:

Field along molecular z-axis:

E 0j ið Þ ¼ � 2
3

D (34.14)

E �1j ið Þ ¼ 1
3

D�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2 þ gbB B
� �2

q
(34.15)

Field along molecular x-axis:

E 0j ið Þ ¼ 1
3

D� E (34.16)

E �1j ið Þ ¼ � 1
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2

E � 1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(34.17)

Field along molecular y-axis:

E 0j ið Þ ¼ 1
3

Dþ E (34.18)
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� �2
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(34.19)

From which it follows that the splitting of the x,y-transitions on a magnetic field
scale is approximately given by:

DBres ffi
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B
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A (34.20)
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where Bres is the transition field for the case where E = 0; the positive sign holds for
the higher field pair and the negative sign for the lower field pair of transitions.

From this discussion it is evident that the spectral analysis for spin triplets in the
strong field regime yields the values of D and E/D directly and to high accuracy.

A spectacular example of such a spin triplet species is the observation of a triplet
state of the primary donor, 3P680, in photosystem II by Lubitz and co-workers [6].
This state can be generated under certain conditions by charge recombination from
the primary radical pair formed in photosynthesis. If the recombination takes place
in the presence of a magnetic field selective population of only one of the three mag-
netic sublevels is obtained which leads to strong absorption and emission peaks in
the observed EPR spectra (Fig. 34.5). Straightforward analysis of these spectra
directly yields accurate values for D = 0.00287 cm–1 and E = 0.00043 cm–1 [6].

34.2.4
The Intermediate Regime

In the regime where the ZFS is comparable to the microwave frequency the spectra
take a rather complicated appearance and require detailed computer simulations in
order to obtain the D and E/D values. However, the values extracted from such sim-
ulations tend to be accurate since they are not based on a Boltzmann fit as is the
only choice in the weak field regime. An exciting recent development is the advent
of high-field EPR spectrometers which operate at frequencies up to ~ 550 GHz
which leads to resonance energies up to ~ 18 cm–1. Thus, by changing to a high-field
spectrometer one can step outside the weak field regime and measure large ZFSs
much more accurately than with conventional spectrometers.

An example is provided by a recent study of Mn(III) in trans-[Mn(cyclam)I2] by
Mossin, Weihe and Barra [57]. This complex, unexpectedly, has a positive ZFS
D = 0.604 cm–1 with an E/D = 0.034 cm–1 which would have made its study by con-
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Figure 34.5 Transient EPR of the spin-polar-
ized triplet state 3P680 of a frozen solution of
photosystem II particles. The spectral compo-
nents (X,Y,Z) in the powder pattern of the

emissive (E) and absorptive (A) branch are
indicated together with the determination of
the D and E parameters from this data.
(Reprinted with permission from Ref. [6]).



ventional X-band EPR spectroscopy difficult. However, the 95 GHZ spectra shown
in Fig. 34.6 show a rich structure and computer simulation of the spectra leads to
accurate values of D and E/D. A number of similar high-field EPR studies on first-
row transition metal sites with significant ZFS interactions have appeared over the
years [57–78], starting with the pioneering work of Freed and co-workers [79].

34.2.5
Other Methods for Measuring ZFSs

While EPR in most circumstances is the method of choice, ZFS effects are ubiqui-
tous in many physical methods including magnetic susceptibility [7], magnetic cir-
cular dichroism [80–82], optically detected magnetic resonance [4, 83–87], inelastic
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Figure 34.6 High-Field EPR Spectra on trans-[MnIII(cylcam)I2].
Top panel: experimental data taken at 95 GHz recorded at 5 K
and 15 K respectively and computer simulation. Bottom panel:
assignment of transitions based on the diagonalization of the
spin-Hamilton operator as a function of magnetic field orienta-
tion and strength. (Reprinted with permission from Ref. [57]).



neutron scattering [88, 89], far-infrared spectroscopy [90–95], magnetic torque mag-
netometry [96] and M�ssbauer spectroscopy [97].

34.3
Theory of Zero-Field Splittings

From a quantum chemical perspective, the calculation of ZFSs needs to deal with
two basic contributions: (1) the contribution from the direct spin–spin coupling of
the unpaired electrons and (2) the contribution from the spin–orbit coupling (SOC)
[12]. The first contribution most frequently dominates the ZFSs of organic mole-
cules since these are made from atoms with small SOC constants. The SOC contri-
bution is believed to commonly dominate in the case of transition metal complexes.
Both contributions are challenging from a theoretical point of view since: (1) they
involve matrix elements of spin-dependent two-electron operators that are not diag-
onal in the total spin and consequently require the inclusion of several spin states in
the calculations and (2) the integrals involved in the calculation are fairly compli-
cated.

In order to arrive at a theoretical equation for the ZFS it is convenient to start
from an effective-Hamiltonian treatment. In this treatment one defines a zeroth
order model space that already contains the main physics of the problem. Then an
effective Hamiltonian is set up in this basis that approximately incorporates the
effects of the additional terms in the Hamiltonian [98]. This effective Hamiltonian is
then compared term by term to the matrix of the spin-Hamiltonian and in this way
the SH parameters are defined in terms of matrix elements of the perturbing opera-
tors over zeroth order (non-relativistic) wavefunctions.

The treatment starts by assuming that the Hamiltonian can be divided into a
major part and a perturbation:

ĤH ¼ ĤH0 þ ĤH1 ð34:21Þ

where in the present case Ĥ = ĤBO (the Born–Oppenheimer Hamiltonian) and Ĥ1

represents the sum of the various magnetic operators to be described below. The full
set of states { aSMj i} is divided into two sets: (i) the “a” set { 0S0Mj i} of the 2S + 1
functions which make up the orbitally nondegenerate electronic ground state and
(ii) the “b” set { aSMj i, a= 1,2...} of excited state wavefunctions. Any wavefunction
can then be represented as a linear combination of the form:

W ¼
X

M

c
a
M

���0S0M
E
þ
X

aSM

c
b
aSM

���aSaMa

E
ð34:22Þ

The secular equations arising from the variation principle can be set up in matrix
form like:

Hc ¼ Ec ð34:23Þ
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where c is the vector that collects the expansion coefficients and H is the matrix of
the complete Hamiltonian with elements:

HaSM;a¢S¢M¢ ¼
D

aSM
���ĤH
���a¢S¢M¢

E
ð34:24Þ

Applying the partitioning into “a” and “b” sets Eq. (34.23) can be written in the parti-
tioned form:

Haa

Hba

Hab

Hbb

 !
c

a

c
b

 !
¼ E

c
a

c
b

 !
ð34:25Þ

The second equation can formally be solved for cb to give:

c
b ¼ � Hbb � IE

� ��1
Hbac

a ð34:26Þ

If this is inserted into the first set of equations one obtains:

Haac
a �Hab Hbb � IE

� ��1
Hba c

a ¼ Ec
a ð34:27Þ

which is equivalent to the matrix eigenvalue equation of an effective Hamiltonian:

Heff c
a ¼ Ec

a ð34:28Þ

with

Heff ¼ Haa �Hab Hbb � IE
� ��1

Hba ð34:29Þ

Since we are dealing with small splittings of the electronic ground state, the value of
E in Eq. (34.29) can, to a first approximation, be set equal to the unperturbed energy
of the ground state E0 [98]. If it is assumed that the basic set of states, aSMj if g,
diagonalizes Ĥ0 we have for the matrix inverse term in Eq. (34.29) the equation
Hbb � IE0ð Þ�1

aa¼ Ea � E0ð Þ�1� D�1
a which means that the effective Hamiltonian

assumes the simple form:
D

0SM
���ĤHeff

���0SM¢
E

¼ E0dMM¢ þ
D

0SM
���ĤH1

���0SM¢
E
�
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aS¢M†

D
�1
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D
0SM

���ĤH1

���aS¢M†
ED

aS¢M†
���ĤH1

���0SM¢
E

ð34:30Þ

The matrix of the Hamiltonian is of the same dimension as the matrix of the SH. As
perturbing operators one has to choose those terms that give contributions that are
bilinear in the electron spin operators [12, 98, 99]. The first perturbing operator is
the direct dipolar spin–spin interaction:
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ð34:31Þ

where rij = ri – rj and i and j sum over electrons. si is the spin operator for the i’th
electron at position ri.

The second perturbing operator is the SOC. In the Breit–Pauli approximation the
SOC operator is [100]:

ĤHSO ¼ ĤH
1ð Þ

SO þ ĤH
2ð Þ

SO ð34:32Þ

The one-electron part, ĤH
1ð Þ

SO, is given by:

ĤH
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2
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i
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�� ��3 l
A
i si ð34:33Þ

where lAi is the angular momentum of the ith electron relative to nucleus A at posi-
tion RA

l
A
i ¼ ri � RAð Þ � p

i
ð34:34Þ

and pi is the linear momentum operator for the i’th electron. The two electron part
consists of two terms and is given by:
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where lji is the angular momentum of electron i relative to electron j.

l
j
i ¼ ri � rj

� 	
� p

i
ð34:36Þ

This form of the spin–orbit coupling was derived by Bethe and Salpeter [100] from
the Breit equation [101–103] and with classical arguments by Slater [104]. The first
term in ĤH 2ð Þ

SO arises from the movement of electron i in the Coulomb field of electron
j and the second term describes the coupling of the spin magnetic moment of elec-
tron i with the orbital current of electron j (the spin–other orbit, SOO, contribution).
The one-electron term ĤH 1ð Þ

SO has the familiar interpretation as described in popular
textbooks (i.e. Ref [105], p. 1215).

The first order contribution to the D-tensor follows from the derivations described
by Harriman [12] and reads (l,m= x,y,z):
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+
ð34:37Þ
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This contribution is symmetric and traceless as expected for a dipolar interaction.
Recently, Vahtras et al. have worked out an elegant ab initio formalism to deal with
the complicated Eq. (34.37) and applied it to the calculation of triplet state ZFSs in
organic molecules [14]. In their notation, the D-tensor takes the form:

D
SSð Þ

lm ¼
X

p;q;r;s

d
lm
pqrs qpqrs ð34:38Þ

where qpqrs is a �quintet density’ (p,q,r,s label MOs):

qpqrs ¼
0SS 2sz sz � sx sx � sy sy

� �
pqrs

���
���0SS

D E

3S
2 � S Sþ 1ð Þ

ð34:39Þ

with the second quantized operators ŝsl;pq ¼
P

rp ;rq

rp sl

�� ��rq


 �
aþp;rp

aq;rq
ðrp ; rq ¼ a; bÞ .

As shown by Vahtras et al. [14], the operator in Eq. (34.39) can be written in a more
convenient form which uses unitary group generators [106] as:

2sz sz � sx sx � sy sy
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4
e
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where

e
�
pqrs ¼ E

�
pq E
�
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�
ps drq ð34:41Þ

E
�
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þ
pa aqa � a

þ
pbaqb ð34:42Þ

The matrix elements of the generators over configuration state functions can be very
efficiently generated using the sophisticated algorithms that are based on the sym-
metric group or graphical unitary groups approaches [107–109].

The integrals dlm
pqrs are given by:

d
lm
pqrs ¼ a

2

2

Z Z
wp r1ð Þwq r2ð Þ

~rr1l~rr2m � 3~rr1~rr2

r
5
12

" #
wr r1ð Þws r2ð Þd~rr1 d~rr2 ð34:43Þ

Using one of the modern algorithms for the calculations of one- and two-electron
integrals over gaussian basis functions, these integrals can be reduced to linear com-
binations of geometric second derivative integrals (i.e. Helgaker and Taylor [110]).

Physically, the dipole–dipole contribution is readily interpreted as the interaction
between two “smeared out” magnetic dipoles where the “smearing” is determined
from the second-order reduced spin density matrix of the state under consideration.
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In the simplest possible approach this distribution reflects the shapes of the squares
of the two singly occupied MOs of the system.

The summation over a four-indexed quantity in the MO basis implies either the
transformation of the two electron integrals to the MO basis (dlm

abcd fi dlm
pqrs, a,b,c,d

label AOs) or of the two electron quintet density matrix to the AO basis (qpqrsfi qabcd)
both of which are potentially time consuming for large molecules. However, Vahtras
et al. have shown that within the MC-SCF approximation, the range of the indices is
restricted to the orbitals in the active space (typically not more than 14) which
makes the computations quite feasible and the transformation of the density the
method of choice.

The contributions from the SOC arise in second order. However, these contribu-
tions are complicated since they do not automatically yield a ZFS tensor in the stan-
dard form SDS. This arises because the perturbation calculation involves matrix ele-
ments between states of different total spin. The precise form that the D-tensor
takes can be obtained from the evaluation of the second order part of Eq. 34.30) by
using the Wigner–Ekhard theorem [111] to simplify summations over MS compo-
nents as far as possible. We will not repeat the detailed derivation here [13] but only
quote the final results which show that the SOC contribution to the ZFS can be
written as a sum of three terms that come from excited states with S, S – 1 and S + 1.

D
SOC� 0ð Þ
lm ¼ � 1

S
2

X

b Sb¼Sð Þ
D
�1
b 0SS

X

i

h
SO
l ið Þsi;z

�����

�����bSS

* +
bSS

X

i

h
SO
m ið Þsi;z

�����

�����0SS

* +

ð34:44Þ

D
SOC� �1ð Þ
lm ¼ � 1

S 2S� 1ð Þ
X

b Sb¼S�1ð Þ
D
�1
b 0SS

X

i

h
SO
l ið Þsi;þ1

�����

�����bS� 1S� 1

* +

bS� 1S� 1
X

i

h
SO
m ið Þsi;�1

�����

�����0SS

* +
ð34:45Þ

D
SOC� þ1ð Þ
lm ¼ � 1

Sþ 1ð Þ 2Sþ 1ð Þ
X

b Sb¼Sþ1ð Þ
D
�1
b 0SS

X

i

h
SO
l ið Þsi;�1

�����

�����bSþ 1Sþ 1

* +

bSþ 1Sþ 1
X

i

h
SO
m ið Þsi;þ1

�����

�����0SS

* +
ð34:46Þ

where S+1 and S–1 are components of the standard spin vector operators [111].
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For convenience we have assumed an effective one-electron SOC operator. One of
the simplest possible choices is the operator which has been used by Koseki et al.
[112–114], where:

h
SO
l ið Þ ¼

X

A

n riAð ÞlAl ið Þ ð34:47Þ

where lAl ið Þ is the lth component of the orbital angular momentum operator relative
to center A and n riAð Þ is a suitable radial operator, i.e.:

n riAð Þ ¼ a
2

2
Z

eff
A

~rri �~RRA

���
���
3 ð34:48Þ

where Zeff
A is an effective charge for center A situated at point ~RRA and~rri is the posi-

tion operator of the ith electron. More sophisticated effective SOC operators are cer-
tainly feasible and have been discussed in the literature [22, 115–117]. In all cases
the necessary integrals over gaussian functions can be reduced to combinations of
geometric derivative integrals such that few technical difficulties arise [110].

It is evident from the formal apparatus developed above that the SOC contribu-
tion to the ZFS arises from differences in orbital motions. The physical picture may
be interpreted as follows: the SOC introduces some nonzero angular momentum
into the orbitally nondegenerate electronic ground state wavefunction. The asso-
ciated orbital motion can be regarded as a current, which according to the laws of
electromagnetism gives rise to a magnetic dipole moment perpendicular to the cur-
rent. The total net magnetic dipole moment of the current distributions then inter-
acts with the total spin angular momentum. The interaction energy then depends
on the relative orientations of the two magnetic dipole moments. A zero observable
effect arises if the orbital motion is isotropic, since in this case the orientation of the
spin angular momentum is energetically equivalent in all directions. Consequently,
it is the anisotropic orbital motion that gives rise to the observable SOC contribution
to the ZFS.

34.4
Calculation of Zero-Field Splittings

Ab initio calculations of ZFSs are relatively scarce in the literature. Most of the older
calculations are of limited reliability due to the technical and software limitations at
the time. While there are some reports on ab initio calculations of ZFSs it is only
recently that Vahtras et al. have developed and implemented a general methodology
which is compatible with mainstream quantum chemistry [14, 35]. Promising
results have been obtained with this method for a number of small and organic mol-
ecules in triplet states [35]. These papers also provide pointers to the older literature
on the subject. For the first excited triplet state of benzene Vahtras et al. find that
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the SOC contribution to the ZFS is very small (~ 10–5 cm–1) which confirms the
notion that the ZFS in organic molecules is usually dominated by the direct spin–
spin interaction. With a basis set of DZP quality and an active CASSCF space of
6 electrons in 6 orbitals, Vahtras et al. report a calculated D of 0.1583 cm–1 which is
surprisingly close to the experimental value of 0.159 cm–1. This result is remarkable
in view of the fact that the direct spin–spin coupling depends on the inverse third
power of the interelectronic distance. However, the mean interelectronic distance is
only crudely modeled in the slowly converging expansions based on orbital prod-
ucts. Thus, one would expect difficulties in the calculations of two electron observa-
bles of the type of the spin–spin coupling and indeed, Kutzelnigg in his textbook
has termed the computation of such quantities �almost hopeless’ [118]. However,
since the good results obtained by Vahtras et al. also extend to more complicated
molecules like naphthalene to pentacene, the situation may not be as severe as
assumed. It is to be expected that, now that the technical difficulties have been
essentially overcome, more experience on the typical and obtainable accuracy using
CASSCF wavefunctions will be gained in the near future.

Calculations of the spin–spin dipolar part of the ZFS on the basis of DFT calcula-
tions has been reported recently [119]. At the B3LYP level with the EPR-II basis for
carbon and EPR-III for hydrogen a value of D = 0.897 cm–1 was obtained for CH2 in
its lowest triplet state, in fair agreement with the experimental value of
D = 0.7567 cm–1. Note that in the evaluation of the expectation value of a two elec-
tron operator within DFT the assumption is made that the unknown many electron
wavefunction can be replaced by the Kohn–Sham reference determinant for the fic-
titious noninteracting system.

Ab initio calculations of the ZFS in transition metal complexes are even more
elusive. A recent study by Ribbing et al. [28–30] addresses the (dominant) SOC con-
tributions to the ZFS in [CrIII(1,3-propanedionato)3] using a CI approach. In this
method, the SOC operator is diagonalized in the basis of a (small) number of eigen-
vectors of the CI matrix. Note that this requires all MS components of all configura-
tion state functions with spin S to be included. The D-value is found a posteriori
from the small splittings of the ground state multiplet [28–30]. An effective charge
model has been used to represent the SOC operator and only the SOC within the
Cr(III) d-shell has been considered. Importantly, both quartet and doublet states
were included in the CI calculations. Excellent agreement with the experimental
value of D = 1.2 cm–1 has been obtained by this approach, the calculations predicting
values of D = 1.0–1.2 cm–1 [30].

The calculation of the SOC contribution to the ZFS within a DFT framework has
recently been reported [120]. The calculations showed fair agreement with experi-
mental data for large magnetic clusters such as [Mn12O12(RCOO)16(H2O)4] [120,
121]. However, details of how to extract the D-tensor from these calculations and a
discussion of the multiplet problem within DFT approaches to the ZFS has not been
given. In addition, it would be interesting to apply this method to well characterized
transition metal complexes with a single magnetic center where the intricate prob-
lem of how to properly treat the spin coupling between magnetic ions does not
occur.

34 Zero-Field Splitting558



The final two examples of ZFS calculations are taken from our own work and are
designed to show the principal challenges involved in calculating ZFSs of transition
metal complexes. The computational level in these calculations is the semiempirical
INDO/S method with single excitations on top of a multireference reference space
and (configuration averaged) ROHF orbitals. Despite its simplicity this method has
proven to be effective for the prediction of the excited states of transition metal com-
plexes, which is crucial for the reliable prediction of ZFSs. A more systematic dis-
cussion of the ZFSs of transition metal complexes is outside the scope of this chap-
ter and the reader is referred to a recent review which deals with the EPR properties
of transition metal complexes in dN configurations in detail [38].

Consider a high-spin Fe(III) center with S = 5/2 in a distorted tetrahedral environ-
ment. In the ligand field approximation, the high-spin d5 configuration with 5 elec-
trons in 5 orbitals gives rise to only a single sextet term (6A1) which is the ground
state. Consequently, the relevant low-lying d–d excited states are all of quartet multi-
plicity and will give rise to an important part of the ZFS. In addition, there will be
sextet excited states of charge-transfer nature which will also contribute to the ob-
servable ZFS (see Figure 34.7).

In order to appreciate the subtlety of the problem we first consider the contribution
of the first relevant quartet state (4T1

a) to the ZFS (from group theoretical selection
rules it follows that only states of T1 symmetry can have non-zero SOC with the 6A1

ground state). With perfectly cubic symmetry the ZFS is precisely zero, since it only
arises if the three Cartesian directions are inequivalent. Thus, nonzero ZFS is only
possible for a distortion of the tetrahedron which we take as either a flattening or
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compression. If only one-center SOC terms at the iron center are taken into account
and the metal–ligand overlap is neglected one gets the simple expression for the
SOC contribution of the first quartet state to the D-value as indicated in Fig. 34.8
[13].

In this figure, the metal-based MOs have been simply approximated as covalently
“diluted” metal d-orbitals (“L” refers to an appropriate ligand group orbital a2, b2

1

and c2 is the fractional metal character in the indicated MO and fFe is the one-elec-
tron SOC constant of the ferric ion). The distortion of the tetrahedron leads to a
splitting Dt2

between the r-antibonding t2 orbitals while the splitting due to the dis-
tortion is much smaller for the e-set. Note that Dt2

is negative if the dxy orbital is
energetically above the dxz,yz orbitals. E0 denotes the energy of the 4T1 term over the
6A1 ground state in perfectly tetrahedral symmetry. The important point is, that the
expression for the D-value has two main contributions: (1) the contribution of the
differential covalency (b2

1 versus c2 in the numerator) and (2) the contribution due
to the geometric distortion (E0 –Dt2

in the denominator). If one considers a flatten-
ing of the tetrahedron then Dt2

will be negative and b2
1 < c2 since the dxy-based MO

will become more antibonding then the dxz,yz-based MOs. Thus, the numerators
will tend to make the D-parameter negative while the denominators will tend to
make the D-parameter positive. Similar considerations apply to the contributions
from the other quartet states. Consequently, the D-value arises from a fine balance
between geometric distortion and differential covalency effects. Treatment of only
one of them, as in ligand field theory, which only treats the geometric distortion

effect, is therefore inappropriate. Experimentally, the D-value in FeCl4
– is negative

which indicates that the differential covalency prevails over the geometric distortion
contribution. These relationships were first worked out by Solomon and co-workers
[122, 123].

A full calculation of all quartet and sextet contributions to the ZFS in FeCl4
– has

been done at the INDO/S-CIS level [13] with the result shown in Fig. 34.9. It is
apparent from this figure that the sextet charge-transfer and quartet ligand field con-
tributions are of the same sign and similar magnitude. The calculations also cor-
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rectly predict a negative D-value for a flattened tetrahedron. The distortion angle
(Cl–Fe–Cl) at which the experimental value of –0.042 cm–1 is reached is within
2 degrees of experiment, which is considered satisfactory given the approximate na-
ture of the calculations and the smallness of D. In addition, the contributions from
the iron and chlorine SOC have been analyzed. The result in Fig. 34.9 shows that
the chlorine contribution to the quartet state D-value is negligible, while it becomes
significant for the sextet states. However, the contributions are not simply additive
as terms that are proportional to fFe fCl do also contribute to the final D-value. A full
discussion is given in Ref. [13].

A more recent example of a larger system is given by the Mn(III) complex
[Mn(salen)(H2O)2]+ with a S = 2 ground state [124]. This system has been of interest
in catalytic reactions. The D-value has been experimentally determined to be
~ –2 cm–1 [56] which is well reproduced by INDO/S-CIS calculations that include the
full quintet and triplet manifolds. Interestingly, in this case the quintets account for
only –0.3 cm–1 while the triplets account for as much as –1.7 cm–1 of the total calcu-
lated D-value of –2.00 cm–1. This is in strong contrast to the usual ligand field mod-
els for Mn(III) which attribute the entire ZFS to the quintet states alone and adjust
ligand-field parameters up to the point where this result is reproduced. Thus, one
can conclude that spin-flip ligand-field excited states are, in general, of crucial
importance for a correct interpretation of the ZFS in transition metal complexes. A
number of similar studies on metalloprotein active sites and model complexes
thereof have been reported [31–34].

34.5
Conclusions

In conclusion we hope that it has become obvious that ZFS effects are crucial for
understanding the physical properties of open shell molecules with more than one
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unpaired electron and that the effects can be studied by a wide variety of experimen-
tal methods. It hopefully also became evident that the quantum chemical calculation
of ZFSs is a challenging area of research which is, despite recent progress, still in its
infancy. However, in our opinion, there are good reasons to be optimistic that much
further progress will be made in the foreseeable future and that this will lead to
more reliable interpretations of the now rapidly emerging accurate experimental
data.
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35.1
Introduction

Radicals, species with at least one unpaired electron, have long been of interest.
This interest has grown tremendously with our ever-increasing understanding of
their role in biological systems [1–3]. For example, they are known to play central
roles in the aging process and the effects of radiation exposure [4]. Furthermore,
radical species are now known to play important roles in an increasing number of
biological enzymes, either as an integral part of the enzyme or as transient inter-
mediates.

Experimentally, important and powerful tools for the study of such species are
electron paramagnetic resonance (EPR) spectroscopy and related techniques [5–7].
These techniques take advantage of the fact that in a radical the unpaired electron(s)
is delocalized and thus, there is a non-zero probability that the unpaired electron
exists at each nucleus. The interaction of the spin of the unpaired electron with the
magnetic moment of each nucleus gives rise to a hyperfine structure which is fully
described by its hyperfine tensor measured by EPR spectroscopy. The hyperfine cou-
pling tensor of a given nucleus in a free radical is highly sensitive to its chemical
environment and hence, can be used not only to determine the spin density distribu-
tion of the radical, but also to deduce valuable information about the identity and
structure of the radical. It can be separated into an isotropic hyperfine coupling con-
stant (HFCC) Aiso and three anisotropic coupling constants, Txx, Tyy and Tzz, where
Txx + Tyy + Tzz= 0.

Currently, computational chemistry has become an attractive, alternative
approach to complement EPR spectroscopic techniques, since transient radicals are
equally amenable to computational investigation as stable long-lived species. How-
ever, such investigations do have their own inherent difficulties, in particular, deter-
mining a suitable computational method for reliably and accurately determining the
hyperfine coupling tensors of interest. Indeed, the insight gained from calculated
HFCCs has been found to be highly dependent on the level of theory being applied.
As a result, great effort has been made to understand the requirements of theory for
the accurate prediction of HFCCs [8, 9].
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35 Computation of Hyperfine Coupling Tensors to Complement EPR Experiments

There are a few recent reviews on computational strategies for computational
studies of biological systems in condensed phases [10] and on theoretical calcula-
tions of DNA base-derived radicals [11], amino acid-derived radicals [12], and quinoi-
dal radicals [13]. This chapter extends our earlier review [12] on the computation of
the hyperfine coupling tensors of biological radicals with updated literature. It sum-
marizes the understanding of HFCCs from a theoretical perspective, providing a
survey of methods that are suitable for the calculation of HFCCs and guidelines for
selecting an appropriate computational scheme for predicting HFCCs. Difficulties
in modelling radical species in matrices, and trends in treating environmental
effects, are discussed.

35.2
Insight Gained from a Conventional Ab Initio Approach

Isotropic HFCCs are related to the spin density at the nucleus. From a theoretical
point of view, the origin of the spin density at a nucleus plays a key role in under-
standing the mechanisms of hyperfine coupling [14]. In the 1980s, the reliable pre-
diction of HFCCs presented a challenging computational problem. The Hartree–
Fock method, which does not incorporate electron correlation, in combination with
the use of static gas-phase structures, generally predicted highly erroneous coupling
constants. Essentially, the inclusion of single, double and triple excitations at the
MRCI, QCI or CC levels of theory is necessary for obtaining accurate spin densities
at the nuclei for isotropic HFCCs. Good results obtained at lower levels of theory are
due to cancellation of errors (for a detailed analysis, see Chapter 30 by Engels).

35.3
Benchmark Results Using Conventional Methods on Static Gas-phase Structures

The establishment of calculated benchmark values for a given property, those that
set standards of accuracy and reliability within a set of well-defined conditions, has
long been a desirable goal in computational chemistry. Such results serve not only
to define the accuracy achievable by the current computational methods thus en-
hancing their use as a predictive tool, but also enable greater insight into the prob-
lem at hand, due in part to the explicit defining of conditions included or omitted
from the calculations. In computational chemistry, standard geometry optimizations
on a molecule effectively correspond to the molecule being isolated at a temperature
of 0 K, i.e., static, in the gas phase without any external environmental effects, i.e.,
in a field-free vacuum. Thus, �standard’ benchmark calculations are typically based
on the use of such structures.

The simplest chemical species are the atomic elements themselves. Thorough
investigations of the role of electron correlation and basis set effects were published
by Feller and Davidson in their classic paper entitled, “A multireference CI determi-
nation of the isotropic hyperfine constants for the first-row atoms B–F” [15]. Similar-
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35.3 Benchmark Results Using Conventional Methods on Static Gas-phase Structures

ly, Perera et al. [16] reported benchmark calculations on the atoms B–F at the highly-
correlated CCSD(T) level, employing very extensive basis sets (see Table 35.1). Al-
though the first-row atoms are simple atomic radicals, their high symmetry makes
it difficult to calculate their isotropic HFCCs accurately. From such studies it was
found that a more complete consideration of electron correlation and the use of
uncontracted s-orbital functions were essential for obtaining accurate values [15].
Excellent comments on the performance of various levels of theory on such radicals
have been previously made by Perera et al. [16].

Molecular radicals introduced researchers to the consequences of differences be-
tween computationally optimized and experimentally observed vibrationally aver-
aged structures, as a factor that affects HFCCs. An inherent assumption of the use
of static structures is that the effects of vibrational motion are negligible. For mole-
cules for which this assumption is acceptable, e.g., NH2, the MRCI method has
been found to behave quite well [23, 24]. The ideal optimized geometry should be
the converged result, i.e., increasing the level of theory has little or no further effect
on the optimized structure. However, the empirical choice of method for geometry
optimizations is often at fairly modest and less expensive levels at which reliable
geometries can generally be obtained. Since reliable HFCC predictions demand a
higher level of theory, a common approach for HFCC calculations is to employ a
computational scheme involving single-point calculations at a high level of theory,
based on structures obtained at a considerably lower level of theory. When no experi-
mental structural data is available for comparison, the choice of method and basis
set for obtaining optimized structures of the radical of interest is critical, and often
other criteria for determining the suitability of a particular method must be used,
e.g., performance of a method for related radicals [25]. In addition, the use of geom-
etries that minimize errors in the calculated HFCCs, has been employed in exami-
nations of the performance of single-point HFCC calculations [26].

Benchmark results obtained using highly correlated methods in combination
with large uncontracted basis sets, highlight the capability of computational chemis-
try for predicting accurate HFCCs. However, such approaches are generally too
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Table 35.1 Benchmark HFCC (in MHz) predictions of first-row atoms.

Method 11B(2P) 13C(3P) 14N(4S) 17O(3P) 19F(2P)

CCSD(T) /[23.12.10.4.2]a b 8.19 19.38 10.4 –31.77 300.18
CCSD(T) / [23.12.10.4.2]c 10.25 21.42 11.00 –33.16 302.87
Exptl. 11.6d 21.4e 10.4f 34.5g 301.7g

18.7h 22.5d

a) Based on a UHF reference determinant.
b) Ref. [17].
c) Based on a ROHF reference determinant.
d) Ref. [18].
e) Ref. [19].
f) Ref. [20].
g) Ref. [21].
h) Ref. [22].
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costly for moderate-size radicals and therefore are not practically feasible and are
inappropriate for common use. When the CCSD(T) level of theory with large basis
sets (such as aug-cc-pVQZ with s- and p-functions uncontracted) appears to be less
accurate when compared with experimental values, than when a smaller basis set
(such as DZP) is used, the effects of vibrational averaging have been considered
responsible for the results. The same is also said to be the case when the B3LYP
method in combination with a large basis set, is employed. This is illustrated by the
results of Petraco et al. [27] for the thioformyl radical (Tab. 35.2).

Because investigation of the temperature and environmental effects is technically
more difficult and expensive, such effects have not been included in the above
results. However, predictions of HFCCs for the first-row magnetic nuclei are very
reliable when vibrational averaging, solvent or matrix, spin–orbit coupling and rela-
tivistic effects are negligible.

35.4
The Performance of Contracted Pople Basis Sets for Small Radicals Consisting
Only of First-Row Atoms

The HFCCs of small radicals, in particular those containing three or fewer heavier-
than-hydrogen atoms, have been extensively studied using computational methods.
This is due in part to their small size which, as a result, has enabled the broadest
range of methods to be applied. Such studies have shown that HFCCs are quite sen-
sitive to the extent of consideration of electron correlation and to the basis set used.
To expand the limits of a computational approach beyond those imposed by the use
of very large fully-uncontracted basis sets, the potential of more computationally
tractable contracted or partially uncontracted (s- and/or p-functions uncontracted)
Pople basis sets has been assessed with a variety of methods. Table 35.3 shows the
single-point calculation performance of Pople basis sets with the QCISD and B3LYP
methods for a range of small radicals, employing optimized geometries obtained at
the QCISD/6-31G(d) level.

As can be seen, for carbon and oxygen, at the QCISD level, the 6-311+G(d,p) and
6-311+G(2df,p) basis sets give the most reliable results. In contrast, the isotropic
HFCCs of H and N are reasonably reproduced with all basis sets listed in Table 35.3.
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Table 35.2 Benchmark HFCC (MHz) predictions for HCS radical.

Method 1H 13C

CCSD(T)/aug-cc-pVQT// CCSD(T)/cc-pVQT 121.06 274.7
B3LYP/aug-cc-pVQT// CCSD(T)/cc-pVQT 127.35 281.85
CCSD(T)/DZP// CCSD(T)/cc-pVQT 120.06 304.51
Exptl.a 127.43 287.90

a) Ref. [28, 29].
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Atoms

This also highlights one of the unfortunate challenges for calculating HFCCs of
polyatomic molecules: not all atoms are necessarily treated equally well by a given
basis set.

35.5
Density Functional Theory: An Alternative to a Conventional Ab Initio Approach

Density functional theory (DFT) offers an attractive alternative approach to conven-
tional electron correlation procedures because it incorporates the effects of electron
correlation more cheaply, and thus has the potential to be applied to considerably
larger systems. However, this does necessarily depend on the correct choice of DFT
method and basis set for the molecule and property of interest. This is also true for
HFCCs. Despite the fact that several extensive assessments of DFT calculations on
HFCCs have appeared in the literature, a well-defined standard test set of radicals
for validating a particular computational model has not yet been established. It
should be noted that the remarkable performance of a particular DFT method does
depend to a certain extent on the fortuitous cancellation of errors due to incomplete
electron correlation and contracted basis set effects (see Chapter 30 by Engels and
Chapter 29 by Munzarov�).

However, promising results have been obtained using PBE0/EPR-III on CH3 and
H2CO+ radicals [10], B3LYP/EPR-III on first-row atoms and HOO [33], PWP86/
IGLO-III on OH, CH3, CN, NO2, H2O+, H2CO+, HCO, FCO, HCN–, FCN– and F2

–

[34] and NO2 and NO3 [35], PWP86/6-311G(2d,p) proton HFCCs on 22 substituted
benzene radicals [36] and B3LYP/6-311+G(2df,p) on OH, H2O+, CN and HCN– [26].
The above calculations suggested that combinations of certain gradient-corrected
functionals with appropriate basis sets can provide reasonably accurate results for
radicals containing only hydrogen and first-row atoms. Furthermore, as noted pre-
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Table 35.3 Effect of basis set on QCISD and B3LYP calculated Aiso values (in MHz) for the OH,
H2O+, CN, and HCN– radicals [26] using QCISD/6-31G(d) geometries.

Method Basis Set OH H2O+ CN HCN–

H O H O C N H C N
QCISD(T) 6-31G(d) –83.8 –59.1 –84.4 –109.0 561.6 –9.0 410.6 340.2 19.3

6-31G(d,p) –82.1 –59.1 –84.4 –108.7 561.6 –9.0 399.1 349.5 19.3
6-311G(d,p) –80.7 –42.9 –83.8 –78.5 585.2 –5.9 359.6 310.2 15.7
6-311+G(d,p) –80.4 –46.2 –83.5 –77.1 602.0 –6.7 350.3 210.7 20.7
6-311G(df,p) –75.7 –41.5 –79.0 –76.2 574.2 –7.3 360.7 308.3 14.6
6-311G(2df,p) –74.8 –45.4 –77.1 –79.0 595.5 –9.2 366.0 303.2 16.5
6-311+G(2df,p) –74.8 –48.5 –77.1 –78.5 603.7 –9.8 354.2 213.6 20.5

B3LYP 6-311+G(2df,p) –63.9 –31.9 –68.1 –52.1 524.9 –19.3 346.4 241.9 15.4
usp-6-311+G(2df,p) –63.6 –44.0 –67.8 –65.6 518.5 –16.0 346.4 240.5 17.7
Exptl.a –73.4 –51.3 –73.1 –83.2 588.5 –12.6 384.5 211.3 19.9

a) Ref. [30–32].



viously, the HFCCs for different atoms exhibit different basis set dependences. For
example, for the B3LYP method, the H HFCCs are not sensitive to uncontraction of
the s- and p-basis functions in the 6-311+G(2df,p) basis set. However, the corre-
sponding basis set in which they are uncontracted, usp-6-311+G(2df,p), gives much
better oxygen HFCCs with little change in the H HFCCs, see Table 35.3.

Recently, extensive DFT HFCC calculations have been performed for radicals con-
taining second-row atoms, in particular sulfur and phosphorus, and shown that
such methods can provide reliable HFCCs [37–41]. For example, for the H2C2S2N
radical, the B3LYP/6-31G(df,p)//B3LYP/6-31G(d) method gave 1H, 14N and 33S
HFCCs in good agreement with the experimental values [39]. In addition, investiga-
tions on a series of six neutral mono-, bi- and tri-cyclic dithiazole radicals, found
that the B1LYP/(EPR-III for H, C, N and 6-31G(df) for S) method using structures
obtained experimentally by X-ray crystal structure determinations or optimized at
the B3LYP/6-31G(d) level, gave 1H, 14N and 33S HFCCs that were in quantitative
agreement with experimental data [37]. For the calculation of the 31P HFCC in phos-
phorus radicals, a B3LYP/TZVP//MP2/6-31(d,p) scheme is recommended on the
basis of an assessment of 35 P-containing radicals [41].

In addition to the development of methods for the study of organic radicals, tre-
mendous progress has also been made in the study of transition metal complexes
[42, 43]. It has been found that the performance of a given functional is very differ-
ent for different classes of metal complexes. This behavior arises because present
functionals have difficulty in accurately describing core–shell spin polarization
while avoiding deterioration due to spin contamination [42]. Thus, the choice of
DFT method to be employed for a particular transition metal complex should be
guided by the electronic structure of the metal complex (see Section 29.3.5 in Chap-
ter 29). Neese has developed a method to calculate spin–orbit coupling contributions
to the hyperfine coupling and has shown that B3LYP, in the majority of cases, is
more accurate than other functionals [44, 45].

35.6
Consideration of Environmental Effects

A common feature of all the calculations discussed above, is that they neglect the
effects on HFCCs arising from external sources, e.g., a solid matrix. However, it is
known that when free radical systems are studied in a crystalline or aqueous envi-
ronment, the particular environment can have significant effects on their structures
and HFCCs [46–49]. Accounting for and describing such effects have always been
difficult tasks for computational chemists. However, tremendous progress in devel-
oping strategies for including the environmental effects on molecular structures
and hyperfine couplings has been made [47–51].

The most direct approach for including environmental effects is to use the super-
molecular model approach in which a unit cell, or a sufficient number of the environ-
ment molecules centered around the target radical, is explicitly included in the cal-
culation. An advantage of this approach is that electrostatic effects arising from the
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surrounding media as well as explicit interactions between the target radical and
molecules of the surrounding environment are included. For example, Pauwels and
co-workers have built two cluster models that include 6 and 14 L-a-alanine mole-
cules, respectively, around a zwitterionic alanine radical H3N+C(CH3)COO– [52, 53].
For such calculations, they employed an ONIOM approach in order to reduce the
computational cost for geometry optimization of such a large cluster.

An alternative approach is the use of periodic boundary conditions (PBC). For
example, Imptota and co-workers [54] have applied such an approach to the study of
molecular crystals of stable nitroxides, species whose magnetic properties are
strongly dependent on the hydrogen-bond network within the crystals. In particular,
they found that the use of the PBE/6-31G(d) method performs remarkably well for
the crystals of three nitroxide derivatives: 2,2,6,6-tetramethylpiperidin-1-oxyl
(TEMPO) and its 4-hydroxy and 4-hydroxyimino derivatives [54]. The calculated ge-
ometries, spin populations and the HFCCs are in agreement with the available
experimental results, highlighting the complementtary nature of computational and
experimental investigations for designing new organomagnets.

The most common and widely used approach is the use of a self-consistent reac-
tion field (SCRF) to model the general electrostatic effects arising from the radical
environment (see Chapter 12 by Ciofini). This can then be applied directly to the
radical, i.e., complete neglect of explicit radical–environment interactions [55], or by
applying to small cluster-systems consisting of a few surrounding molecules that
directly interact with the target radical; in effect a simplified supermolecular model
approach [48, 56, 57]. Rega et al. have provided a very comprehensive analysis of
solvent effects on the HFCCs of the glycine anion radical H2NCHCOO– in aqueous
solution [49].

SCRF methods include the Onsager model and the polarizable continuum mod-
els (PCM, IPCM, SCIPCM and CPCM) [58]. The applicability of the SCRF methods
is well illustrated by the numerous computational investigations on a diverse variety
of biological radicals in solution or matrices, that have appeared in the literature
[46–48, 56, 57, 59–67]. For instance, SCRF calculations have appeared on the tyrosyl
dipeptide radical and analogues [65], 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl-4-
carboxylic acid and analogue radicals [62], glycine amino acid radicals [56, 57, 61],
1,2- and 1,4-benzosemiquinone radicals [66], cytosine radicals [59], and the radical
anions of the nucleobases uracil, thymine, and various methylated deriviatives [47,
48]. In general, the best approach for choosing a suitable SCRF-based method for
the radical and environment of interest, is to first test on a related radical for which
experimental HFCCs are available. For example, Langella et al. have shown that the
CPCM-PBE0/EPR-II//CPCM-PBE0/6-31G(d) method is sufficient to describe sol-
vent effects on the hyperfine couplings of a tyrosyl dipeptide radical and analogues
[65]. (The SCRF-method notation denotes that the calculation has been performed
using the given method and applying the given SCRF procedure.) In contrast, for
zwitterionic radicals of amino acids in matrices it has been shown that the PWP86/
6-311G(2d,p)//Onsager-B3LYP/6-31+G(d,p) method can provide accurate proton
HFCCs [46, 60, 61]. While the comparatively straightforward Onsager-B3LYP/
6-31G(d) method has been shown to give HFCCs in good agreement with experi-
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ment for uracil, thymine and cytosine, and various methylated derivatives [47], it
should be noted that a systematic basis set and SCRF model investigation suggested
that the CPCM-B3LYP/6-31G(d) and CPCM-B3LYP/6-31G(d,p)//CPCM-B3LYP/
6-311+G(d,p) methods gave the best agreement with experiment for the radical
anions of uracil, thymine and their methylated deriviatives, although this is most
likely due to fortuitous cancellation of errors [48]. The SCRF method IPCM has also
been employed, with the critical effects of aprotic and protic solvents on the HFCCs
of 1,2- and 1,4-benzosemiquinone being successfully interpreted using the IPCM-
B3LYP/D95//B3LYP/D95 method [66].

It should be noted that in some of the above cases, structures were optimized
within an SCRF method to give structures that reflect the effect of the surrounding
dielectric continuum (e.g., those described above for the zwitterionic amino acid rad-
icals) while in other cases, the gas-phase structures were simply used (e.g., those
described above using the IPCM method). In the former case, zwitterionic amino
acids do not correspond to energy minima in the gas-phase but do in solution,
hence the need to optimize using an SCRF method.

35.7
Illustration of the Applications of DFT Methods to Biological Radicals

There are numerous ways in which computational investigations can be used to
complement experimental studies, particularly for biological radicals. Indeed, there
are many good examples of such studies in the literature. For this present brief
review, we have chosen to simply highlight a couple of ways in which DFT calcula-
tions have been applied to biological radicals, and how they have complemented
experimental investigations.

35.7.1
DFT Investigations on Amino Acid Radicals Generated in an Irradiated Crystal

In 1997, Brustolon et al. investigated radicals arising from irradiation of amino acid
crystals, and assigned three newly observed hyperfine coupling tensors to the radical
NH2CH2 [68]. In 1998, Sanderud et al. showed this to be incorrect and proposed
that the radical was NH2CHCOOH, i.e., the radical formed by homolytic cleavage of
a C–H bond in the –CH2– group [69]. In addition, they assigned three more ob-
served hyperfine couplings to another conformer of NH2CHCOOH. The two experi-
mentally observed conformers of NH2CHCOOH are denoted hereafter as R# and
R*. The Ha isotropic HFCCs of R# (–30.15 MHz) and R* (–24.62 MHz) differ signifi-
cantly. Based on the McConnell relation and the Gordy–Bernhard method, the
smaller absolute isotropic HFCC for the proposed R*, was ascribed to non-planarity
of the radical center in the glycine crystal. Furthermore, experimental data sug-
gested a twist angle of 24.2� between the OCO and CCN planes in R*.

When NH2CHCOOH was optimized in the gas-phase at the B3LYP/6-31+G(d,p)
level, it was found to have four possible conformations, shown in Fig. 35.1 [61]. The
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computed HFCCs in for the four radical conformers R-I, R-II, R-III and R-IV, and
the experimental HFCCs of R# and R* are listed in Table 35.4.

From careful comparison of the calculated HFCCs for the four conformers of
NH2CHCOOH, they can be divided into two groups, with R-I in one group and the
rest in a second group. The isotropic HFCCs of Ha in R-II, R-III and R-IV are all in
similar agreement with the experimental value of R# (within 6–8 MHz), however,
they differ significantly from the experimental value of R* by at least 12 MHz. The
anisotropic components of the Ha hyperfine coupling tensors for the above confor-
mers are all in similar agreement with the experimental values of both R# and R*.
Except for the isotropic HFCC of H2 in R-IV, the isotropic HFCCs and anisotropic
components of the two amino protons of R-II, R-III and R-IV are in good agreement
with the corresponding experimental values of both R# and R*, which are them-
selves very similar. Larger deviations are found between the calculated isotropic and
anisotropic HFCCs of Ha and the experimental values of R# or R* in R-I than in R-
II to R-IV. In addition, the computed amino-proton isotropic H1 HFCCs
(25.03 MHz) in R-I and the experimental values R# and R* (–18.05 and –16.87 MHz,
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Table 35.4 PWP86/6-311G(2d,p)//B3LYP/6-31+G(d,p) calculated HFCCs [61] (MHz) of R-I, R-II,
R-III, R-IV and the experimental values of R# and R*.

Tensor R-I R-II R-III R-IV Exptl.a

(R#) (R*)

Ha Aiso –40.41 –36.10 –38.03 –37.61 –30.15 –24.62
Txx –24.95 –22.26 –22.36 –23.47 –17.24 –16.22
Tyy –2.04 –2.14 –2.06 –1.38 –0.19 –1.54
Tzz 26.99 24.40 24.42 24.85 17.48 17.77

H1 Aiso 25.04 –17.01 –16.39 –16.02 –18.05 –16.87
Txx –12.60 –16.08 –15.81 –14.96 –16.00 –17.25
Tyy –5.52 –6.45 –5.04 –5.74 –4.18 –4.37
Tzz 18.12 22.53 20.85 20.70 20.28 21.62

H2 Aiso –12.78 –14.27 –14.78 –10.70 –16.79 –15.46
Txx –13.99 –19.26 –17.60 –18.02 –15.39 –16.42
Tyy –4.83 –5.42 –4.54 –4.65 –2.94 –3.99
Tzz 18.82 24.67 22.15 22.67 18.34 20.40

a) Ref. [69].
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Figure 35.1 Four conformers of NH2CHCOOH.



respectively) are of the same magnitude, however, their signs are opposite. Thus, R-I
can be neither R# nor R*. Although the above calculations using gas-phase opti-
mized structures of R could not distinguish between R# and R*, it was concluded
that the experimentally observed signals assigned to R# can be due to one confor-
mer, or a mixture of the R-II, R-III and R-IV conformers.

In addition, it was noted that the calculated Ha isotropic HFCCs of R-II, R-III and
R-IV are in closer agreement with the experimental isotropic HFCCs (33.0 MHz) of
NH2CHCOOH in solution [70]. Hence, it was suggested that the deviation of the
calculated Ha isotropic HFCCs of R-II to R-IV from the experimental values of R# is
likely due to crystal-packing effects, which were not taken into account by the above
calculations.

An experimentally suggested twist angle of 24.2� between the NCaC1 and O1C1O2

planes in R* implies that the two amino protons and the two carboxylic oxygens are
constrained by intermolecular hydrogen bonding. The effect of the two-plane twist
on the Ha, H1 and H2 HFCCs of R# was investigated by re-optimizing only Ha

related geometrical parameters, i.e., Ha–Ca, —HaCaC1, and —HaCaC1N in R-II,
R-III and R-IV. The twisting of the NCaC1 plane with respect to the O1C1O2 plane
was carried out by incrementally increasing the absolute value of —O2C1CaN by 10�
from 0�. The variation of the isotropic HFCCs of Ha, H1 and H2 in R-II with respect
to the twist angle is shown in Fig. 35.2.

The corresponding plots for R-III and R-IV exhibit the same pattern. The absolute
isotropic HFCC of Ha decreases as the twist angle increases in R-II, R-III and R-IV.
The isotropic HFCC of one amino proton (H1) increases as the isotropic HFCC of
the other amino proton (H2) decreases in R-II, R-III and R-IV. As the isotropic
HFCCs of H1 and H2 become equal (see Fig. 35.2), the average (H1,2

ave) of the iso-
tropic HFCCs of H1 and H2 decreases slightly. However, the H1,2

ave values are all
very close to the average of the experimental H1 and H2 isotropic couplings in R*
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Figure 35.2 Variation of Ha, H1, H2, and H1,2
ave isotropic

HFCCs in R-II.



(16.16 MHz). It should be noted that by varying the twist angle, one is able to pro-
duce changes in the calculated Ha and H1,2

ave HFCCs, similar to the experimentally
observed differences between R# and R* (see Tab. 35.4). Thus, although the calcula-
tions are unable to determine the conformation of R*, it does support the experi-
mental conclusion that R* is only a twisted configuration of R# fixed by intermolecu-
lar hydrogen bonding in glycine crystals.

35.7.2
Compromise Computational Scheme for Treating Fairly Large Radicals

The diverse array of radicals of biological or chemical interest is far more than those
few mentioned briefly above. A majority of biological radicals are rather big, such as
the bacteriochlorophyll a radical cation (Fig. 35.3). For molecules of this size, it is
usually possible to optimize their structures with a DFT method, such as B3LYP, in
combination with the modest 6-31G(d) basis set; an approach that generally provides
reliable geometries. However, the existence of substituents on a core model chemi-
cal structure, such as the groups peripheral to the main aromatic system in chloro-
phyll a radical cation, can give rise to many possible conformations of the same sys-
tem. A complete conformational search using a DFT approach is often too expensive
for present computational resources. Thus, for fairly large radical systems, a com-
promise has often to be made by using a model radical system and reasonably cheap
basis sets for a meaningful description of the experimental system in question. The
common practice is to simplify the chemical system by replacing those unnecessary
substituents with hydrogens. For example, the model I (Fig. 35.3b) and model II
(Fig. 35.3c) chemical systems have been used by O’Malley et al. [71] and Sinnecker
et al. [72], respectively, to model the real bacteriochlorophyll a radical cation (Fig.
35.3a). Indeed, they found that use of the B3LYP/6-31G(d)//B3LYP/6-31G(d) and
B3LYP/EPR-II//BLYP/DZVP methods respectively, produced 14N and 25Mg isotropic
hyperfine couplings for the bacteriochlorophyll a radical in excellent agreement
with those reported for bacteriochlorophyll a in aqueous solution [71].
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Figure 35.3 (a) Bacteriochlorophyll a radical cation, (b) model I
and (c) model II bacteriochlorophyll a radical cation.



A similar computational scheme to those illustrated above has provided good
HFCCs for the chlorophyll radical cation and anion [71, 73, 74], bacteriopheophytin
a radical anion [75–77], and bacteriochlorophyll radical cation and anion [71, 72].

For accurate prediction of the HFCCs of particular atoms within a portion of a
moderate size radical, D’Amore et al. have applied an ONIOM-like strategy in which
the whole biological radical is used: the entire radical is treated with the PBE0 func-
tional, while the target portion of the radical is treated at a considerably higher level
of theory, QCISD. In effect, this approach is similar to those previously discussed
for inclusion of environmental effects. Their “ONIOM-like strategy” HFCC calcula-
tions for the nitrogen in a 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl-4-carboxylic
acid analogue provide a possible avenue for correcting, or improving, DFT results
when needed [62].

35.8
Summary

In the last few decades, the HFCC property of free radicals has been well understood
through complementary computational and experimental investigations. In general,
CCSD(T) or QCISD(T) levels of theory in conjunction with appropriate basis sets
are the preferred choices for calculating accurate HFCCs for small radicals. Indeed,
such methods, when feasible, provide benchmark results. The DFT functionals
B3LYP, PWP86, PBE and BLYP, in combination with appropriate well-balanced
basis sets, have been shown to provide comparable results or even better than
CCSD(T) or QCISD(T), due in the most part to fortuitous cancellation of errors. For
DFT methods, many radical systems do not show strong basis set dependence. This
allows large biological and chemical radicals to be investigated. In particular, it is
now feasible to computationally tackle the HFCCs of radicals within environments
of experimental relevance. Using the state-of-the-art SCRF models in combination
with small cluster models to consider the bulky and explicit solvent effects, it is pos-
sible to interpret many observed hyperfine couplings of radicals that gas phase cal-
culations cannot explain.
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36.1
Introduction

Transition metal ions are essential for all forms of life. They are found in the active
sites of metalloproteins which constitute about 40% of all known enzymes. Many of
these active sites feature ions in open-shell situations. Consequently the array of
experimental techniques that probe the paramagnetic properties of the active sites
(EPR, ENDOR, ESEEM, MCD and M�ssbauer spectroscopy) are among the most
frequently used in the study of these proteins. These techniques yield the ground
state spin-Hamiltonian (SH) parameters of the active sites that must subsequently
be interpreted in order to obtain reliable molecular level information. This process
may be significantly facilitated by combining the experimental studies with results
from quantum chemical calculations of spectral parameters that are the subject of
this book. However, while the number of studies that report calculations of SH pa-
rameters for radicals of biological significance is substantial and rapidly growing,
the number of studies that attempt the calculation of SH parameters of biological
transition metal active sites is limited. We will give a brief summary of calculations
that have been done on actual enzyme active sites, model complexes thereof and
some molecules that have served to calibrate theoretical approaches (for other
reviews see Refs. [1, 2]).

A few (perhaps too) general statements about the reliability of the various theoret-
ical approaches appear appropriate: in general high level ab initio methods with
large basis sets that take account of static and dynamic correlation are the most reli-
able but most of them are not yet applicable to large paramagnetic transition metal
complexes (see Chapter 33 by Lushington). The Hartree–Fock method itself is sig-
nificantly inferior to DFT approaches for all EPR properties. Modern DFT methods
(hybrid and GGA functionals) combined with basis sets of at least double-zeta plus
polarization quality give relatively reliable results ( within ~10% of experiment) for a
range of properties including quadrupole couplings and ligand hyperfine couplings.
Quantitative accuracy for metal hyperfine couplings and g-tensors has not yet been
achieved with these methods and errors of a factor of ~2 are not uncommon (see
Chapters 32 by Patchkovskii and Schreckenbach and 29 by Munzarov�). Older DFT
methods such as the Xa-scattered wave (Xa-SW) formalism suffer from the severe
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approximations made in the muffin tin potential and need extensive semiempirical
adjustments in order to achieve agreement with experiment. The only semiempiri-
cal method that has been successfully applied to open shell transition metal spec-
troscopy is the INDO/S method. It typically gives results for g-tensors in transition
metal complexes that are as good or better than DFT values. It is presently the only
alternative to ligand-field theory (LFT) in approaching the zero-field-splitting (ZFS)
of transition metal complexes. The method appears to predict the sign of the ZFS
correctly in most cases and the magnitude typically within a factor of ~2. Hyperfine
couplings predicted by INDO/S are restricted to ligand nuclei and are, at most, of
qualitative significance. Furthermore the semiempirical approaches typically show a
larger scatter than first principles methods due to the crude approximation made
and the minimal valence basis sets assumed (see also Chapter 34 by Neese). They
are nevertheless several orders of magnitude faster than ab initio or DFT methods.
Approaches of the extended H�ckel type are only of historical value.

36.2
Biological Metal Sites

36.2.1
Iron

36.2.1.1 Iron–Sulfur Sites
Iron–sulfur sites are ubiquitous in biology and are mainly involved in transferring
electrons. They exist in mononuclear centers of the rubredoxin type with
[Fe(SCys)4]1–,2– coordination and in higher nuclearity clusters with bridging sulfido
ions of the type [Fe2S2]2+,1+, [Fe3S4]1+,0, [Fe4S4]3+,2+,1+. Most of the common oxidation
states can be probed with EPR which provides invaluable information [3, 4]. Compu-
tationally, the paramagnetic properties of the oxidized rubredoxin site were perhaps
first studied by Loew with the iterative extended H�ckel method [5]. Since the meth-
od already included spin–orbit coupling (SOC) between the sextet ground state and
the ligand field excited quartet and doublet states, a correct interpretation of the
zero-field splitting (ZFS), the effective g-values and the magnetic moment was possi-
ble [5]. Much more recently the paramagnetically shifted NMR signals (proportional
to the Fermi contact interaction) of the same system were studied by hybrid density
functional theory (DFT) employing a large 104 atom model and the 6-311G** basis
set [6] (for a general discussion about paramagnetic NMR see Chapter 20 by Moon
and Patchkovskii). Fairly good agreement with experiment was obtained, the slope
of the correlation line being 0.93–0.96 for protons and 0.85–0.94 for 15N nuclei. Par-
tial geometry optimization improved the agreement with experiment [6]. Pioneering
work on the interpretation of the ZFS in the reduced and oxidized active sites in
terms of anisotropic covalency and geometric distortion (see Chapter 34 by Neese)
was done by Solomon and co-workers [7–9] and used a combination of experiment
and adjusted Xa-SW calculations. The reduced site in rubredoxin was recently stud-
ied in detail with DFT methods and in conjunction with ligand field arguments by
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Vrajmasu et al. [10]. The authors estimated the relative contributions to the ZFS
parameter (see Chapter 34 by Neese) to be: 51% from the spin quintets, 42% from
the spin triplets and 7% from the direct spin–spin interaction. The importance of
the S–C–Fe torsion angles for the paramagnetic properties of the reduced active site
was stressed [10].

The DFT analysis of higher nuclearity clusters was pioneered by Noodleman in
the early 1980s [11–16] using the broken symmetry (BS) methodology [17] to over-
come the restrictions of a mono-determinantal approach in DFT. Using the method-
ology of Geurts et al. [18], Noodleman already provided DFT predictions for the anti-
ferromagnetically coupled [Fe2S2]1+ core with St= 1/21) and was able to rationalize
many of the experimental findings [11]. This work was later continued by Mouesca,
Noodleman and co-workers who interpreted the hyperfine properties of the higher
nuclearity clusters on the basis of BS-DFT results and in combination with high-res-
olution spectroscopic data [19–24].

36.2.1.2 Hemoproteins
The second ubiquitous form of iron in nature is in the active sites of hemoproteins.
While these systems have been extensively studied with quantum chemical methods
for at least four decades, high level calculations of magnetic resonance properties
have only emerged more recently. The g-tensor of low-spin ferric hemes has been
used for a long time to extract crystal field parameters in terms of a ligand field
model (for reviews see Refs. [2, 25]). The computational challenge in predicting the
g-tensor with quantum chemistry is the near orbital degeneracy of the low-symmetry
split 2T2g ground term which makes perturbational approaches unstable. The meth-
od of choice is therefore to include the SOC variationally and extract the g-tensor
with first order perturbation theory with respect to the Zeeman interaction. This
approach has been taken by van Lenthe et al. [26] who arrived at promising results
with the relativistic two component ZORA method and the BP86 functional [27].

Another “trademark” EPR signal arises from the binding of the NO radical to low-
spin FeII hemes, which gives rise to a characteristic rhombic EPR signal with ob-
served nitrogen hyperfine structure in the gmid region [25]. This signal has been
widely used to probe ferrous active sites in hemoproteins but the interpretation has
always been difficult. A recent detailed study by Patchkovskii and Ziegler used dou-
ble perturbation theory to study the g-tensor of these nitrosyl porphyrins [28]. The
quantitative agreement with experiment was not entirely satisfactory but the orienta-
tion of the g-tensor was in agreement with the experimental findings and overall the
calculations gave much insight into the EPR properties of nitrosyl porphyrins. A
second paper by the same authors dealt with d1 metal porphyrins [29]. The paramag-
netically shifted NMR signals of hemoproteins have recently been studied by Old-
field and co-workers with DFT methods [30].
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36.2.1.3 Non-Heme Iron
A large class of iron proteins contains mono or dinuclear iron sites which perform a
wide variety of chemical reactions [31]. Since the ligands to these sites are typically
of the weak-field type, the majority of these sites exist in high-spin states (St= 5/2 for
Fe(III) and St= 2 for Fe(II)). Thus, the main EPR property of interest in these sys-
tems is the ZFS. Using the INDO/S-CI methodology described in Chapter 34 [32], a
variety of these sites were recently studied in combination with MCD spectroscopy
[33–36]. The combination of ZFS calculations with variable-temperature, variable-
field (VTVH) MCD measurements allows the polarization of the observed electronic
transitions to be determined from randomly oriented molecules in frozen solutions
[37]. This ultimately leads to a high-resolution, experimentally calibrated binding
picture of the active sites. The first application was to the model system [Fe(EDTA)
(O2)]3– where the methodology gave insight into the nature of the side-on FeIII–O2

2–

bond and its covalency [34]. An enzyme study along these lines was reported for the
active site of 3,4-protocatechoate dioxygenase (3,4 PCD) where the anisotropic cova-
lency of two coordinating tyrosine residues and their relation to catalysis was the
focus of interest [36]. More recently, Brunold and co-workers have used the same
methodology with good success. In a study of manganese and iron-superoxide dis-
mutases (MnSOD and FeSOD) the combined approach led to insight into the nature
of active site protonation/deprotonation events which turned out to arise in the sec-
ond coordination sphere and to be crucial for catalysis [33]. A second study
addressed the binding of the substrate-analogue azide to the active site of FeSOD
and could resolve some puzzling old observations that turned out to be related to
the coordinative flexibility of the coordinating azide ion [38]. A third study was
related to NO binding to FeSOD. In this case a St= 3/2 {FeNO}7 site is formed (the
superscript seven refers to the number of metal d plus NO-p* electrons). Again, the
calculations provided insight into the origin of the two different species observed in
the experiments which, according to the analysis, differ by the FeNO bond angle
[39]. In addition, the INDO/S-CI calculations were able to correctly predict the com-
plicated ordering of multideterminantal spin states and confirmed the broken-sym-
metry DFT prediction [40] of antiferromagnetic coupling between a high-spin FeIII

(SFe = 5/2) and an NO– (SNO = 1) to give the observed St= 3/2 [39].
Low-spin iron-ions exist in a few non-heme iron sites. Most notably, the antican-

cer drug bleomycin features a unique ligand field which involves modified histidine
and pyrimidine residues. The EPR g-tensor and the 17O hyperfine coupling (HFC)
in �activated bleomycin’ (ABLM, a low-spin FeIII––OOH complex) together with opti-
cal and M�ssbauer spectra were studied using the INDO/S-CI methodology [35].
The importance of third order corrections for the g-values of low-spin ferric sites was
pointed out. The crucial intra-2T2g transitions were experimentally observed for the
first time and validated the popular ligand field model for the g-tensor arising from
the 2T2g configuration. However, even in this orbitally almost degenerate case the
multiplets arising from t2gfi eg excitations play a non-negligible role for the g-shift
[35].

Low-spin ferrous nitrosyls with St= 1/2 are not restricted to porpyhyrins but also
occur in model systems with suitable ligands. The EPR properties of the complexes
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[M(CN)5(NO)]3– (M = Fe, Ru, Os) were calculated with the two-component ZORA
method [41]. A second study addressed the question of iron valencies in the series
[Fe(CN)5(NO)]2–,3–,4– and concluded that the redox steps are mainly ligand centered
[42]. Another study addressed the question of bonding and EPR properties of iron
nitrosyls in the complexes [Fe(pyS4)(NO)]0,+1 [43]. The conclusion was reached,
again, that the reduction is essentially ligand centered and that the EPR properties
are best interpreted in terms of backbonding between a central low-spin FeII and a
neutral NO. ligand. EPR parameters calculated with coupled perturbed Kohn–Sham
theory and the BP86 and B3LYP functionals successfully reproduced the experimen-
tal data and supported this interpretation [43].

36.2.2
Copper

36.2.2.1 Blue Copper Sites
The mononuclear blue copper site in small electron transfer proteins like plastocya-
nin and azurin became a trademark of bioinorganic chemistry and many original
concepts have been worked out by studying these centers. The copper ion is situated
in a distorted tetrahedral environment with two �normal’ Cu–His bonds and an ex-
tremely short Cu–Scys bond in an almost trigonal arrangement, as well as a methio-
nine at much larger distances. The first correct interpretation of the electronic struc-
ture, EPR properties and optical spectra of the species was provided in the work of
Solomon and co-workers [44–52]. At the time, the scattered-wave Xa method was
used to study the spectroscopic properties of the site. EPR g-values, second-order
HFCs as well as absorption and MCD spectra were calculated by diagonalizing a
simplified SOC operator in the basis of St = 1/2 configurations formed from the
Xa-SW orbitals [45, 48]. After adjusting the atomic sphere sizes to compensate for
the tendency of DFT methods to produce too covalent bonding (which was perhaps
realized for the first time in this work), fairly good agreement with experiment was
obtained. The results showed that the blue copper site features an extremely cova-
lent Cu–Scys bond with only ~38% copper 3d-character in the singly-occupied MO in
the ground state [45, 48]. The present consensus appears to be that the tendency for
overly covalent bonds in DFT is an artifact caused by the self-interaction error in
present day DFT functionals, most importantly in the exchange part (e.g. Ref. [53]).
Numerous theoretical studies were reported for the blue-copper site but few have
directly calculated EPR parameters. An exception is the work of van Gastel et al.
who used a multireference CI (MR-CI) method and successfully predicted g-values
and nitrogen HFCs of the blue-copper site [54]. The INDO/S method was also used
in combination with a spin–orbit coupled CI implementation for the prediction of
the g-values [55]. A complete study of the proton and nitrogen couplings in blue
copper centers based on the hybrid B1LYP functional was reported and showed rea-
sonable agreement with experiment for most couplings but with a tendency to over-
estimate dipolar HFCs [56].
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36.2.2.2 CuA

The CuA site is a fascinating mixed-valence system that features two copper ions of
formal valence Cu1.5 which are bridged by two cysteine thiolates and are capped by
two histidine nitrogens and two weaker coordinating ligands at longer distances.
This arrangement gives rise to the complete delocalization of the single unpaired
electron over both coppers and the thiolate sulfurs, as becomes evident in a seven
line hyperfine pattern in the EPR spectra of CuA centers [57, 58]. The site was exten-
sively studied with advanced EPR methods as well as electronic structure calcula-
tions. A combination of INDO/S-CI and BP86 DFT calculations was used to success-
fully interpret the EPR g-tensor, hyperfine couplings and optical spectra of CuA

[57–59]. A significant number of theoretical studies using DFT methods have later
been performed on CuA but no other calculations of EPR parameters have been
reported to date.

36.2.2.3 Model Complexes
The EPR properties of the CuII ion have been studied fairly extensively in different
Werner-type coordination environments with quantum chemical methods. In all of
these studies it became evident that the CuII ion, despite its formally simple d9 elec-
tron configuration is a difficult case. On top of the increasing importance of SOC
and scalar relativistic effects as well as the large dynamic correlation in the �crowded’
metal d-shell, an important point is that the singly occupied MO is strongly r-anti-
bonding with the ligands and thus, any shortcoming of the theoretical method in
the description of the metal–ligand covalency shows up directly as a significant
error in the calculated properties. Thus, Hartree–Fock based methods have a rather
strong bias towards too ionic bonding while DFT methods tend to give exaggerated
covalencies [60, 61]. In particular, g-value predictions with DFT methods have been
particularly difficult and large errors have been observed for the gmax shift in all stud-
ies [62, 63]. These were attributed to both, exaggerated metal–ligand covalencies and
too large d–d- excitation energies in Ref. [64]. Although not in a biological context,
the work of Pierloot et al. should be mentioned; this demonstrated that fairly good g-
value predictions can be obtained under some simplifying assumptions with a sum-
over-states-like CASPT2 method [65]. In addition, the INDO/S-MR-CI method was
fairly successful in predicting the g-values of a series of model complexes, thus lend-
ing credence to the bonding descriptions derived from these simple calculations
[66]. It is well known since the first days of ligand field theory that 63,65Cu HFCs
contain large contributions from the Fermi contact term, the spin-dipolar contribu-
tion and the SOC, which makes their prediction very challenging. Reasonable
results have been recently obtained with a coupled-perturbed Kohn–Sham proce-
dure and hybrid functionals but the good agreement was argued to be partially for-
tuitous due to partial cancellation of large errors [67]. Ligand-HFCs in CuII complex-
es have also been studied in some detail with DFT methods, with the result that the
overall agreement between theory and experiment is fairly good [68]. However, there
is a systematic overestimation of the spin-dipolar contribution which was attributed
to an underestimation of the valence-shell spin-polarization [68]. In this context
hybrid functionals perform better than GGA functionals and the effect of SOC was
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found to be negligible [68]. A recent DFT study by Deeth on the EPR parameters of
[Cu(dien)2]2+ noted the same shortcomings of too-low g-values and too-high d–d
excitation energies and tried to overcome these effects by using a modified nuclear
charge of 28.2 on the copper center, thus making it less electron attracting [69]. A
similar approach has been taken in the thesis work by Swart which discusses, in
detail, DFT calculations on copper protein active sites and model complexes includ-
ing their EPR properties on the basis of scalar relativistic and spin–orbit corrected
ZORA calculations in conjunction with a variety of non-hybrid functionals [70].

36.2.3
Manganese

Very few first principles quantum chemical results are available for the EPR parame-
ters of biologically relevant manganese centers. Most recently, a DFT study [71]
addressed the g-values, Mn-HFCs and quadrupole couplings as well as ligand HFCs
in a dimeric MnIIIMnIV complex for which high-quality experimental data are avail-
able [72]. In the theoretical work, a BS-DFT methodology was worked out which
allowed the prediction of the g-tensor of the spin-coupled system. Reasonable agree-
ment was found for all magnetic properties with the B3LYP DFT method except for
the 55Mn-HFC which, as expected from the work of Munzarov� and Kaupp [73],
came out significantly too small in magnitude [71]. Still, the trends predicted by the
DFT calculations were correct and a scaling factor of 1.5 was proposed by compari-
son with the results on mononuclear manganese complexes [71]. On the semiempi-
rical side the study of Jackson et al. used the INDO/S-CI methodology to success-
fully calculate the ZFS in MnSOD in the trivalent state [33].

36.2.4
Nickel

36.2.4.1 Model Complexes
A number of DFT studies are available that discuss the EPR properties of Ni in
model complexes which are related to the active site of NiFe-hydrogenases. Results
are available for hyperfine couplings and the g-values in [Ni(mnt)2]– with the two
component and scalar relativistic ZORA methods together with the BP86 functional
by Stein et al. [74] and Stadler et al. [75] as well as with coupled perturbed Kohn–
Sham methodology in conjunction with the BP86 and B3LYP functionals [64, 67].
Both sets of calculations lead to reasonable results but with the B3LYP results being
overall the most accurate for g-values, 61Ni-HFCs and ligand HFCs. In addition the
ligand HFCs in this system where studied with the B3LYP method by Hayes [76].
An interesting set of Ni-dithiolene complexes were studied successfully with the two
component ZORA method and the BP86 functional by Formitchev et al. [77]. Most
recently, Craft et al. reported a spectroscopic and combined INDO/S-CI and DFT
theoretical study on a model complex for the Acetyl–CoA Syntase active site with
emphasis on NiI–CO bonding [78].
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36.2.4.2 Nickel–Iron Hydrogenase
NiFe hydrogenase is a fascinating enzyme which catalyzes the reversible splitting of
the H–H bond in H2 to 2H+ and 2e–. Several paramagnetic intermediates exist in
the reaction cycle of this enzyme and have been extensively probed with high-level
EPR spectroscopy on single crystals of the enzyme [74, 75, 79–88]. A substantial
number of DFT studies have been reported for this enzyme. However, only two
groups reported the detailed calculation of magnetic resonance parameters at the
two component and scalar relativistic ZORA/BP86 levels [82–87]. The complicated
details of these studies are outside the scope of this review and the reader is referred
to a recent review [87]. It appears that a full consensus about the individual struc-
tures and reaction steps has not yet been reached and therefore the mechanism of
NiFe hydrogenases will remain a challenging target for theoretical studies. The
importance of obtaining simultaneous agreement with all available experimental
data at a consistent level of theory and the judgment of the computational data with
respect to the known systematic deficiencies of methods used can hardly be overem-
phasized.

36.2.5
Vanadium

Vanadium occurs in a number of enzymes, perhaps most prominently in alternative
nitrogenases. However, no high-level studies on the EPR properties of enzyme active
sites appear to have been published. A number of DFT results are available from
model and calibration studies. Munzarov� and Kaupp have studied the EPR proper-
ties of Schiff-base complexes of (VO)2+ in detail with DFT methods. The emphasis
was on the validation of the methodology and the interpretation of the changes that
occur in the EPR spectra with respect to structural distortions away from a regular
square pyramid [89]. The dependence of nitrogen HFCs on the orientation of imida-
zole ligands to vanadyl complexes has been studied for the prototypical complex
[VO(H2O)4(imidazole)]2+ with the scalar relativistic ZORA methodology and good
qualitative agreement with the experimentally deduced orientation dependence has
been found [90]. Fairly good results for quadrupole couplings of (VO)2+-containing
systems as predicted by the B3LYP functional were reported [91]. A 51V solid state
NMR study on V(V) complexes mimicking the active sites of haloperoxidases togeth-
er with DFT calculations at the B3LYP level gave good agreement with experiment
for the 51V quadrupole interaction and magnetic shielding anisotropy [92]. The com-
plex [VO(H2O)5]2+ has received some attention and results of two component and
scalar relativistic ZORA/BP86 calculations [93] as well as BP86 and B3LYP coupled-
perturbed Kohn–Sham calculations are available [67].

36.2.6
Molybdenum

Despite its biological importance few first principles studies on the EPR parameters
of MoV have been reported. Westmoreland and co-workers used DFT calculations
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together with ligand field arguments and single-crystal EPR to discuss g-values,
95,97Mo-HFCs as well as metal-ligand covalencies in some MoV species [94]. Two
conference reports have appeared; the prediction of g-values of some larger MoV spe-
cies with modern DFT methods by Patchkovskii and Ziegler [95] and a calibration
study of EPR properties of MoV species by Fritscher et al. [96]. In both cases the
agreement achieved with experiment was qualitative. Peng et al. successfully used
the INDO/S-CI methodology to compute the g-tensors of a series of MoV model
complexes [97]. Most recently, a combination of single-crystal EPR and INDO/S-CI
calculations showed, despite the lack of molecular symmetry, very good agreement
with experiment for the principal values and the orientation of the g-tensor in some
model complexes for the sulfite oxidase active site [98].

36.3
Concluding Remark

The transition metal sites occurring in metalloproteins are a vast playground for the-
oretical methods aimed at predicting EPR properties. Using these methods impor-
tant contributions to the understanding of the structure and function of active sites
can be made. It has probably become evident in this short review that the amount of
work that has been done is still limited. However, given the ready availability of effi-
cient and user-friendly program packages it appears safe to predict that a rapid
increase in the number of publications that use quantum chemical calculations in
conjunction with EPR spectroscopy will occur in the near future.

Acknowledgement

Our research on spin-Hamilton parameters is supported by the Deutsche For-
schungsgemeinschaft within the priority program �Molecular Magnetism’ which is
gratefully acknowledged.

References 589

References

1 F. Neese, Curr. Opin. Chem. Biol. 2003, 7, 125.
2 F. Neese, E. I. Solomon, in Magnetism: Mole-

cules to Materials IV, eds. J. S. Miller, M. Dril-
lon, Wiley-VCH, Weinheim 2003, p. 345.

3 W. R. Hagen, Adv. Inorg. Chem. 1992, 38, 165.
4 B. Guigliarelli, P. Bertrand, Adv. Inorg. Chem.

1999, 47, 421.
5 G. H. Loew, M. Chadwick, D. Lo, Theor.

Chim. Acta. 1974, 33, 147.
6 S. J. Wilkens, B. Xia, F. Weinhold et al. J. Am.

Chem. Soc. 1998, 120, 4806.
7 J. C. Deaton, M. S. Gebhard, S. A. Koch et al.,

J. Am. Chem. Soc. 1988, 110, 6241.

8 J. C. Deaton, M. S. Gebhard, E. I. Solomon,
Inorg. Chem. 1989, 28, 877.

9 M. S. Gebhard, J. C. Deaton, S. A. Koch et al.
J. Am. Chem. Soc. 1990, 112, 2217.

10 V. V. Vrjamasu, E. L. Bominaar, J. Meyer et
al., Inorg. Chem. 2002, 41, 6358.

11 L. Noodleman, E. J. Baerends, J. Am. Chem.
Soc. 1984, 106, 2316.

12 L. Noodleman, J. G. Norman, J. H. Osborne
et al., J. Am. Chem. Soc. 1985, 107, 3418.

13 L. Noodleman, E. R. Davidson, Chem. Phys.
1986, 109, 131.



36 Applications to EPR in Bioinorganic Chemistry590

14 L. Noodleman, D. A. Case, A. Aizman, J. Am.
Chem. Soc. 1988, 110, 1001.

15 L. Noodleman, C. Y. Peng, D. A. Case et al.,
Coord. Chem. Rev. 1995, 144, 199.

16 L. Noodleman, D. A. Case, J. M. Mouesca et
al., J. Biol. Inorg. Chem. 1996, 1, 177.

17 L. Noodleman, J. Chem. Phys. 1981, 74, 5737.
18 P. J. M. Geurts, P. C. P. Bouten, A. van der

Avoird, J. Chem. Phys. 1980, 73, 1306.
19 L. LePape, B. Lamotte, J. M. Mouesca et al.,

J. Am. Chem. Soc. 1997, 119, 9757.
20 L. LePape, B. Lamotte, J. M. Mouesca et al.,

J. Am. Chem. Soc. 1997, 119, 9771.
21 J. M. Mouesca, G. Rius, B. Lamotte, J. Am.

Chem. Soc. 1993, 115, 4714.
22 J. M. Mouesca, L. Noodleman, D. A. Case,

Inorg. Chem. 1994, 33, 4819.
23 J. M. Mouesca, L. Noodleman, D. A. Case,

Int. J. Quant. Chem. 1995, 95.
24 J. M. Mouesca, L. Noodleman, D. A. Case

et al., Inorg. Chem. 1995, 34, 4347.
25 G. Palmer, in The Porphyrins. Vol. 2, eds.

A. B. P. Lever, H. B. Gray, Addison-Wesley,
London 1983, p. 43.

26 E. van Lenthe, A. van der Avoird, W. R.
Hagen et al., J. Phys. Chem. A 2000, 104,
2070.

27 E. van Lenthe, J. G. Snijders, E. J. Baerends,
J. Chem. Phys. 1996, 105, 6505.

28 S. Patchkovskii, T. Ziegler, Inorg. Chem. 2000,
39, 5354.

29 S. Patchkovskii, T. Ziegler, J. Am. Chem. Soc.
2000, 122, 3506.

30 J. H. Mao, Y. Zhang, E. Oldfield, J. Am. Chem.
Soc. 2002, 124, 13911.

31 E. I. Solomon, T. C. Brunold, M. I. Davis et
al., Chem. Rev. 2000, 100, 235.

32 F. Neese, E. I. Solomon, Inorg. Chem. 1998,
37, 6568.

33 T. A. Jackson, J. Xie, E. Yikilmaz et al., J. Am.
Chem. Soc. 2002, 124, 10833.

34 F. Neese, E. I. Solomon, J. Am. Chem. Soc.
1998, 120, 12829.

35 F. Neese, J. M. Zaleski, K. L. Zaleski et al.,
J. Am. Chem. Soc. 2000, 122, 11703.

36 M. I. Davis, A. M. Orville, F. Neese et al.,
J. Am. Chem. Soc. 2002, 124, 602.

37 F. Neese, E. I. Solomon, Inorg. Chem. 1999,
38, 1847.

38 J. Xie, E. Yikilmaz, A. F. Miller et al., J. Am.
Chem. Soc. 2002, 124, 3769.

39 T. A. Jackson, E. Yikilmaz, A.-F. Miller et al.,
J. Am. Chem. Soc. 2003, 125, 8348.

40 C. A. Brown, M. A. Pavlosky, T. E. Westre
et al., J. Am. Chem. Soc. 1995, 117, 715.

41 M. Wanner, T. Scheiring, W. Kaim et al.,
Inorg. Chem. 2001, 40, 5704.

42 M. Lebrero, D. Scherlis, G. Estiu et al., Inorg.
Chem. 2001, 40, 4127.

43 M. Li, D. Bonnet, E. Bill et al., Inorg. Chem.
2002, 41, 3444.

44 A. A. Gewirth, S. L. Cohen, H. J. Schugar
et al., Inorg. Chem. 1987, 26, 1133.

45 A. A. Gewirth, E. I. Solomon, J. Am. Chem.
Soc 1988, 110, 3811.

46 L. B. LaCroix, S. E. Shadle, Y. Wang et al.,
J Am. Chem. Soc. 1996, 118, 7755.

47 K. W. Penfield, R. R. Gay, R. S. Himmel-
wright et al., J. Am. Chem. Soc. 1981, 103,
4382.

48 K. W. Penfield, A. A. Gewirth, E. I. Solomon,
J. Am. Chem. Soc. 1985, 107, 4519.

49 S. E. Shadle, J. E. Penner-Hahn, H. J. Schugar
et al., J. Am. Chem. Soc. 1993, 115, 767.

50 E. I. Solomon, A. A. Gewirth, T. D. Westmore-
land, in Advanced EPR. Applications in Biology
and Biochemistry. ed. A. J. Hoff, Elsevier,
Amsterdam 1989, p. 865.

51 E. I. Solomon, M. J. Baldwin, M. D. Lowery,
Chem. Rev. 1992, 92, 521.

52 E. I. Solomon, M. D. Lowery, in The Chemistry
of Copper and Zinc Triads, eds. A. J. Welch,
S. K. Chapman, Royal Society of Chemistry,
Cambridge 1993, p. 12.

53 S. Patchkovskii, J. Autschbach, T. Ziegler,
J. Chem. Phys. 2001, 115, 26.

54 M. van Gastel, J. W. A. Coremans, H. Som-
merdijk et al., J. Am. Chem. Soc. 2002, 124,
2035.

55 F. Neese, Ph.D. Thesis, Universit�t Konstanz
(Konstanz), 1997.

56 A. R. Jaszewski, J. Jezierska, Chem. Phys. Lett.
2001, 343, 571.

57 F. Neese, W. G. Zumft, W. E. Antholine et al.,
J. Am. Chem. Soc. 1996, 118, 8692.

58 F. Neese, R. Kappl, J. Huttermann et al.,
J. Biol. Inorg. Chem. 1998, 3, 53.

59 J. Farrar, F. Neese, P. Lappalainen et al.,
J. Am. Chem. Soc. 1996, 118, 11501.

60 E. I. Solomon, M. J. Baldwin, M. D. Lowery,
Chem. Rev. 1992, 92, 521.

61 R. Szylagi, E. I. Solomon, J. Phys. Chem. A,
2001, 106, 2994.

62 O. L. Malkina, J. Vaara, B. Schimmelpfenning
et al., J. Am. Chem. Soc. 2000, 122, 9206.

63 F. Neese, J. Chem. Phys. 2001, 115, 11080.



References 591

64 F. Neese, J. Inorg. Biochem. 2001, 86, 357.
65 K. Pierloot, A. Delabie, M. H. Groothaert

et al., Phys .Chem. Chem. Phys. 2001, 3, 2174.
66 F. Neese, Int. J. Quantum Chem. 2001, 83,

104.
67 F. Neese, J. Chem. Phys. 2003, 118, 3939.
68 F. Neese, J. Phys. Chem. A 2001, 105, 4290.
69 R. J. Deeth, J. Chem. Soc. Dalton 2001, 664.
70 M. Swart, Ph.D. Thesis, Rijksuniversiteit

Groningen (Groningen), 2002.
http://www.scm.com/Doc/publist.html

71 S. Sinnecker, F. Neese, L. Noodleman et al.,
J. Am. Chem. Soc. 2004, in press.

72 K. O. Sch�fer, R. Bittl, F. Lendzian et al.,
J. Phys. Chem. B 2003, 107, 1242.

73 M. Munzarov�, M. Kaupp, J. Phys. Chem. A
1999, 103, 9966.

74 M. Stein, E. van Lenthe, E. J. Baerends et al.,
J. Phys. Chem. A 2001, 105, 416.

75 C. Stadler, A. L. de Lacey, B. Hernandez et al.,
Inorg. Chem. 2002, 41, 4417.

76 R. G. Hayes, Inorg. Chem. 2000, 39, 156.
77 D. V. Fomitchev, B. S. Lim, R. H. Holm,

Inorg. Chem. 2001, 40, 645.
78 J. L. Craft, B. S. Mandinutsira, K. Fujita et al.,

Inorg. Chem. 2003, 42, 859.
79 W. Lubitz, M. Stein, M. Brecht et al., Biophys.

J. 2000, 78, 1660.
80 O. Trofanchuk, M. Stein, C. Gessner et al.,

J. Biol. Inorg. Chem. 2000, 5, 36.
81 W. Lubitz, M. Stein, M. Brecht et al., Biophys.

J. 2000, 78, 1660.
82 M. Stein, W. Lubitz, Phys .Chem. Chem. Phys.

2001, 3, 5115.

83 M. Stein, W. Lubitz, J. Inorg. Biochem. 2001,
86, 442.

84 M. Stein, W. Lubitz, Phys .Chem. Chem. Phys.
2001, 3, 2668.

85 M. Stein, E. van Lenthe, E. J. Baerends et al.,
J. Am. Chem. Soc. 2001, 123, 5839.

86 C. Stadler, A. L. Lacey, Y. Montet et al., Inorg.
Chem. 2002, 41, 4424.

87 M. Stein, W. Lubitz, Curr. Opin. Chem. Biol.
2002, 6, 243.

88 S. Foerster, M. Stein, M. Brecht et al., J. Am.
Chem. Soc. 2003, 125, 83.

89 M. L. Munzarov�, M. Kaupp, J. Phys. Chem. B
2001, 105, 12644.

90 A. C. Saladino, S. C. Larsen, J. Phys. Chem. A
2002, 106, 10444.

91 C. V. Grant, W. Cope, J. A. Ball et al., J. Phys.
Chem. B 1999, 103, 10627.

92 N. Pooransingh, E. Pomerantseva, M. Ebel
et al., Inorg. Chem. 2003, 42, 1256.

93 S. C. Larsen, J. Phys. Chem. A 2001, 105,
8333.

94 C. Balagopalakrishna, J. T. Kimbrough,
T. D. Westmoreland, Inorg. Chem. 1996, 35,
7758.

95 S. Patchkovskii, T. Ziegler, Canadian Society
for Chemistry (Toronto), 1999.

96 J. Fritscher, T. F. Prisner, M. Kaupp, Abstract
for EURBIC 6 (Lund,Sweden), 2002.

97 G. Peng, J. Nichols, E. A. McCullough et al.,
Inorg. Chem. 1994, 33, 2857.

98 M. Mader Cosper, F. Neese, A. V. Astashkin
et al., J. Am. Chem. Soc 2003, submitted.





593

a
absolute shielding scale 13
acetonitrile
– gas-to-liquid change in chemical

shift 182
– N chemical shift 185
agostic interactions 423
alkoxides 458
alkyl cations 372 ff
– b-silyl 375
all-electron current reconstruction from

pseudopotential calculation 270
allyl cation 389
alternative hyperfine operator 493 ff
AMFI see atomic mean field approximation
amino acid radicals 574 ff
amino acids (zwitterionic radicals of) 573
anharmonicity 155
anisotropy effects 396
anisotropy of spin–spin coupling 259, 261 ff
anomalous Zeeman effect 78
antiaromaticity 148, 394
r-antiaromaticity 405
apparent surface charge methods 193 ff
ARCS see aromatic ring-current shielding
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cluster approximation 265
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CPMD see molecular dynamics simulations
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cyclopropylvinyl cations 384 ff

d
Dalgarno exchange theorem 65, 76
Darwin term 75, 211
defect structure of boron carbide 273
1,3-dehydroadamantane-5,7-diyl dication 384
delocalization 204
DE model 144
delta function operator 493 ff
density functional theory 258 ff, 332 ff,

505 ff
density-functional tight binding method

146 ff
– for chemical shift 146 ff
– with individual gauge for localized orbitals,

for chemical shift 142

density matrix 105 ff, 129
deoxyribose model chemical shift anisotropy

in 346
DFT see density functional theory
DFTB see density-functional tight binding

method
diamagnetic contribution in operators 507
– to energy 70
– to nuclear shielding 231, 252
– see also current density and nuclear

shielding
diamagnetic part in semiempirical methods

151
diamagnetic spin–orbit term 102 ff, 212,

307 ff
diamagnetism 66
diazine 200
Diels–Alder reaction (transition state) 404
differential overlap
– neglect of 141, 145
– see also complete neglect, intermediate

neglect, and modified neglect of differential
overlap

dimethyl sulfoxide 185
Dirac delta function 483 ff
Dirac equation 22, 39, 56, 69 ff
Dirac–Hartree–Fock method 209 ff, 286, 479
Dirac operator 54 ff
– unitary transformation of 71 ff
Dirac vector model 319
– of spin–spin coupling 309 ff
Dirac wavefunction 11
direct perturbation theory 72 ff, 210
disilenes 29Si shifts 301 ff
double bonds anisotropy effects 396
Douglas–Kroll approach 233 ff, 238 ff, 286 ff,

509 ff, 518
Douglas–Kroll–Hess approach see Douglas–

Kroll approach
Douglas–Kroll transformation 209 ff
DSO term see diamagnetic spin–orbit term
dynamic nuclear polarization 39

e
effective core potential see pseudopotential
effective geometry 158
effective-Hamiltonian 552 ff
effective potential, one-electron 516
effective spin Hamiltonian 23 ff, 27, 33 ff,

331
effective spin operator 506
EFG see electric field gradient
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electric field, external, (effect on spin–spin
coupling constants and chemical shift
356 ff

electric field effects on chemical shift 343
electric field gradient 178 ff, 185, 272, 279 ff
– relation to line widths 428
electric field gradient tensor 443 ff
electrodynamic potentials 45
electron correlation 123, 127 ff, 132 ff, 239 ff,

256 ff
– dynamic 127
– for nuclear shielding constant 123 ff
– static 127
electron localization function 321
electron-nuclear double resonance 22, 38
electron spin echo envelope modulation 39
electrostatic effects 266
endohedral fullerenes 414
energy denominator 98
– averaged 144
– for nuclear shieldings 298, 301
– for spin–spin coupling 311
energy level diagrams of spin–spin coupling

309
environmental effects 191
EOM-CCSD see equations of motion coupled

cluster method
equations of motion
– Car-Parrinello 176
– Newton 176
equations of motion coupled cluster method

354
escaped charge 192
ethyl cation 373
Euler-Lagrange equations 47
exact exchange 92, 98 ff
exchange-correlation functional 107, 464
– current-dependent terms 97
– influence on g-tensor 521 ff
exchange interaction 25
experimental techniques in EPR, development

of 21 ff
extended-H�ckel method, relativistic 11, 254

f
F2 shielding constant 98
FC term see Fermi contact term
Fermi contact interaction 22 ff, 493 ff
Fermi contact operator 213, 327, 493 ff
– kinetic energy correction 215
Fermi contact term 54, 63 ff, 69, 102 ff,

251 ff, 303, 307 ff, 316, 464, 479, 483 ff
– distance dependence 357, 362

ferrierite 274 ff
FH:pyridine complex 368 ff
finite perturbation theory 9, 113, 309, 317
– double 320 ff
– single 313
first-order orbitals 89 ff, 93
first-order property 510 ff
first-order response 129
fluctuation potential 131
fluorine shielding constant 98
force field 158
formyl cation 391
four-component computations 232 ff
four-component formalism 252 ff
four-component methods 255 ff
four-component picture 231
frozen-core method 222
fullerene addition compounds 413 ff
fullerene dimers 416
fullerenes 409 ff
– 13C chemical shift of 147, 149, 409 ff
– endohedral 414
– 3He chemical shift 148
– isomers 412
– NICS values 403, 411
– POAV and 13C NMR 412 ff
– topological analysis of geometries 409 ff

g
Galileo transformation 48
gauge of vector potential 45
gauge correction spin–orbit Zeeman 40
gauge-correction operator 507
gauge dependence 88 ff
– basis set effects 89, 126
gauge-including atomic orbitals 13 ff, 67 ff,

92, 95, 123 ff, 141 ff, 269, 398, 517
– with coupled cluster method, for chemical

shift 133
– with local MP2 method, for chemical shift

134
– with MNDO method, for chemical shift

142 ff
– with MP2 method, for chemical shift 133
– with multi-configurational Hartree–Fock

method, for chemical shift 133
gauge-including projector augmented wave

method 269 ff, 275, 452, 455, 517
gauge invariance 269, 517 ff
gauge origin 53, 66 ff, 86 ff, 218
– distributed 92, 96
gauge term 93
gauge transformation 52 ff, 56, 87, 96, 151
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Gaussian-type orbitals GTOs 466
Gaussian-weighted operator 499 ff
geminal spin–spin coupling 316
generalized gradient approximation 107,

110, 114, 465
g-factor quantum-electrodynamic corrections

63
GGA see generalized gradient approximation
GIAO see gauge-including atomic orbitals
GIPAW see gauge-including projector

augmented wave method
Gordon decomposition 72
group susceptibility effects on chemical shift

342
g-tensor 24, 28, 37, 203 ff, 275, 330 ff, 505 ff,

533 ff, 581 ff
– ab initio calculation of 28
– with continuum models 201
– basis set effects 521 ff
– density functional calculation of 28 ff
– paramagnetic contributions 514
– solvent effect on 204
guest molecule NMR of 457

h
HAHA effect see heavy-atom effect (on heavy

atom)
HALA effect see heavy-atom effect (on light

atom)
halomethyl cations 391
Hamiltonian, electronic 326
harmonic oscillator 155
Hartree–Fock method
– restricted, for open shells 484 ff, 537
– unrestricted, for open shells 25 ff, 484 ff
Hartree–Fock orbitals 88
HCS radical hyperfine coupling constant 570
heavy-atom effect 294
– on heavy atom 222, 228 ff, 236 ff, 250
– on light atom 222, 228, 235 ff, 250, 254,

302
Heaviside-weighted operator 498 ff
3He chemical shift in endohedral fullerene

compounds 148
hemoproteins, EPR parameters of 583
Hessian electronic 109 ff
highest occupied molecular orbital (HOMO)

205
high-field NMR 443
high field regime 547
Hiller–Sucher–Feinberg HSF) operator 494
HIV-1 protease 184
homoaromatic carbocations 389

H�ckel molecular orbital theory 23, 26
H�ckel’s rule 401
Hund’s rule 310
hybrid functionals 92, 98 ff, 465
hydrogen bond 348, 353 ff
– C-H-N hydrogen bond 361 ff
– direction of lone pair 360
– F-H-N hydrogen bond 363 ff
– ion-pair 355
– N-H-N hydrogen bond 357 ff
– proton-shared 355
– spin–spin coupling across 442
hydrogen bonding 201 ff
– effect on chemical shift 345
hydrogen halides 234 ff
hyperconjugation 315, 375, 385
hyperconjugative charge delocalization 373
hyperconjugative effects 204
hyperfine coupling 21, 63 ff, 77, 325, 567,

581 ff
– anisotropic 567
– basis set effects 570 ff
– basis sets for calculation of 466, 501 ff
– in biological systems 568, 574 ff
– cusp condition for 466 ff
– DFT methods 571 ff
– dipolar 464, 483
– effect of vibrational correction 568 ff
– electron correlation effects 570 ff
– environmental effects 572 ff
– error cancellation in DFT calculations of

480, 489
– of first-row atoms 568 ff
– isotropic 25, 27, 464, 483, 567
– isotropic, with continuum models 201
– of main group atoms 467 ff
– matrix effects 474
– organic radicals 469 ff
– P-containing radicals 572
– p-radicals with heteroatoms 470 ff
– S-containing radicals 570, 572
– solvent effect 178
– spin–orbit corrections to 478 ff, 572, 586 ff
– spin–orbit effects on 28
– spin polarization mechanism 467 ff,

476 ff, 484 ff
– structural dependence 474
– transition metal 25
– transition metal complexes 475 ff
hyperfine coupling for cusp condition 466 ff,

498 ff
hyperfine coupling tensor 24, 37 ff, 330 ff,

463 ff, 567 ff
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– excitation contributions to 485 ff
– post-Hartree–Fock calculations of 483 ff
hyperfine integrals 252 ff
hyperfine structure 279 ff
Hypervirial theorem 494 ff
HZSM-5 zeolite 458

i
IGAIM see individual gauge for atoms in

molecules
IGLO see individual gauge for localized

orbitals
individual gauge for atoms in molecules 97,

269, 302
individual gauge for localized orbitals 14,

67 ff, 92 ff, 517
– application to carbocations 371
– density functional calculations 94
– with density-functional tight binding

method 142, 146 ff
– multi-configuration Hartree–Fock 94, 124
– orbital decomposition 398
INDO see intermediate neglect of differential

overlap
integral-direct techniques 133
interbond bond order 309, 312
intermediate neglect of differential overlap

26, 141, 145
– INDO/S method 559 ff, 582 ff
intermolecular interactions 191
internal coordinates 160
intrinsic quadrupole moment 282 ff
iron-sulfur protein sites, EPR parameters of

582 ff
isopropyl cation 374
isotope effects 159 ff
– on magnetic shielding tensor 13
– on nuclear shielding constants 167
– on spin–spin coupling 170
isotopomer 159 ff

k
Karplus–Fraenkel equation 26
Karplus relation 9, 117, 303, 313 ff
kinetic energy correction to spin Zeeman,

Fermi contact, and spin-dipolar hyperfine
operators 215

Kirkwood-Onsager model 194
Knight shift see paramagnetic shift
Kohn–Sham energy 107
Kohn–Sham orbitals 88
Kramers doublet 329, 330, 333,

511 ff, 543

Kramers pair see Kramers doublet
Kramers-systems 543
k-vector 267

l
laboratory-system model 284
Lagrangean 46 ff, 50
K-equations 129
Lamb term 67
lanthanide shift reagent 12
LCAO see linear combination of atomic

orbitals
LDA see local density approximation
Legendre transformations 47, 50
Levy–Leblond equation 55, 57 ff
ligand field theory 542, 582
ligands of transition metals, chemical shift

of 422 ff
linear combination of atomic orbitals 143,

310 ff
linear response theory 88, 108
linear scaling 133
liquid crystal NMR 441
liquids
– magnetic susceptibility in 187
– NMR properties of 175
– spin–spin coupling 187
local correlation methods 133 ff
local density approximation 107, 110, 114,

465
localized molecular orbitals 94
– contributions from 398
localized orbital/local origin second-order

123
Lorentz force 44
Lorentz gauge 46
Lorentz invariance 50
Lorentz transformation 48
LORG see localized orbital/local origin

m
magic angle spinning NMR 441
magnetic field, local 85
magnetic shielding see nuclear shielding
magnetic susceptibility 66, 187
– long range effects on chemical shift 342
magnetic susceptibility tensors 343
magnetizability tensor 60 ff, 65 ff
Malkin correction 99
manganese complexes, EPR parameters of

587
mass-velocity term 75
Maxwell equations 44 ff
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mazzite 454
McConnell equation 25 ff, 342
MCSCF see multi-configuration Hartree–Fock

method
mean-field model 284
mechanics, classical 50
meta-GGA functionals 465
metalloporphyrins 423, 425 ff
metalloproteins, EPR parameters of 581 ff
methane gauge dependence of shielding

constants 90
method 258 ff
minimal coupling 508
MNDO see modified neglect of differential

overlap
modified neglect of differential overlap 145
– with gauge-including orbitals, for chemical

shift 142
M�bius aromaticity 401 ff
molecular dynamics simulations 164, 175 ff,

198 ff
– Born–Oppenheimer 176
– Car–Parrinello 176
molecular orbital
– canonical 91 ff, 94, 297, 314
– highest occupied 317
– localized 297, 314, 316
– lowest unoccupied 205, 317
Møller–Plesset perturbation theory 124, 128
– local, with gauge-including orbitals, for

chemical shift 134
– with gauge-including orbitals, for chemical

shift 133
molybdenum complexes, EPR parameters

off 588 ff
momentum
– canonical 47
– kinematical 47
Monte Carlo simulations 176
MO theory, qualitative 24
MP2 see Møller–Plesset perturbation theory
multi-configuration Hartree–Fock method

114, 124, 128, 195, 332
– coupled 65
– with gauge-including orbitals for chemical

shift 133
– with individual gauge for localized orbitals,

for chemical shift 94, 124
multipole expansion methods 193 ff
multi-reference configuration interaction

method 484 ff, 489, 537 ff

n
N2 correlation effects on shielding constant

134
natural bond orbital 297, 314 ff, 317
natural chemical shielding analysis 297
natural J-coupling analysis 314 ff
natural localized molecular orbital 314 ff, 317
NH2CHCOOH 574 ff
nickel complexes, EPR parameters of 587 ff
nickel-iron hydrogenases, EPR parameters of

588
NICS see nucleus-independent chemical shift
nitrosyl porphyrins, EPR parameters of 583
nitroxides hyperfine coupling 573
N-methylacetamide dimer 344, 348
N-methylformamide 17O chemical shift 182,

185
NMR tensors 433 ff
2-nobornyl cation 380 ff
no-core shell model 283 ff
non-collinear spin density functional

approach 511
non-heme iron protein sites, EPR parameters

of 584
non-Kramers system 543, 545
nonrelativistic limit 43, 48 ff, 70 ff
normal coordinates 160 ff
normal halogen dependence 391
– of chemical shift 303
nuclear acids NMR parameters in 341 ff
nuclear deformation 279 ff
nuclear quadrupole coupling 24, 178, 272,

279 ff, 443 ff, 581 ff
– aluminium 456
– ammonia 185
– deuterium in water 177, 185
– 17O in CO2 185
– tensor 37 ff
nuclear quadrupole resonance 37
nuclear shielding 65, 67 ff, 153 ff, 209 ff
– with continuum models 195 ff
– diamagnetic contribution 130, 231
– diamagnetic part 14, 201
– diamagnetic term 252, 295
– MO contributions to 296
– paramagnetic contribution 131
– paramagnetic part 14, 201
– paramagnetic term 295
– scalar relativistic effects 304
– semiempirical methods 141, 143
– SO effect on 79 ff
nuclear shielding constant 86, 90
– electron-correlation effects 135
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– halides 236
– isotope effects 167
– solvent effects 175
– spin–orbit effects 166
– vibrational corrections 165
– of W, Pt, Pb, U 242
nuclear shielding density 298 ff
nuclear shielding tensor 36, 229 ff, 328, 330
– boron 443 ff
– components 95
– isotope effect on 13
– orbital 329 ff
– paramagnetic part 330
– relativistic effects 218, 220
– symmetry of 13
nuclear Zeeman interaction 24
nuclear Zeeman term 332
nucleic acids chemical shift in 346
nucleus-independent chemical shift 86,

147 ff, 394 ff, 398
– comparison of methods based on 400
– dissected 398
– for fullerenes 148
– isosurfaces 397
– using GIAO-MNDO 148 ff

o
one-component method 508 ff, 518 ff
one-electron systems 44
optical excitation energies correlation of

chemical shift with 294
orbital shift 325 ff
orbital Zeeman interaction 212
orbital Zeeman term 295
ozone electron-correlation effects on shielding

constants 135 ff

p
pair-additivity 179, 185
paramagnetic contribution to energy 70
paramagnetic current 299
paramagnetic NMR 325 ff, 582
paramagnetic part in semiempirical

methods 151
paramagnetic shift 36
paramagnetic spin–orbit term 102 ff, 212,

295, 307 ff
paramagnetism 63, 66
Pauli equation 57
Pauli matrix 56
Pauli principle 310
Pauli spin matrices 211
Penney–Dirac bond order 312

pentadienyl cation 389
peptides three-bond coupling in 347
pericyclic reactions transition states 404
periodic boundary conditions 177, 179, 265
periodic treatments 179
perturbational methods 257
perturbation operators, magnetic 229 ff
perturbation theory 35, 58 ff, 88, 103, 209 ff
– degenerate 60, 75
– multiple 59
– quasidegenerate 78
– third order 218
picture change effects 230
p-radical 25
p-stabilized carbocations 385
plane wave basis set 269, 271 ff, 274
Poisson–Boltzmann equation 193
Poisson equation 193
polarizable continuum model 181, 194 ff
– for hyperfine coupling 573
polarization functions 89
polarization-propagator method (second-

order) 131
polycyclic carbocations 380 ff
polypeptides chemical shift calculations on

345
position operator 268
principal axis system of NMR tensors

433 ff
projector augmented wave method 269
property density 318 ff, 320 ff
property derivatives 159 ff
property surfaces 178
2-propyl cation 374
proteins
– chemical shift calculations on 345
– NMR parameters in 341 ff
protonated carbonic acid 392
protonated diazomethane 392
protonated methane 372
protonated urea 392
proton transfer 455 ff
pseudocontact shift 325 ff, 343
pseudopotential 209, 222, 228 ff, 268, 272,

528 ff
pseudopotential calculation reconstruction of

all-electron current from 270
pyridine N chemical shift 185

q
QCE method see quantum cluster equilibrium

method
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quadrupolar interaction
– first-order 443
– second-order 443
quantum cluster equilibrium method 181
– results for liquid water 183
quantum confinement effects 266
quantum electrodynamics 49, 55, 77, 209,

231
quantum mechanical spin Hamiltonian 33 ff
quantum Monte-Carlo simulation secondary

isotope effect 164

r
Ramsey equation 295, 309
– relativistic analog 10, 13
Ramsey, Norman F 7 ff
Ramsey term 67
random-phase approximation 131
reaction field 180 ff
real-space function of spin–spin coupling

317
reduced spin–spin coupling constant 310
reference interaction site model 181
reference shift see orbital shift
relativistic calculations 249 ff
relativistic corrections 61, 65, 74, 257
relativistic DFT 508 ff
relativistic effects 44, 166, 209 ff, 217 ff, 272,

513 ff
– active terms 221
– on nuclear shielding 218, 220
– on nuclear shieldings, interpretation of

302
– passive terms 222
– on spin–spin coupling 10, 118, 219, 221
relativistic kinematic effects 213
relativistic mass-correction term 534, 536,

538
relativistic methods 227, 286 ff
relativistic scaling factor 253 ff
relativistic theory 43
relativity principles 48
relaxation quadrupolar 179, 185
relaxation time 178, 185
resolution of the identity 133
response equations 111
response theory 103 ff
– first-order 129
– second order 125
restricted open-shell Hartree–Fock method

332
REX see extended-H�ckel method
ring current 298, 343, 394 ff

– diamagnetic part 298 ff
– density 400
– susceptibility 397
RISM see reference interaction site model
rotational state 162 ff
ro-vibrational correction see vibrational

corrections
rubredoxin 582
2(N+1)2 rule 403

s
Sc3NC80 416
scalar relativistic effects 239 ff, 256 ff
– on nuclear shielding 304
s-character of bond or molecular orbital 312
Schr�dinger equation 57 ff
Schr�dinger Hamiltonian 50
SCRF see self-consistent reaction field
SD term see spin-dipolar term
secondary isotope effect 159 ff, 167, 170
second derivatives analytic 124, 129 ff
second-order property 123, 513 ff
second-order response 125
selection rules for magnetic-dipole allowed

couplings 296
self-consistent reaction field for hyperfine

coupling 573
self-coupling effects 11
self-interaction 99
self-interaction correction 99, 422
self-interaction error, in DFT 585
semiempirical methods 141 ff, 254
– limitations for NMR parameters 151
semiempirical models of chemical shift 12
semiquinone 203 ff
shielding anisotropies 243 ff
shielding constant see nuclear shielding
shielding hyperpolarizability 343
shielding tensor see nuclear shielding tensor
short-range alternative operator 497
SIC see self-interaction correction
silanorbornyl cations 381
b-silyl effect 385
singly occupied molecular orbital SOMO

475, 490
Slater-type orbitals STOs 466
snapshot 177
SOLO see localized orbital/local origin (second

order)
solute-solvent interactions 191 ff
– direct 198
– indirect 198
– specific 198
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solvation, free energy of 193 ff
solvent effect 239 ff
– electrostatic 178
– on hyperfine coupling 178
– on nuclear shielding constants 175, 178
– on spin–spin coupling 118, 175, 178
SOPPA see polarization-propagator method,

second-order
SOS see sum-over-states theory
spherical aromaticity 403
spin contamination 476 ff
spin-current 515
spin density 105 ff, 252 ff, 314, 317
spin-dipolar hyperfine operator kinetic energy

correction 215
spin-dipolar operator 213
spin-dipolar term 66, 69, 102 ff, 251 ff, 307 ff
spin-Hamiltonian 541 ff
spin–orbit chemical shift 12, 303
– analogy with spin–spin coupling 303
spin–orbit core potential, relativistic 515
spin–orbit coupling 37 ff, 44, 62, 65 ff, 75 ff,

78 ff, 211, 216 ff, 235 ff, 276, 302 ff, 507 ff,
552 ff

– operators 40, 515 ff
spin–orbit effects 239 ff, 256 ff, 286 ff
– on chemical shift 12, 303
– on hyperfine coupling 28
– on nuclear shieldings 166 ff, 301
spin–orbit operator 233, 507 ff
– approximations 527 ff
– effective 557
– empirically parametrized 528
spin-other-orbit operator 507 ff, 528
spin polarization 25 ff, 303, 309, 317, 524 ff
spin quantization direction 514
spin-restricted approach 512, 518, 524
spin–spin coupling 9 ff, 61, 68 ff, 101 ff,

153 ff, 209 ff, 249 ff, 307 ff, 439, 439 ff, 496
– 19F-15N across F-H-N hydrogen bond

363 ff
– 13C-15N across C-H-N hydrogen bond

361 ff
– across hydrogen bonds 348 ff, 353 ff,

357 ff, 442
– across hydrogen bonds, temperature

dependence 367
– anisotropy of 261
– in biomolecules 347
– through bond 308, 310, 313, 319 ff
– with continuum models 195 ff
– with DFT methods 101 ff
– diamagnetic orbital terms 251 ff

– dipolar 36
– effects of electric fields 356
– geminal 115
– with Hartree–Fock methods 101 ff
– indirect 36
– isotope effects 170
– in liquids 187
– one-bond, conformational dependence of

348
– paramagnetic orbital terms 251 ff
– Ramsey mechanisms 439
– reduced coupling constant 310
– relativistic effects 10, 118, 219, 221
– scalar quantum exchange 164
– sign of 442
– solvent effects 118, 175, 178
– through space 308, 310, 313, 319 ff
– spin orbit effect on 79 ff
– three-bond, in peptides 347
– in transition-metal complexes 187, 427
– vibrational corrections 116, 118, 168
– vicinal 118
– visualization of 317
spin–spin coupling density 319
spin–spin coupling pathways 308
spin–spin coupling tensor 102 ff, 112,

439 ff
– antisymmetric contributions 442
– magnetic dipole-dipole interaction 439
– principal axis system for 440
– for trimethylphosphine 441
– vibrational corrections 442
spin–spin interaction, direct dipolar 553
spin-Zeeman interaction 211, 213, 221
spin-Zeeman operator kinetic energy

correction 215
spiral code 409
Stone’s theory 28
sum-over-states density functional

perturbation theory 452 ff
sum-over-states perturbation theory 9, 27,

309 ff, 316
sum-over-states theory 92, 98, 103, 125, 131,

144, 295, 537 ff
– expansion of third order relativistic terms

302
super-cell 267
supermolecular model 572 ff
superoxide dismutase 584

t
temperature effects 161 ff, 165
TEMPO radical 573
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tensor ranks of 213
tetrahedrane aromatic shielding 405
tetrazole 197
thioformyl radical hyperfine coupling

constant 570
Thomson radius 49
through-bond coupling spin–spin 308, 310,

313, 319 ff
through-space coupling spin–spin 308, 310,

313, 319 ff
tight binding method 142, 146
time-correlation functions 179
trajectory 176
transferability of MO contributions 300
trans influence 428
transition metal carbonyl clusters 300
transition metal chemical shift 178, 184, 424,

426
transition metal complexes
– aromaticity of 400, 429
– spin–spin coupling 187, 427 ff
– structural refinement 423
transition metal compounds 288
– NMR of 421
transition metal hydrides (1H shieldings)

301
transition metal nuclei 183
transition metal oxo complexes

(17O shieldings) 300
transition metal phosphine complexes

(31P coordination shifts) 301
transition states aromaticity of 404
translational symmetry 267
trimethylphosphine spin–spin coupling tensor

for 441
triple bonds anisotropy effects 396
triplet states aromaticity of 402
tunneling 164
two-component method 232 ff, 252 ff, 508 ff,

518 ff, 538

u
uncoupled DFT method 92, 296
units
– atomic 51, 55, 85
– atomic, SI-based 211
– for magnetic properties 45
unrestricted approach 538

v
valence-bond theory 25
vanadium complexes 183
– EPR parameters of 588

Van–Vleck paramagnetism 299
variable-field NMR 443 ff
vector potential 45, 53, 86
vibrational averaging 202 ff
vibrational corrections 153 ff, 154, 163, 202 ff
– to hyperfine coupling 569
– to nuclear shielding constants 165
– to spin–spin coupling 116, 118, 168
– to spin–spin coupling tensor 442
vibrational wavefunction 159 ff
vicinal spin–spin coupling 118, 316
vinyl cations 384 ff

w
water
– chemical shift 177, 179 ff
– chemical shift anisotropies 183
– deuterium quadrupole coupling constant

177, 185
– gas-to-liquid change in chemical shift 183
– magnetic susceptibility 187
– supercritical 187
wave function spatial 35
weak field regime 543, 545

x
X-a scattered wave method 581, 585

z
Zeeman effect 62 ff, 533 ff
– anomalous 78
Zeeman gauge diamagnetic correction 327
Zeeman kinetic energy correction, spin 507
Zeeman operator
– electron spin 327 ff
– nuclear spin–orbit coupling 506
– one-electron spin 506
– orbital 327 ff, 506
Zeeman splitting 77 ff
Zeeman term, nuclear 332
– spin–orbit gauge correction 534
zeolites 271, 274 ff, 449 ff, 454, 458
– carbocations in 390
– cation positions in 455
zero-field splitting 24, 38, 78, 541 ff, 582 ff
– theory 552
zero-field splitting tensor 506
zero-order regular approximation 209 ff,

233 ff, 238 ff, 258 ff, 272, 479, 509, 518
zero-point vibrational corrections 154 ff, 166
ZFS see zero-field splitting
ZORA see zero-order regular approximation
Z-vector method 129
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